TW201522766A - Organic rankine cycle system and operation mode changing mathod for sub-critical cycle and transcritical cycle - Google Patents
Organic rankine cycle system and operation mode changing mathod for sub-critical cycle and transcritical cycle Download PDFInfo
- Publication number
- TW201522766A TW201522766A TW102144906A TW102144906A TW201522766A TW 201522766 A TW201522766 A TW 201522766A TW 102144906 A TW102144906 A TW 102144906A TW 102144906 A TW102144906 A TW 102144906A TW 201522766 A TW201522766 A TW 201522766A
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- critical
- organic rankine
- rankine cycle
- cycle system
- Prior art date
Links
Landscapes
- Control Of Turbines (AREA)
Abstract
Description
本提案係關於一種有機朗肯循環系統,特別是一種有機朗肯循環系統及其次臨界運轉模式和穿臨界運轉模式的切換方法。 This proposal relates to an organic Rankine cycle system, in particular an organic Rankine cycle system and its switching method of subcritical operation mode and through critical operation mode.
有機朗肯循環(Organic Rankine Cycle,ORC)使用在常壓時低沸點的有機物質為工作流體,為目前中低溫熱能發電技術中效率最高且最經濟實惠。有機朗肯循環依內部循環工作流體操作於臨界點下或上區分為次臨界循環(Sub-critical cycle)系統或穿臨界循環(Transcritical cycle)系統。一般而言,穿臨界循環系統具有較高的系統熱效率和熱源取熱率,因此在相同冷熱源條件下其發電量較大。 The Organic Rankine Cycle (ORC) uses a low-boiling organic substance at normal pressure as the working fluid, which is the most efficient and economical in the current medium-low temperature thermal power generation technology. The organic Rankine cycle is operated at or above the critical point depending on the internal circulation working fluid to be classified as a Sub-critical cycle system or a Transcritical cycle system. In general, the critical circulation system has a higher system thermal efficiency and a heat source heat extraction rate, so that the power generation amount is larger under the same cold and heat source conditions.
應用於穿臨界有機朗肯循環系統的熱源多樣化且範圍寬廣,包含中低溫廢熱、地熱、溫泉、太陽熱能等變動型熱源。然而,由於上述變動型熱源的溫度和單位時間內之供應量具有週期性、間歇性或不定期性的變異,故若穿臨界有機朗肯循環面對上述變動型熱源時,則有可能因熱源的條件變動至穿臨界有機朗肯循環運轉的條件外而導致有機朗肯循環系統停機,進而侷限有機朗肯循環系統的使用率。如此一來,將會降低有機朗肯循環系統的累積發電量,因此,如何提升有機朗肯循環系統面對 變動型熱源時的發電量,進而提升其經濟效益將是研發人員應解決的問題之一。 The heat source used in the critical organic Rankine cycle system is diversified and wide-ranging, including variable heat sources such as medium and low temperature waste heat, geothermal heat, hot springs, and solar thermal energy. However, since the temperature of the variable heat source and the supply amount per unit time have periodic, intermittent or irregular variations, if the critical organic Rankine cycle faces the above-mentioned variable heat source, it may be due to the heat source. The conditions change to the conditions under which the critical organic Rankine cycle operates, resulting in the shutdown of the organic Rankine cycle system, which in turn limits the use of the organic Rankine cycle system. As a result, the cumulative power generation of the organic Rankine cycle system will be reduced, so how to improve the organic Rankine cycle system The amount of power generated by a variable heat source, and thus its economic benefits, will be one of the problems that R&D personnel should solve.
本提案在於提供一種有機朗肯循環系統及其次臨界運轉模式和穿臨界運轉模式的切換方法,藉以提升有機朗肯循環系統面對變動型熱源時的可操作範圍。 The proposal is to provide an organic Rankine cycle system and a method for switching between its subcritical operation mode and the through critical operation mode, thereby improving the operable range of the organic Rankine cycle system in the face of a variable heat source.
本提案所揭露的有機朗肯循環系統的次臨界運轉模式和穿臨界運轉模式的切換方法,包含下列步驟:判斷一有機朗肯循環系統之一工作流體進入一膨脹機入口前的一實際壓力值是否大於等於工作流體之一臨界壓力值:若是,則令有機朗肯循環系統以一穿臨界運轉模式運轉。若否,則令有機朗肯循環系統以一次臨界運轉模式運轉。 The method for switching the subcritical operating mode and the critical critical operating mode of the organic Rankine cycle system disclosed in the proposal includes the following steps: determining an actual pressure value before the working fluid of one of the organic Rankine cycle systems enters the inlet of an expander Whether it is greater than or equal to one of the critical pressure values of the working fluid: if so, the organic Rankine cycle system is operated in a critical operating mode. If not, the organic Rankine cycle system is operated in a critical operating mode.
本提案所揭露的可操作於次臨界和穿臨界狀態的有機朗肯循環系統,包含一熱源熱交換器、一膨脹機、一冷凝器、一泵浦、一壓力感測器及一控制元件。膨脹機藉由管路與熱源熱交換器相連。冷凝器藉由管路與膨脹機相連。泵浦藉由管路與冷凝器和熱源熱交換器相連。泵浦用以驅動一工作流體由泵浦依序流過熱源熱交換器、膨脹機及冷凝器而構成一有機朗肯循環。工作流體具有一臨界壓力值。壓力感測器用以偵測工作流體在膨脹機入口之一實際壓力值。控制元件用以判斷工作流體之實際壓力值與臨界壓力值間之關係。若工作流體之實際壓力值大於臨界壓力值,則控制元件控制有機朗肯循環以一穿臨界運轉模式運轉。若工作流體之實際壓力值小於臨界壓力值,則控制元件控制有機朗肯循環以一次臨界運轉模式運轉。 The organic Rankine cycle system operable in the subcritical and breakthrough critical state disclosed in the proposal comprises a heat source heat exchanger, an expander, a condenser, a pump, a pressure sensor and a control element. The expander is connected to the heat source heat exchanger by a pipe. The condenser is connected to the expander by a pipe. The pump is connected to the condenser and the heat source heat exchanger by a line. The pump is used to drive a working fluid, and the pump sequentially flows through the heat source heat exchanger, the expander and the condenser to form an organic Rankine cycle. The working fluid has a critical pressure value. The pressure sensor is used to detect the actual pressure value of the working fluid at the inlet of the expander. The control element is used to determine the relationship between the actual pressure value of the working fluid and the critical pressure value. If the actual pressure value of the working fluid is greater than the critical pressure value, the control element controls the organic Rankine cycle to operate in a critical operating mode. If the actual pressure value of the working fluid is less than the critical pressure value, the control element controls the organic Rankine cycle to operate in a critical operating mode.
根據上述本提案所揭露的有機朗肯循環系統及其次臨界運轉模式和穿臨界運轉模式的切換方法,係透過壓力條件來切換有機朗肯循環系統的運轉模式,使得工作流體的條件變動時,有機朗肯循環系統能夠持續調整至合適運轉模式,以求能夠提升有機朗肯循環系統的可操作範圍和使用率而增加其累積發電量,進而提升有機朗肯循環系統的經濟效益。 According to the organic Rankine cycle system disclosed in the above proposal, and the switching method of the subcritical operation mode and the critical critical operation mode, the operation mode of the organic Rankine cycle system is switched by the pressure condition, so that when the condition of the working fluid changes, the organic The Rankine cycle system can be continuously adjusted to the appropriate mode of operation in order to increase the operational range and utilization of the organic Rankine cycle system and increase its cumulative power generation, thereby increasing the economics of the organic Rankine cycle system.
以上關於本提案內容的說明及以下實施方式的說明係用以示範與解釋本提案的原理,並且提供本提案的專利申請範圍更進一步的解釋。 The above description of the contents of this proposal and the description of the following embodiments are used to demonstrate and explain the principles of this proposal, and to provide a further explanation of the scope of the patent application of this proposal.
10‧‧‧有機朗肯循環系統 10‧‧‧Organic Rankine Cycle System
100‧‧‧熱源熱交換器 100‧‧‧heat source heat exchanger
200‧‧‧膨脹機 200‧‧‧expander
300‧‧‧冷凝器 300‧‧‧Condenser
400‧‧‧泵浦 400‧‧‧ pump
510‧‧‧壓力感測器 510‧‧‧ Pressure Sensor
520‧‧‧溫度感測器 520‧‧‧temperature sensor
600‧‧‧發電機 600‧‧‧ generator
700‧‧‧控制元件 700‧‧‧Control elements
第1圖為根據本提案一實施例的有機朗肯循環系統的系統示意圖。 1 is a schematic diagram of a system of an organic Rankine cycle system in accordance with an embodiment of the present proposal.
第2圖為第1圖之有機朗肯循環系統於穿臨界運轉模式下的溫度-熵性能示意圖。 Figure 2 is a schematic diagram of the temperature-entropy performance of the organic Rankine cycle system of Figure 1 in the critical operating mode.
第3圖為第1圖之有機朗肯循環系統於次臨界運轉模式下的溫度-熵性能示意圖。 Figure 3 is a schematic diagram of the temperature-entropy performance of the organic Rankine cycle system of Figure 1 in the subcritical mode of operation.
第4圖為第1圖之有機朗肯循環系統的次臨界運轉模式和穿臨界運轉模式的切換方法的流程圖。 Fig. 4 is a flow chart showing a method of switching the subcritical operation mode and the through critical operation mode of the organic Rankine cycle system of Fig. 1.
第5圖為第1圖之有機朗肯循環系統於穿臨界運轉模式的操作流程圖。 Fig. 5 is a flow chart showing the operation of the organic Rankine cycle system of Fig. 1 in the critical operation mode.
第6圖與第7圖為第1圖之供應有機朗肯循環系統之熱源溫度變動的溫度-熵性能示意圖。 Fig. 6 and Fig. 7 are schematic diagrams showing the temperature-entropy performance of the heat source temperature variation of the organic Rankine cycle system of Fig. 1.
第8圖為第1圖之有機朗肯循環系統於次臨界運轉模式的操作流程圖。 Figure 8 is a flow chart showing the operation of the organic Rankine cycle system of Fig. 1 in the subcritical operation mode.
請參照第1圖至第3圖。第1圖為根據本提案一實施例的 有機朗肯循環系統的系統示意圖。第2圖為第1圖之有機朗肯循環系統於穿臨界運轉模式下的溫度-熵性能示意圖。第3圖為第1圖之有機朗肯循環系統於次臨界運轉模式下的溫度-熵性能示意圖。 Please refer to Figures 1 to 3. Figure 1 is a diagram of an embodiment of the present proposal A schematic diagram of the system of the organic Rankine cycle system. Figure 2 is a schematic diagram of the temperature-entropy performance of the organic Rankine cycle system of Figure 1 in the critical operating mode. Figure 3 is a schematic diagram of the temperature-entropy performance of the organic Rankine cycle system of Figure 1 in the subcritical mode of operation.
如第1圖所示,本實施例之可操作於次臨界和穿臨界狀態 的有機朗肯循環系統10包含一熱源熱交換器100、一膨脹機200、一冷凝器300、一泵浦400、一壓力感測器510、一溫度感測器520、一發電機600及一控制元件700。 As shown in FIG. 1, the embodiment can operate in a subcritical and critical state. The organic Rankine cycle system 10 includes a heat source heat exchanger 100, an expander 200, a condenser 300, a pump 400, a pressure sensor 510, a temperature sensor 520, a generator 600, and a Control element 700.
熱源熱交換器100用以供一外界熱源流入。熱源與有機朗 肯循環系統10進行熱交換,以提供有機朗肯循環系統10熱能。熱源例如為中低溫廢熱、地熱、溫泉、太陽熱能等。膨脹機200用以釋放流體壓力。 冷凝器300用以供一外界冷源流入,冷源與有機朗肯循環系統10進行熱交換,將有機朗肯循環系統10之熱能帶走。冷源例如為水冷式冷卻水塔、氣冷式冷卻器、河水、海水、或其他低溫流體。泵浦400用以驅動有機朗肯循環系統10之工作流體流動,並用以調整工作流體壓力。 The heat source heat exchanger 100 is used to supply an external heat source. Heat source and organic The Ken Circulatory System 10 performs heat exchange to provide thermal energy to the organic Rankine cycle system 10. The heat source is, for example, medium and low temperature waste heat, geothermal heat, hot spring, solar heat, and the like. The expander 200 is used to release fluid pressure. The condenser 300 is used to supply an external cold source, and the cold source exchanges heat with the organic Rankine cycle system 10 to carry away the thermal energy of the organic Rankine cycle system 10. The cold source is, for example, a water-cooled cooling tower, an air-cooled cooler, river water, sea water, or other cryogenic fluid. The pump 400 is used to drive the working fluid flow of the organic Rankine cycle system 10 and to adjust the working fluid pressure.
熱源熱交換器100、膨脹機200、冷凝器300及泵浦400間 藉由管路彼此相連,且泵浦400用以驅動一工作流體由泵浦400依序流過熱源熱交換器100、膨脹機200及冷凝器300而構成一有機朗肯循環,以將熱能轉換成機械能。工作流體具有一臨界壓力值PC(如第2圖與第3圖所示)。 若工作流體流過熱源熱交換器100後進入膨脹機200入口前的實際壓力值大於臨界壓力值PC,則代表工作流體在單一時間點僅具有單相。若工作流體流過熱源熱交換器100後進入膨脹機200入口前的實際壓力值低於臨界壓力 值PC,則代表工作流體在單一時間點具有雙相以上。工作流體為一有機冷媒。本實施例係以R-134a有機冷媒為例,但並不以此為限,有機冷媒也可以為選自由HFCs(如:R134a,R245fa,R32,R23,R41,R125,R152a,R236fa等)、混合冷媒(如:R404A,R407C,R507A,R410A等)、HCs(如:R116,R218,RC318,n-pentane等)、FCs(如:butane,isobutene,propane,methane等)所構成之群組的其中之一。此外,泵浦400為變流量泵浦或定流量泵浦搭配變頻馬達。膨脹機200為渦輪機、螺旋式膨脹機200、渦卷式膨脹機200、容積式膨脹機200或往復式膨脹機200等。 The heat source heat exchanger 100, the expander 200, the condenser 300, and the pump 400 are connected to each other by a pipeline, and the pump 400 is used to drive a working fluid to sequentially flow from the pump 400 to the heat source heat exchanger 100, and expand. The machine 200 and the condenser 300 form an organic Rankine cycle to convert thermal energy into mechanical energy. The working fluid has a critical pressure value P C (as shown in Figures 2 and 3). If the actual pressure value before the working fluid flows into the heat exchanger heat exchanger 100 and before entering the inlet of the expander 200 is greater than the critical pressure value P C , then the representative working fluid has only a single phase at a single point in time. If the actual pressure value before the working fluid flows into the heat exchanger heat exchanger 100 and before entering the inlet of the expander 200 is lower than the critical pressure value P C , it means that the working fluid has more than two phases at a single point in time. The working fluid is an organic refrigerant. In this embodiment, the R-134a organic refrigerant is taken as an example, but not limited thereto. The organic refrigerant may also be selected from the group consisting of HFCs (eg, R134a, R245fa, R32, R23, R41, R125, R152a, R236fa, etc.). Mixed refrigerant (such as: R404A, R407C, R507A, R410A, etc.), HCs (such as: R116, R218, RC318, n-pentane, etc.), FCs (such as: butane, isobutene, propane, methane, etc.) one of them. In addition, the pump 400 is a variable flow pump or a constant flow pump with a variable frequency motor. The expander 200 is a turbine, a screw expander 200, a scroll expander 200, a positive displacement expander 200, a reciprocating expander 200, and the like.
在本實施例中,泵浦100為定流量泵浦。控制元件700透過 一變頻裝置800來改變泵浦100的輸出頻率值或輸出流量值。然此變頻裝置800非必要元件,在泵浦100選用變流量泵浦的實施例,則無需設置此變頻裝置800。 In the present embodiment, the pump 100 is a constant flow pump. Control element 700 transmits An inverter device 800 changes the output frequency value or the output flow value of the pump 100. However, the variable frequency device 800 is not an essential component. In the embodiment where the variable flow pump is selected in the pump 100, the frequency conversion device 800 need not be provided.
壓力感測器510用以偵測工作流體流過熱源熱交換器100後且進入膨脹機200入口前之一實際壓力值Pr。 The pressure sensor 510 is configured to detect an actual pressure value P r after the working fluid flows into the heat source heat exchanger 100 and enters the inlet of the expander 200.
溫度感測器520用以偵測工作流體流過熱源熱交換器100後且進入膨脹機200入口前之一實際溫度值Tr。 The temperature sensor 520 is configured to detect an actual temperature value T r before the working fluid flows into the heat source heat exchanger 100 and enters the inlet of the expander 200.
發電機600與膨脹機200相連。膨脹機200用以驅動發電機600運作而將機械能轉換成電能。 Generator 600 is coupled to expander 200. The expander 200 is used to drive the generator 600 to operate to convert mechanical energy into electrical energy.
控制元件700,用以判斷工作流體之實際壓力值Pr與臨界壓力值PC間之關係,若工作流體之實際壓力值Pr大於臨界壓力值PC,則控制元件700控制有機朗肯循環系統10以一穿臨界運轉模式運轉(穿臨界運轉模式下之有機朗肯循環系統10的溫度-熵性能示意圖為如第2圖所示)。若工 作流體之實際壓力值Pr小於臨界壓力值PC,則控制元件700控制有機朗肯循環系統10以一次臨界運轉模式運轉(次臨界運轉模式下之有機朗肯循環系統10的溫度-熵性能示意圖為如第3圖所示)。 A control element 700 for determining the actual value of the pressure of the working fluid and the critical pressure P r of the relationship between P C, if the actual value of the pressure of the working fluid pressure P r is greater than the threshold value P C, then the control element 700 controls the Organic Rankine Cycle The system 10 operates in a critical operating mode (the temperature-entropy performance of the organic Rankine cycle system 10 in the critical operating mode is as shown in Figure 2). If the actual pressure value P r of the working fluid is less than the critical pressure value P C , the control element 700 controls the organic Rankine cycle system 10 to operate in a critical operating mode (temperature-entropy of the organic Rankine cycle system 10 in the subcritical operating mode) The performance diagram is as shown in Figure 3.
有機朗肯循環系統10在裝設時,可先依據熱源歷史資料和 溫度/流量變異情形以及有機朗肯循環系統10的運轉參數來決定有機朗肯循環系統10在穿臨界運轉模式運轉時每一壓力值所對應的操作溫度範圍及在次臨界運轉模式運轉時預設適合的過熱度範圍,並將上述資訊紀錄於控制元件700之一超臨界工作流體壓力溫度資料庫及一過熱度計算模組,以令控制元件700能夠藉由超臨界工作流體壓力溫度資料庫及過熱度計算模組來自動調整泵浦400的輸出頻率值或輸出流量值。 The organic Rankine cycle system 10 can be based on heat source history data and The temperature/flow variation condition and the operating parameters of the organic Rankine cycle system 10 determine the operating temperature range corresponding to each pressure value of the organic Rankine cycle system 10 when operating in the critical operating mode and preset during the subcritical operating mode operation. a suitable range of superheat, and recording the above information in a supercritical working fluid pressure temperature database of the control element 700 and a superheat calculation module to enable the control element 700 to pass the supercritical working fluid pressure temperature database and The superheat calculation module automatically adjusts the output frequency value or the output flow value of the pump 400.
超臨界工作流體壓力溫度資料庫具有有機朗肯循環系統10於次臨界運轉模式運轉下之多組壓力與工作溫度範圍數據,每一組壓力與工作溫度範圍數據具有一個壓力值與對應的一個工作溫度範圍。 The supercritical working fluid pressure temperature database has multiple sets of pressure and working temperature range data of the organic Rankine cycle system 10 in the subcritical operating mode, and each set of pressure and working temperature range data has a pressure value and a corresponding work. temperature range.
請參閱第4圖至第5圖。第4圖為第1圖之有機朗肯循環系統的次臨界運轉模式和穿臨界運轉模式的切換方法的流程圖。第5圖為第1圖之有機朗肯循環系統於穿臨界運轉模式的操作流程圖。 Please refer to Figures 4 to 5. Fig. 4 is a flow chart showing a method of switching the subcritical operation mode and the through critical operation mode of the organic Rankine cycle system of Fig. 1. Fig. 5 is a flow chart showing the operation of the organic Rankine cycle system of Fig. 1 in the critical operation mode.
如第4圖所示。首先,控制元件700會判斷有機朗肯循環系統10之工作流體通過熱源熱交換器100後進入膨脹機200入口前的實際壓力值Pr是否大於等於工作流體之一臨界壓力值PC(如步驟S100所示)。 As shown in Figure 4. First, the control element 700 determines whether the actual pressure value P r before the working fluid of the organic Rankine cycle system 10 passes through the heat source heat exchanger 100 and enters the inlet of the expander 200 is greater than or equal to a critical pressure value P C of the working fluid (as in the steps). S100)).
若是,則控制元件700會令有機朗肯循環系統10以一穿臨界運轉模式運轉(如步驟S200所示)。 If so, the control element 700 will cause the organic Rankine cycle system 10 to operate in a critical operating mode (as shown in step S200).
若否,則控制元件700會令有機朗肯循環系統10以一次臨 界運轉模式運轉(如步驟S300所示)。 If not, the control element 700 will cause the organic Rankine cycle system 10 to The boundary operation mode operates (as shown in step S300).
如第5圖所示,穿臨界運轉模式的操作模式,首先,控制 元件700會查找一超臨界工作流體壓力溫度資料庫,以獲得實際壓力值Pr所對應的一工作溫度範圍(如步驟S210所示)。 As shown in FIG. 5, in the operation mode of the critical operation mode, first, the control component 700 searches a supercritical working fluid pressure temperature database to obtain an operating temperature range corresponding to the actual pressure value P r (step S210). Shown).
接著,控制元件700會判斷工作流體通過熱源熱交換器100 後進入膨脹機200入口前的一實際溫度值Tr與工作溫度範圍TR之關係(如步驟S220所示)。 Next, the control element 700 determines the relationship between an actual temperature value T r before the working fluid passes through the heat source heat exchanger 100 and enters the inlet of the expander 200 and the operating temperature range TR (as shown in step S220).
若溫度感測器520測得進入膨脹機200入口前之工作流體之 實際溫度值Tr低於工作溫度範圍之下限值TR,MIN,則控制元件700會調降泵浦400的輸出頻率值或輸出流量值(如步驟S230所示)。若壓力感測器510測得膨脹機200入口前之工作流體的實際壓力值Pr低於臨界壓力值PC時,則控制元件700會令有機朗肯循環系統10的運轉模式由穿臨界運轉模式切換至次臨界運轉模式(如步驟S260所示),以令有機朗肯循環系統10能夠持續發電而提高累積發電量。 If the temperature sensor 520 measures that the actual temperature value T r of the working fluid before entering the inlet of the expander 200 is lower than the lower limit T R,MIN of the operating temperature range, the control element 700 lowers the output frequency of the pump 400. Value or output flow value (as shown in step S230). If the pressure sensor 510 determines that the actual pressure value P r of the working fluid before the inlet of the expander 200 is lower than the critical pressure value P C , the control element 700 causes the operation mode of the organic Rankine cycle system 10 to be operated by the critical stroke. The mode is switched to the sub-critical operation mode (as shown in step S260) to enable the organic Rankine cycle system 10 to continue to generate electricity to increase the cumulative power generation.
若溫度感測器520測得進入膨脹機200入口前之工作流體之 實際溫度值Tr落於工作溫度範圍內,則維持驅動工作流體之一泵浦400的輸出頻率值或輸出流量值(如步驟S240所示)。 If the temperature sensor 520 measures the working fluid before entering the inlet of the expander 200 When the actual temperature value Tr falls within the operating temperature range, the output frequency value or the output flow value of the pump 400 that drives the working fluid is maintained (as shown in step S240).
若溫度感測器520測得進入膨脹機200入口前之工作流體之 實際溫度值Tr高於工作溫度範圍之上限值TR,MAX,則控制元件700會調升泵浦400的輸出頻率值或輸出流量值(如步驟S250所示)。若壓力感測器510測得進入膨脹機200入口前之工作流體的實際壓力值Pr高於有機朗肯循環系統10之容許最大壓力值PA,MAX時,則控制元件700會令有機朗肯循環系統 10停止運轉(如步驟S270所示),以避免有機朗肯循環系統10毀損。 If the temperature sensor 520 measures that the actual temperature value T r of the working fluid before entering the inlet of the expander 200 is higher than the upper limit T R, MAX of the operating temperature range, the control element 700 raises the output frequency of the pump 400. Value or output flow value (as shown in step S250). If the pressure sensor 510 determines that the actual pressure value P r of the working fluid before entering the inlet of the expander 200 is higher than the allowable maximum pressure value P A,MAX of the organic Rankine cycle system 10, then the control element 700 will cause the organic component The Ken Circulatory System 10 is deactivated (as shown in step S270) to avoid damage to the organic Rankine cycle system 10.
以下舉例說明有機朗肯循環系統10於穿臨界模式下的操作 狀況。請參閱第6圖與第7圖。第6圖與第7圖為第1圖之供應有機朗肯循環系統之熱源溫度變動的溫度-熵性能示意圖。 The following is an example of the operation of the organic Rankine cycle system 10 in the critical mode. situation. Please refer to Figure 6 and Figure 7. Fig. 6 and Fig. 7 are schematic diagrams showing the temperature-entropy performance of the heat source temperature variation of the organic Rankine cycle system of Fig. 1.
假設在一穩定熱源(溫度Ts1、流量Ms1)與冷源條件下,有 機朗肯循環系統10在穿臨界運轉模式下穩定運轉。工作流體在進入膨脹機200前,工作流體的壓力、溫度及質量流率分別為第一壓力值P1、第一溫度值T1及第一質量流率M1(與泵浦400的輸出頻率值或輸出流量值成正比)。當冷源固定、熱源流量固定、但溫度升高時,熱交換後的工作流體的第一溫度值T1會升高至第一暫態溫度值T1-1。此時,控制元件700可緩步調升泵浦400之輸出頻率值或輸出流量值,進而將工作流體之壓力由第一壓力值P1增加至第二壓力值P2(工作流體之質量流率亦會對應從第一質量流率M2增加至第二質量流率M2)。由於工作流體質量流率增加(M2>M1),而外界熱源有限,將使進入膨脹機200入口前之工作流體的溫度由第一暫態溫度值T1-1下降至第二溫度值T2。此時,控制元件700會判斷此第二溫度值T2是否落於此第二壓力值P2的工作溫度範圍內,若不符合則繼續調變泵浦400之輸出頻率值或輸出流量值,直至工作流體之溫度值落於工作溫度範圍內。此外,假設調整後的工作流體的第二壓力值P2高於系統容許最大操作壓力值PA,MAX,則控制元件700會令有機朗肯循環系統10停機。 It is assumed that the organic Rankine cycle system 10 operates stably in the critical operation mode under a stable heat source (temperature Ts1, flow rate Ms1) and cold source conditions. Before entering the expander 200, the working fluid has a pressure, temperature and mass flow rate of the first pressure value P1, the first temperature value T1 and the first mass flow rate M1 (with the output frequency value or output of the pump 400). The flow value is proportional to). When the cold source is fixed, the heat source flow rate is fixed, but the temperature is increased, the first temperature value T1 of the heat exchanged working fluid is raised to the first transient temperature value T1-1. At this time, the control element 700 can gradually increase the output frequency value or the output flow value of the pump 400, thereby increasing the pressure of the working fluid from the first pressure value P1 to the second pressure value P2 (the mass flow rate of the working fluid is also Corresponding from the first mass flow rate M2 to the second mass flow rate M2). Since the working fluid mass flow rate is increased (M2>M1) and the external heat source is limited, the temperature of the working fluid before entering the inlet of the expander 200 is lowered from the first transient temperature value T1-1 to the second temperature value T2. At this time, the control component 700 determines whether the second temperature value T2 falls within the operating temperature range of the second pressure value P2, and if not, continues to modulate the output frequency value or the output flow value of the pump 400 until the operation The temperature of the fluid falls within the operating temperature range. Furthermore, assuming that the second pressure value P2 of the adjusted working fluid is higher than the system allowable maximum operating pressure value P A,MAX , the control element 700 will cause the organic Rankine cycle system 10 to shut down.
假設在一穩定熱源(溫度Ts1、流量Ms1)與冷源條件下,有 機朗肯循環系統10在穿臨界運轉模式下穩定運轉。工作流體在進入膨脹機200前,工作流體的壓力、溫度及質量流率分別為第一壓力值P1、第一溫 度值T1及第一質量流率M1(與泵浦400的輸出頻率值或輸出流量值成正比)。當冷源固定、熱源流量固定、但溫度降低時,熱交換後的工作流體的第一溫度值T1會降低至第二暫態溫度值T1-2。此時,控制元件700可緩步調降泵浦400之輸出頻率值或輸出流量值,進而將工作流體之壓力由第一壓力值P1降低至第三壓力值P3(工作流體之質量流率亦會對應從第一質量流率M2減少至第三質量流率M3)。由於工作流體質量流率減少(M3<M1),而外界熱源有限,將使進入膨脹機200入口前之工作流體的溫度由第二暫態溫度值T1-2上升至第三溫度值T3。此時,控制元件700會判斷此第二溫度值T2是否落於此第二壓力值P2的工作溫度範圍內,若不符合則繼續調變泵浦400之輸出頻率值或輸出流量值,直至工作流體之溫度值落於工作溫度範圍內。此外,假設調整後的工作流體的第三壓力值P3低於工作流體之臨界壓力值PC,則控制元件700會令有機朗肯循環系統10的運轉模式由穿臨界運轉模式切換至次臨界運轉模式。假設調整後的工作流體的第三壓力值P3低於系統容許最低操作壓力值PA,MIN,則控制元件700會令有機朗肯循環系統10停機。 It is assumed that the organic Rankine cycle system 10 operates stably in the critical operation mode under a stable heat source (temperature Ts1, flow rate Ms1) and cold source conditions. Before entering the expander 200, the working fluid has a pressure, temperature and mass flow rate of the first pressure value P1, the first temperature value T1 and the first mass flow rate M1 (with the output frequency value or output of the pump 400). The flow value is proportional to). When the cold source is fixed, the heat source flow rate is fixed, but the temperature is lowered, the first temperature value T1 of the working fluid after the heat exchange is lowered to the second transient temperature value T1-2. At this time, the control element 700 can gradually reduce the output frequency value or the output flow value of the pump 400, thereby reducing the pressure of the working fluid from the first pressure value P1 to the third pressure value P3 (the mass flow rate of the working fluid is also Corresponding from the first mass flow rate M2 to the third mass flow rate M3). Since the working fluid mass flow rate is reduced (M3 < M1) and the external heat source is limited, the temperature of the working fluid before entering the inlet of the expander 200 is raised from the second transient temperature value T1-2 to the third temperature value T3. At this time, the control component 700 determines whether the second temperature value T2 falls within the operating temperature range of the second pressure value P2, and if not, continues to modulate the output frequency value or the output flow value of the pump 400 until the operation The temperature of the fluid falls within the operating temperature range. In addition, if the third pressure value P3 of the adjusted working fluid is lower than the critical pressure value P C of the working fluid, the control element 700 will switch the operation mode of the organic Rankine cycle system 10 from the critical operation mode to the subcritical operation. mode. Assuming that the adjusted third working pressure value P3 of the working fluid is lower than the system allowable minimum operating pressure value P A,MIN , the control element 700 will cause the organic Rankine cycle system 10 to shut down.
此外,若熱源溫度固定而換成流量變動時,則有機朗肯循環系統10之操作程序亦與上述相同,故不再贅述。 Further, if the heat source temperature is fixed and the flow rate is changed, the operation procedure of the organic Rankine cycle system 10 is also the same as described above, and therefore will not be described again.
上述,控制元件700調變泵浦400之輸出頻率值或輸出流量值的方法可透過PID控制設定。 In the above, the method for the control element 700 to modulate the output frequency value or the output flow value of the pump 400 can be set by the PID control.
請參閱第8圖。第8圖為第1圖之有機朗肯循環系統於次臨界運轉模式的操作流程圖。 Please refer to Figure 8. Figure 8 is a flow chart showing the operation of the organic Rankine cycle system of Fig. 1 in the subcritical operation mode.
如第8圖所示,次臨界運轉模式的操作模式,首先,控制 元件700之過熱度計算模組會依據工作流體進入膨脹機200入口前的實際壓力值Pr及實際溫度值Tr,計算出一實際過熱度值OSr(如步驟S310所示)。 As shown in FIG. 8, the operation mode of the subcritical operation mode, firstly, the superheat calculation module of the control element 700 is calculated according to the actual pressure value P r and the actual temperature value T r before the working fluid enters the inlet of the expander 200. An actual superheat value OS r is output (as shown in step S310).
接著,控制元件700會判斷進入膨脹機200入口前之工作流體的實際過熱度值OSr與一預設過熱度範圍OSR之關係(如步驟S320所示)。 Next, the control element 700 determines the relationship between the actual superheat value OSr of the working fluid before entering the inlet of the expander 200 and a predetermined superheat range OS R (as shown in step S320).
若溫度感測器520測得進入膨脹機200入口前之工作流體之實際過熱度值OSr小於預設過熱度範圍之下限值OSR,MIN,則控制元件700會調降泵浦400的輸出頻率值或輸出流量值(如步驟S330所示)。若壓力感測器510測得進入膨脹機200入口前之實際壓力值Pr低於有機朗肯循環系統10之容許最小壓力值PA,MIN時,則控制元件700會令有機朗肯循環系統10停止運轉(如步驟S360所示),以避免有機朗肯循環系統10毀損。 If the temperature sensor 520 measures that the actual superheat value OS r of the working fluid before entering the inlet of the expander 200 is less than the lower limit of the preset superheat range OS R, MIN , the control element 700 will lower the pump 400 The frequency value or the output flow value is output (as shown in step S330). If the pressure sensor 510 determines that the actual pressure value P r before entering the inlet of the expander 200 is lower than the allowable minimum pressure value P A,MIN of the organic Rankine cycle system 10, then the control element 700 will cause the organic Rankine cycle system 10 is stopped (as shown in step S360) to avoid damage to the organic Rankine cycle system 10.
若溫度感測器520測得進入膨脹機200入口前之工作流體之實際溫度值Tr落於工作溫度範圍TR內,則維持驅動工作流體之一泵浦400的一輸出頻率值或輸出流量值(如步驟S340所示)。 If the temperature sensor 520 measures that the actual temperature value Tr of the working fluid before entering the inlet of the expander 200 falls within the operating temperature range T R , an output frequency value or an output flow value of the pump 400 that drives the working fluid is maintained. (as shown in step S340).
若溫度感測器520測得進入膨脹機200入口前之工作流體之若實際過熱度值OSr大於預設過熱度範圍之上限值OSR,MAX,則控制元件700會調升泵浦400的輸出頻率值或輸出流量值(如步驟S350所示)。若壓力感測器510測得進入膨脹機200入口前之工作流體之實際壓力值Pr高於臨界壓力值PC時,則控制元件700會令有機朗肯循環系統10的運轉模式由次臨界運轉模式切換至穿臨界運轉模式(如步驟S370所示),以求獲得較佳之發電效率。 If the temperature sensor 520 detects that the actual superheat value OS r of the working fluid before entering the inlet of the expander 200 is greater than the upper limit OS R, MAX of the preset superheat range, the control element 700 raises the pump 400. The output frequency value or the output flow value (as shown in step S350). If the pressure sensor 510 measures that the actual pressure value P r of the working fluid before entering the inlet of the expander 200 is higher than the critical pressure value P C , then the control element 700 causes the operating mode of the organic Rankine cycle system 10 to be sub-critical. The operation mode is switched to the critical operation mode (as shown in step S370) to obtain a better power generation efficiency.
根據上述本提案所揭露的有機朗肯循環系統及其次臨界運轉模式和穿臨界運轉模式的切換方法,除透過壓力條件外,更透過工作溫 度範圍條件與過熱度條件來切換有機朗肯循環系統的運轉模式,使得外界冷熱源的條件變動時,有機朗肯循環系統能夠持續調整至合適運轉模式,以求能夠提升有機朗肯循環系統的可操作範圍和使用率而增加其累積發電量,進而提升有機朗肯循環系統的經濟效益。 According to the organic Rankine cycle system disclosed in the above proposal, and the switching method of the subcritical operation mode and the critical critical operation mode, in addition to the pressure conditions, the operating temperature is further The range condition and the superheat condition are used to switch the operation mode of the organic Rankine cycle system, so that when the conditions of the external cold and heat source change, the organic Rankine cycle system can be continuously adjusted to the appropriate operation mode, so as to improve the organic Rankine cycle system. The operating range and usage increase the cumulative power generation, which in turn increases the economics of the organic Rankine cycle system.
雖然本提案的實施例揭露如上所述,然並非用以限定本提案,任何熟習相關技藝者,在不脫離本提案的精神和範圍內,舉凡依本提案申請範圍所述的形狀、構造、特徵及數量當可做些許的變更,因此本提案的專利保護範圍須視本說明書所附的申請專利範圍所界定者為準。 Although the embodiments of the present disclosure are as described above, and are not intended to limit the present proposal, any person skilled in the art, regardless of the spirit and scope of the proposal, may have the shapes, structures, and features described in the scope of the application of the present proposal. And the quantity can be changed slightly, so the scope of patent protection of this proposal shall be subject to the definition of the scope of patent application attached to this specification.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102144906A TWI548807B (en) | 2013-12-06 | 2013-12-06 | Organic rankine cycle system and operation mode changing mathod for sub-critical cycle and transcritical cycle |
CN201310722415.5A CN104696029B (en) | 2013-12-06 | 2013-12-24 | Organic Rankine cycle system and method for switching operation modes thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102144906A TWI548807B (en) | 2013-12-06 | 2013-12-06 | Organic rankine cycle system and operation mode changing mathod for sub-critical cycle and transcritical cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201522766A true TW201522766A (en) | 2015-06-16 |
TWI548807B TWI548807B (en) | 2016-09-11 |
Family
ID=53343523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102144906A TWI548807B (en) | 2013-12-06 | 2013-12-06 | Organic rankine cycle system and operation mode changing mathod for sub-critical cycle and transcritical cycle |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104696029B (en) |
TW (1) | TWI548807B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI805965B (en) * | 2020-11-18 | 2023-06-21 | 財團法人金屬工業研究發展中心 | Thermal energy conversion system and method for controlling a working fluid thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105545880A (en) * | 2015-12-29 | 2016-05-04 | 太原理工大学 | Hydraulic system cooling loop |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005146876A (en) * | 2003-11-11 | 2005-06-09 | Toshiba Corp | Combined cycle power plant and method for starting the same |
JP5090522B2 (en) * | 2007-05-29 | 2012-12-05 | ユーティーシー パワー コーポレイション | Rankine cycle power plant heat source control |
CN101413407B (en) * | 2008-11-28 | 2011-02-16 | 北京理工大学 | Supercritical organic Rankine double-circulation waste heat recovery system |
US8459030B2 (en) * | 2009-09-30 | 2013-06-11 | General Electric Company | Heat engine and method for operating the same |
IT1397145B1 (en) * | 2009-11-30 | 2013-01-04 | Nuovo Pignone Spa | DIRECT EVAPORATOR SYSTEM AND METHOD FOR RANKINE ORGANIC CYCLE SYSTEMS. |
-
2013
- 2013-12-06 TW TW102144906A patent/TWI548807B/en active
- 2013-12-24 CN CN201310722415.5A patent/CN104696029B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI805965B (en) * | 2020-11-18 | 2023-06-21 | 財團法人金屬工業研究發展中心 | Thermal energy conversion system and method for controlling a working fluid thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI548807B (en) | 2016-09-11 |
CN104696029B (en) | 2016-06-15 |
CN104696029A (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10472994B2 (en) | Systems and methods for controlling the pressure of a working fluid at an inlet of a pressurization device of a heat engine system | |
US9752460B2 (en) | Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle | |
Kang | Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid | |
Zheng et al. | Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle | |
JP6132214B2 (en) | Rankine cycle apparatus, combined heat and power system, and operation method of Rankine cycle apparatus | |
JP2014238041A (en) | Waste heat recovery device and waste heat recovery device operation control method | |
Carraro et al. | Experimental performance evaluation of a multi-diaphragm pump of a micro-ORC system | |
JP2015200306A (en) | Electro-thermal cogeneration system | |
JP6621251B2 (en) | Rankine cycle device, control device, power generation device, and control method | |
TWI548807B (en) | Organic rankine cycle system and operation mode changing mathod for sub-critical cycle and transcritical cycle | |
JP6406583B2 (en) | Rankine cycle equipment | |
US10677101B2 (en) | Combined heat and power system and operating method of combined heat and power system | |
Landelle et al. | Study of reciprocating pump for supercritical ORC at full and part load operation | |
JP5924980B2 (en) | Binary power generator and control method thereof | |
JP5745642B2 (en) | Determination of live steam for expansion engines | |
Kaczmarczyk et al. | Experimental investigation on a rotodynamic pump operating in the cogeneration system with a low-boiling working medium | |
US20190383176A1 (en) | Binary power generation system and stopping method for same | |
Tartière et al. | Thermo-economic optimization of subcritical and transcritical ORC systems | |
JP2019023432A (en) | Rankine cycle device | |
CN108561199A (en) | A kind of multi-heat source point heat energy power-generating unit | |
JP2019056348A (en) | Rankine cycle device | |
RU2684689C1 (en) | Control method for organic rankine cycle | |
Li et al. | Thermodynamic Performance Analysis on Various Configurations of Organic | |
CN111677570A (en) | Feasible thermodynamic cycle system approaching triangular cycle | |
JP2020122428A (en) | Compressed air storage power generation apparatus and compressed air storage power generation method |