CN104694452A - Recombinant bacillus subtilis of high-yield pullulanase and construction method thereof - Google Patents

Recombinant bacillus subtilis of high-yield pullulanase and construction method thereof Download PDF

Info

Publication number
CN104694452A
CN104694452A CN201510143787.1A CN201510143787A CN104694452A CN 104694452 A CN104694452 A CN 104694452A CN 201510143787 A CN201510143787 A CN 201510143787A CN 104694452 A CN104694452 A CN 104694452A
Authority
CN
China
Prior art keywords
bpb
pullulanase
bacillus subtilis
gene
nucleotide sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510143787.1A
Other languages
Chinese (zh)
Other versions
CN104694452B (en
Inventor
孙俊松
史吉平
陈超
姜标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Advanced Research Institute of CAS
Original Assignee
Shanghai Advanced Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Advanced Research Institute of CAS filed Critical Shanghai Advanced Research Institute of CAS
Priority to CN201510143787.1A priority Critical patent/CN104694452B/en
Publication of CN104694452A publication Critical patent/CN104694452A/en
Application granted granted Critical
Publication of CN104694452B publication Critical patent/CN104694452B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • C12N9/2457Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01041Pullulanase (3.2.1.41)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a recombinant bacillus subtilis of high-yield pullulanase and a construction method thereof. The construction method of the recombinant bacillus subtilis of the high-yield comprises the following steps that an artificial operon BPB used for expressing the pullulanase is used for constructing a recombinant plasmid pGE-BPB; the nucleotide sequence of the artificial operon BPB is shown in the graph SEQ ID NO.4; the constructed recombinant plasmid pGE-BPB is converted into a bacillus subtilis competent cell, and through secondary recombination, a neutral protease gene nprE in the bacillus subtilis competent cell is replaced by the artificial operon BPB in situ. According to the recombinant bacillus subtilis of the high-yield pullulanase and the construction method thereof, firstly, the acidproof and heatproof pullulanase gene of an original bacterial strain is optimized, based on the synthetic biology method, a plurality of molecular elements capable of improving the gene transcriptional level are assembled into the artificial operon, and the recombinant bacillus subtilis can be obtained through construction. The recombinant bacterial strain can ferment to generate the high-yield pullulanase, and the enzyme activity each unit can reach or exceed 300 U/ml.

Description

A kind of recombined bacillus subtilis of high yield Pullulanase and construction process thereof
Technical field
The invention belongs to subtilis recombinant bacterial strain constructing technology field, be specifically related to a kind of recombined bacillus subtilis and construction process thereof of high yield Pullulanase.
Background technology
Pullulanase is the starch solution branch enzyme that a class is expressed by microorganism secretion, I type Pullulanase specificity can cut α-1 in amylopectin branch, 6 glycosidic links, form amylose starch, Pullulanase and other amylase effects, have important purposes and good market outlook in starch processing industry.Therefore, the production bacterial strain of a large amount of manpower, financial resources exploitation Pullulanase is dropped in countries in the world, up to now, have been found that many microorganisms can produce Pullulanase, but due to current industrial process conditions (acid resistance, high temperature resistant condition) limit, the Pullulanase that most of microbe is produced there is no too large-scale commerce and is worth, the most of Pullulanases found can not meet the Production requirement of the high temperature-resistant acid-resistant in starch processing industry simultaneously, and zymologic property exists the shortcomings such as thermostability is not high, resistance to acid is not strong.
From Pullulanase (Bn PulB) optimum temperuture 62.5 DEG C of Nagano bacillus (Bacillus naganoensis), optimal pH is below 5.0, best catalytic temperature is at about 60 DEG C, be applicable to very much saccharification processing, but the expression amount of this enzyme in former bacterium can not meet industry's enlarging production demand, and Bacillus subtillis because of secretion capacity powerful, be listed in one of safe microorganisms (GRAS), extremely be suitable for the industrial production of food grade Pullulanase, it is one of first-selected microorganism carrying out extracellular enzyme fermentative production, conventional type strain Bacillus subtillis Bacillus subtilis W168 (hereinafter referred to as Bacillus subtillis 168) does not produce Pullulanase, be easy to be transformed, carry out restructuring Pullulanase to produce the desirable strain built.
At present comparatively simple directly method is transformed to microorganism, that goal gene is building up in plasmid, then plasmid is transferred to the bacterial strain of transformation, because independently duplicated plasmid not like genomic copy stable, therefore, the stability usually increasing plasmid in bacterial strain by adding antibiosis in the medium is often needed.But in the food industry, this recombinant bacterial strain needs to use microbiotic, and the recombinant bacterial strain carrying antibiotic resistance gene is not more and more accepted.Therefore, the seamless lead-in mode carrying out foreign gene has become the main building mode of structuring food prods industrial microorganism, this mode to be by carrying out homologous recombination with microorganism, and carries out secondary restructuring screening, obtains the production bacterial strain of nonreactive.
Summary of the invention
The object of the invention is, a kind of recombined bacillus subtilis and construction process thereof of high yield Pullulanase is provided.Be intended to solve the technical problem that the Pullulanase thermostability that in prior art, Institute of Micro-biology produces is not high, resistance to acid is not strong, output is not high.
The present invention is as follows for solving the problems of the technologies described above adopted technical scheme:
A recombined bacillus subtilis for high yield Pullulanase, this recombined bacillus subtilis obtains in the following way: will substitute the neutral protease gene nprE of subtilis containing the artificial operons BPB original position expressing Pullulanase gene; The nucleotide sequence of described artificial operons BPB is as shown in SEQ IDNO.4.
Preferably, type strain subtilis 168 is adopted to build described recombined bacillus subtilis as starting strain.
Described artificial operons BPB proceeds in subtilis by recombinant plasmid pGE-BPB, and the nucleotide sequence of described recombinant plasmid pGE-BPB is as shown in SEQ ID NO.1.
Described artificial operons BPB includes series connection Artificial promoters Pga2.The nucleotide sequence of described series connection Artificial promoters Pga2 is as shown in SEQ ID NO.2, it is spliced by PyxiE promotor and cry3ARNA stable factor, cry3A RNA stable factor can improve the decay phase of mRNA, improve the expression amount of albumen, the preparation of promotor Pga2 is completed by chemical synthesis.
Described artificial operons BPB also comprises: through the pulB gene of codon optimized acquisition, and the nucleotide sequence of described pulB gene is as shown in SEQ ID NO.3.Described pulB gene, is optimized protogene for reference with the highest password of Bacillus subtillis frequency of utilization, and its Pullulanase albumen of expressing has the feature of resistance to acid heat.
Described artificial operons BPB also comprises: from the signal peptide sequence SPamyL of bacillus licheniformis amylase secretion, and from the terminator sequence T-aprE of bacillus amyloliquefaciens aprE gene; The nucleotide sequence of described T-aprE is as shown in SEQ ID NO.5.
Described recombinant plasmid pGE-BPB, except containing artificial operons BPB, also simultaneously with for the seamless restructuring arm knocked out of Bacillus subtillis neutral protease nprE, the neutral protease gene nprE in bacillus subtilis bacterium competence cell is knocked out by secondary recombination form by this recombinant plasmid pGE-BPB.The nucleotide sequence of the restructuring arm DNA knocked out for neutral protease gene nprE is as shown in SEQ ID NO.6.
Present invention also offers the method for the recombined bacillus subtilis fermentative production Pullulanase of described high yield Pullulanase, the method is: in basic medium, add the sucrose of 4.5% and the wheat bran of 6.0% adds dregs of beans, controlling starting fermentation pH value is 6.2-6.3, under above-mentioned culture condition, fermentation culture is carried out to described recombined bacillus subtilis, produce and obtain Pullulanase.
The present invention also provides a kind of construction process of recombined bacillus subtilis of high yield Pullulanase, and the method comprises the steps:
Step 1, will be used for the artificial operons BPB construction recombination plasmid pGE-BPB expressing Pullulanase; The nucleotide sequence of described artificial operons BPB is as shown in SEQ ID NO.4;
Step 2, is converted in bacillus subtilis bacterium competence cell by the recombinant plasmid pGE-BPB of aforementioned structure, makes described artificial operons BPB original position substitute neutral protease gene nprE in bacillus subtilis bacterium competence cell by secondary restructuring.
Neutral protease gene nprE in bacillus subtilis bacterium competence cell is knocked out by secondary recombination form by described recombinant plasmid pGE-BPB, and the nucleotide sequence of the restructuring arm DNA knocked out for neutral protease gene nprE is as shown in SEQ ID NO.6.
The construction process of the recombined bacillus subtilis of described high yield Pullulanase completes by following, first recombinant plasmid pGE-BPB is proceeded in Bacillus subtillis 168, resistant strain is obtained by the culture plate screening containing erythromycin, with Pullulanase gene pulB for template, design primer, after identifying positive colony by PCR, the resistant strain incorporating Pullulanase and antibiotic resistance gene that aforementioned screening obtains is inoculated into and does not carry out continuous passage cultivation containing in the substratum of resistance, after passing 5-6 time, bacterium liquid is diluted to 10 3-10 4the cell concn of/ml, then carries out coated plate, the mono-clonal bacterium colony obtained is carried out to the qualification of PCR again, determines that artificial operons BPB sequence of in-situ instead of the nonreactive recombinant clone of nprE according to the acquisition of Pullulanase gene in recombinant bacterium.
Present invention also offers a kind of gene order for expressing Pullulanase, this gene order is the nucleotide sequence of artificial operons BPB or has the nucleotide sequence of more than 90% homology with artificial operons BPB, and the nucleotide sequence of described artificial operons BPB is as shown in SEQ ID NO.4.
Present invention also offers a kind of recombinant plasmid pGE-BPB for expressing Pullulanase, the nucleotide sequence of this recombinant plasmid pGE-BPB is as shown in SEQ ID NO.1.
Present invention also offers a kind of Pullulanase gene, the nucleotide sequence of this Pullulanase gene is as shown in SEQID NO.3.
Compared with prior art, beneficial effect of the present invention is:
The present invention is from optimizing the Pullulanase of the resistance to acid heat gene of original strain, utilize the method for synthetic biology, by the multiple molecular element that can improve gene transcription level, comprise promotor, mRNA stable factor, secretion signal peptide sequence, terminators etc. are assembled into an artificial operons, and by they are building up in recombinant plasmid, the upstream and downstream homologous fragment of the neutral protease gene nprE of recycling Bacillus subtillis self, manual maneuvering sub-element is incorporated into the genome of Bacillus subtillis 168, again by mode that nonreactive is cultivated, binding molecule biological means carries out the bacterial strain screening after secondary restructuring, finally obtain the nonreactive recombinant bacillus bacillus CH-1 producing Pullulanase, this recombinant bacterial strain can ferment high yield Pullulanase, unit enzyme >300U/ml alive.
In the present invention, with the neutral protease gene nprE of Bacillus subtillis for homologous recombination object, after secondary restructuring, the artificial operons's original position expressing Pullulanase can be substituted nprE gene, not only make Pullulanase obtain recombinant expressed, also the neutral protease affecting exogenous protein expression level is carried out gene knockout.The factor affecting the extracellular expression level of bacillus foreign protein is a lot, selection etc. comprising promotor, mRNA structure, terminator, secreting signal peptide is the most key in the structure of interior gene operon, the promotor, RNA stable factor, secreting signal peptide etc. of bacillus are affected to the factor of transcriptional level, domestic and international expert has made large quantity research, the present invention combines above influence factor, devise the Artificial promoters Pga2 of duplex mode, contain efficient promoter PyxiA and Cry3A RNA stable factor.Simultaneously, when expressing the foreign gene of different sources, the specific codon of different genera selects tendency to have a strong impact on the translation efficiency of albumen sometimes, thus cause the low expression level of protein expression level, obtain genetic resources Pullulanase gene pulB by gene chemical synthesis mode in the present invention, improved the translation efficiency of Pullulanase albumen by codon optimized mode.
Accompanying drawing explanation
The schematic diagram that when Fig. 1 is restructuring fermentation of bacillus subtilis production Pullulanase, enzyme work changes with fermentation time;
Fig. 2 be recombined bacillus subtilis in Optimal Medium during fermentative production Pullulanase enzyme live and the schematic diagram of relation between Preliminary fermentation pH value.
Embodiment
Below in conjunction with embodiment, technical scheme of the present invention is described in detail.The reagent below adopted and biomaterial if not otherwise specified, are commercially produced product.
Embodiment 1: the structure of recombinant plasmid pGE-BPB
The gene operon BPB expressed for Pullulanase comprises one by Gene expression Pga2 and the gene order and the terminator sequence T-aprE that have carried out codon optimized coding Bn PulB (its nucleotide sequence is as shown in SEQ ID NO.3), wherein Pga2 is made up of (nucleotide sequence of Pga2 is as shown in SEQ ID NO.2) promotor PyxiE and RNA stable factor CryIIIA, following the sequence after initiator codon ATG closely is SPamyL, relevant nucleotide sequence utilizes DNA chemical synthesis to generate gene fragment by Jin Wei intelligence biotech company, build and obtain gene operon BPB, then gene operon BPB is cloned into plasmid pUC57, generate pUC57-BPB.Two ends are obtained by PCR with the BPB in Eco RI site, and PCR is obtained by following methods:
Upstream primer: CAAGGAATTCCATGGCCGGCCGACCGGG
Downstream primer: AGCAGAATTCTTATTTACCATCAGATGG
The preparation method of DNA profiling is: the pUC57-BPB solution getting 100ng/ μ l, and after diluting 10000 times, getting 1.0 μ l is template.
PCR reaction system is as follows:
10 × Pfx buffer (purchased from Invitrogen company, containing Mg ion, dNTP mixture etc.) 5.0 μ l;
Upstream primer (10 μMs), 3.0 μ l;
Downstream primer (10 μMs), 3.0 μ l
DNA profiling, 1.0 μ l;
Pfx polysaccharase (5U/ μ l), 0.5 μ l;
Add water to 50 μ l.
In the following program of the upper operation of Mastercycler regular-PCR instrument (Eppendorf):
1)95℃,2min
2)94℃,20sec
3)55℃,45sec
4)68℃,4min
5) circulation is from 2) to 4), 30 times
6)68℃,3min
7) 4 DEG C, preserve.
PCR primer reclaims after purifying through Axygen PCR cleaning agents box, cut with restriction enzyme Eco RI enzyme, be connected with T4DNA ligase enzyme with the linear plasmid DNA pGENE-nprLR through Eco RI and dephosphorylation process, connecting fluid proceeds to bacillus coli DH 5 alpha, is separated and obtains recombinant plasmid pGE-BPB from intestinal bacteria.
Embodiment 2: the molecular biology manipulations producing the recombinant bacillus bacillus of Pullulanase
1, pGE-BPB is proceeded to Bacillus subtillis 168 competent cell.
First the Competent cell of Bacillus subtillis is prepared, its preparation is completed by twice training method: activated at LB agar plate by Bacillus subtillis 168, get mono-clonal to cultivate in LB, volume ratio with 5% is transferred in SP I substratum, cultivate logarithmic phase for 30 DEG C, then same volume ratio is transferred in SP II substratum and cultivates logarithmic phase, centrifugal collecting cell, again cell precipitation is resuspended in SP II substratum, forms the concentrated competent cell that OD600 is approximately 5.0.In the present embodiment, the formula of SPI substratum is: 0.02% caseinic acid hydrolyzate, 0.1% yeast powder, 0.5% glucose, 0.2% (NH 4) 2sO 4, 1.4%K 2hPO 43H 2o, 0.6%KH 2pO 4, 0.1% Trisodium Citrate and 0.02%MgSO 47H 2o.The formula of SPII substratum is: 0.04% caseinic acid hydrolyzate, 0.2% yeast powder, 1.0% glucose, 0.4% (NH 4) 2sO 4, 2.8%K 2hPO 43H 2o, 1.2%KH 2pO 4, 0.2% Trisodium Citrate, 0.5mM CaCl 2and 2.5mM MgCl 2.
When transforming 168 competent cell, get the recombinant plasmid pGE-BPB of 1.0 μ g, fully mix on ice with the competent cell of 50 μ l and depositedly educate 30min, adding 5ml LB cultivates based on 37 DEG C of vibration cultivation 2hr, finally cell is heavyly concentrated into 500 μ l through centrifugal, therefrom get 100 μ l coated plates to containing on the culture plate of selection markers, 37 DEG C are cultured to thalline clone and generate.
The secondary homologous recombination of bringing out when the removal that the competent cell of Bacillus subtillis prepares selection markers is cultivated by nonreactive completes.Concrete operations are as follows: get the mono-clonal bacterium colony of 2 strains containing recombinant plasmid, are inoculated into not containing in antibiotic substratum, go down to posterity once, after going down to posterity, cell concn is diluted to 10 through 5 times after 12 hours with the volume ratio of 1% 3-10 4/ ml, then get 200 μ l to be coated onto on the LB culture plate of antibiotic-free, the single thalline clone getting about 100-200 carries out antibiotic tolerance and identifies, obtain 10 do not tolerate antibiotic clone after, utilize PCR method to identify them, determine the genome type of recombinant strain.
2, the genome type of recombinant bacterial strain is differentiated by following PCR method.
First utilize AxyPrep genomic DNA kit to extract the genomic dna of bacterial strain, get 1 μ l 50ng/ μ l genomic dna and make pcr template.
PCR primer divides two groups, and first group of primer aF/aR is for the identification of the gene expression characteristics of nprE in wild Bacillus subtilis, and second group of PCR primer aF/bR is for the identification of removal antibiotic resistance gene and incorporate the genotypic recombinant bacterial strain of pulB.
First group of primer: aF:tcattcggttagacagcgg
aR:cgtaagcaagacgatagctgccgtc
Second group of primer: aF:tcattcggttagacagcgg
bR:gcgaaaacaggctgaagctgaacatgag
PCR reaction system is as follows:
10 × Pfx buffer (purchased from Invitrogen company, containing Mg ion, dNTP mixture etc.) 5.0 μ l;
Upstream primer (10 μMs), 3.0 μ l;
Downstream primer (10 μMs), 3.0 μ l;
DNA profiling, 1.0 μ l;
Pfx polysaccharase (5U/ μ l), 0.5 μ l;
Add water to 50 μ l.
In the following program of the upper operation of Mastercycler regular-PCR instrument (Eppendorf):
1)95℃,2min
2)95℃,25sec
3)56℃,45sec
4)68℃,2min
5) circulation is from 2) to 4), 30 times
6)68℃,3min
7) 4 DEG C, preserve.
The discriminating of PCR primer: get PCR primer 3 μ l, the sepharose of 1% carries out DNA electrophoresis.The difference of wild mushroom and recombinant bacterium is, during with wild Bacillus subtilis 168 genomic dna for template, can obtain the DNA product of 0.8kb; And with recombined bacillus subtilis bacterial strain CH-1 genomic dna for template time, PCR primer is 2.0kb.
Embodiment 3: recombined bacillus subtilis bacterial strain CH-1 fermentative production Pullulanase
First recombined bacillus subtilis bacterial strain CH-1 has carried out fermentation culture in the LB substratum having added 2% sucrose: get mono-clonal recombined bacillus subtilis bacterial strain, be inoculated in the substratum of 5ml, 30 DEG C of incubated overnight, then be inoculated in the triangular flask of the 500ml that 100ml is housed with the volume ratio of 5%, carry out fermentation culture with 200rpm, time sampling carries out enzyme activity determination.
Enzyme activity determination method is as follows: in the pulullan solution of 1.0ml 0.5%, add 1.0ml, the Acetic acid-sodium acetate damping fluid of pH=4.6, then the enzyme liquid (control group is first by 1.0ml enzyme liquid boiling water bath 10min) of 1.0ml is added, water-bath 30min in 60 DEG C of water-baths, add 3,5-dinitrosalicylic acid 3.0ml, boiling water bath 10min, flowing water cooling after taking out, in 550nm light-metering absorption value.An enzyme activity unit is defined as: under the above-described reaction conditions, and per minute decomposition pulullan discharges the enzyme amount needed for 1 μm of ol glucose.
See Fig. 1, this figure is the restructuring bacillus subtilis strain CH-1 schematic diagram that during fermentative production Pullulanase, enzyme work changes with fermentation time in the shaking flask of 100ml.As can be seen from Figure 1: live the highest at fermentation 48 hours enzyme when described recombined bacillus subtilis strain fermentation produces Pullulanase, the highest enzyme is lived as 30.3U/ml.
The enzymatic production mode of Bacillus subtillis affects very large by substratum and fermentation mode, be therefore optimized Media Components, at basic medium, (composition of this basic medium is: 1% peptone, 0.5% (NH 4) 2sO 4, 0.1%KH 2pO 4, 0.025%MgSO 4, 0.0001%FeSO 4) in add 4.5% sucrose and 6.0% wheat bran+dregs of beans (wherein the mass ratio of wheat bran and dregs of beans is 1:1), and to control starting fermentation pH be 6.23, and in the substratum optimized, the product enzyme performance of CH-1 improves greatly.See Fig. 2, this figure be recombined bacillus subtilis in Optimal Medium during fermentative production Pullulanase enzyme live and the schematic diagram of relation between Preliminary fermentation pH value.As can be seen from Figure 2: when starting fermentation pH is about 6.23, in this batch of experiment, enzyme peak value alive is 268U/ml.
After fermented liquid is centrifugal, obtained fermented liquid supernatant is carried out protein electrophoresis, by comparing with the fermentation supernatant of wild Bacillus subtilis 168, clearly can see that recombined bacillus subtilis fermented liquid supernatant includes the protein band of the Pullulanase of expression; Wild Bacillus subtilis 168 fermentation supernatant does not then have the protein band of Pullulanase.
Above are only part preferred embodiment of the present invention, the present invention is not limited in the content of embodiment.To those skilled in the art, can have various change and change in the concept of technical solution of the present invention, any change done and change, all within scope.
<110> Shanghai Advanced Research Institute, Chinese Academy of Sciences
The recombined bacillus subtilis of a <120> high yield Pullulanase and construction process thereof
<130> 2015
<160> 6
<170> PatentIn version 3.3
 
<210> 1
<211> 8776
<212> DNA
<213> artificial sequence
<400> 1
agctctcgag aagatgatag ctcatcaaaa atcccgccat tgccaaataa atcgtatatg 60
gcattactgc accataatct tttgagattt gattgggata tggcgcaagc agcaagacaa 120
gcagtccgat aatcagcgta taaaataagc ctagtaagat cttatccgtt ctccaataca 180
gcttgaaaaa cactacattc aacgcaatgg gaagagtgat gatgaaaaac agaaacacga 240
atgcaatcgg ctccatccca tccgggtatt ccttccaata cgaaaagaaa ctaaaaatca 300
tttgtacgat cggcaaactg acaacagcaa ggtcgaacgt ataaaactta ccctttccgc 360
catgatcacg cggcatcagc atatagtgaa aagccgtcag cagcacatat ccgtataaca 420
aaaaatgcag cagcggcagc agttcttttc cgtcctctct taagtaagcg ctggtgaagt 480
ttgttgattg cacctggtga ataagttcaa cagacactcc cgccagcagc acaatccgca 540
atataacacc cgccaagaac attgtgcgct gccggtttat tttgggatga tgcaccaaaa 600
gatataagcc cgccagaaca acaattgacc attgaatcag cagggtgctt tgtctgctta 660
atataaaata acgttcgaaa tgcaatacat aatgactgaa taactccaac acgaacaaca 720
atcctttact tcttattaag gcctcattcg gttagacagc ggacttttca aaaagtttca 780
agatgaaaca aaaatatctc atcttcccct tgatatgtaa aaaacataac tcttgaatga 840
accaccacat gacacttgac tcatcttgat attattcaac aaaaacaaac acaggacaat 900
actatcaatt ttgtctagtt atgttagttt ttgttgagta ttccagaatg ctagtttaat 960
ataacaatat aaagttttca gtattttcaa aaagggggat ttattgtggg tgctagcaag 1020
gaattccatg gccggccgac cgggacaatg aaggaaatgg aacatttaac cgcatcaaga 1080
aaaaaagctt caactggtat cagcaggtta tcgccacaaa cggagagagt ctctgacaat 1140
tttttgaaaa ctcatgcgct tcaattgaca ataacgaaat gcaggcggac aataaaagag 1200
aaagatgaac cacccacaga aaggagggat gcctaaaaac gaagaacatt aaaaacatat 1260
atttgcaccg tctaatggat ttatgaaaaa tcattttatc agtttgaaaa ttatgtatta 1320
tgataagaaa gggaggaaga aaatgatcca aaaacgtaaa cgtacagttt ctttccgtct 1380
tgttcttatg tgcacacttc ttttcgtttc tcttcctatc acaaaaacat ctgctgttaa 1440
cctaacgttt caccgcatca ttcgaaaagg atggatgttc ctgctcgcgt ttttgctcac 1500
tgcctcgctg ttctgcccaa caggacagca cgccaaggct gccgcaccgt ttaaccccgg 1560
ggcacaacct gctgtaagta acgcttattt agatgcttcc aaccaagtgt tggtcaagct 1620
tagccagccg tttactcttg gtgaaggttc aagcggtttt acggttcatg atgacacagc 1680
aaataaggat attccagtta catctgttag tgatgccaat caggtaacgg ctgttttagc 1740
aggtactttc cagcatattt ttggggggag tgattgggca ccggataatc acaatacttt 1800
actaaaaaag gtgaatagca atctctatca attttcagga aatcttcctg aaggaaacta 1860
ccaatataaa gtggctttaa atgatagctg gaataatccg agctacccat ctgataacat 1920
taatttgaca gtgccagctg gtggtgccca tgttacattt tcttatatac catccaccca 1980
tgctgtttat gacacgatta acaatcctaa tgcggattta caagtagata gcagcggtgt 2040
taagacggat ctcgtggcgg ttactcttgg agaaaatcct gatgtaagcc ataccctgtc 2100
cattcaaaca gaggactatc aggcaggaca ggtcatacct cgtaaggtgc ttgattcatc 2160
ccagtactac tattccggag atgatctcgg gaatacctat acaaagaatg caactacctt 2220
taaggtctgg gcgcctacat ccactcaagt aaatgtcctt ctttataata gtgcaaccgg 2280
cgcggtaact aaaacggttc caatgaccgc atcaggccat ggtgtatggg aagcaacagt 2340
caaccaagac cttgaaaatt ggtattacat gtatgaggta acaggacaag gctcaacccg 2400
aacggctgtt gatccgtatg caacagctat tgcaccaaac ggaacgagag gcatgattgt 2460
ggacctagcc aaaacagacc cggccggatg ggagagtgac aaacatatta cgccaaagaa 2520
tatagaagat gaagtcatct atgaaatgga tgttcgtgac ttttccatcg actctaattc 2580
gggtatgaaa aataaaggaa agtatttggc acttacagaa aaaggaacta aaggccctga 2640
caatgtaaag acaggggtag attccttaaa acaacttggg attactcatg ttcagcttca 2700
gcctgttttc gcatttaata gtgtcaatga aaacgatcca actcaatata attggggtta 2760
tgaccctcgc aactacaatg ttcctgaggg acaatatgct actaatgcaa acggaacaac 2820
tcggattaaa gagtttaagg aaatggttct ttcactccat caggaccaca ttggggttaa 2880
tatggatgtt gtttataatc atacctttgc cacgcaaatc tctgacttcg ataagattgt 2940
gccagaatat tactaccgca cggatgatgc tggtaactac actaacggct caggtactgg 3000
aaacgaaatc gcagccgaaa gaccaatggt tcaaaaattt attatcgatt cacttaagtt 3060
ttgggtcaat gagtaccacg ttgacggttt ccgttttgac ttaatggcgt tgcttggaaa 3120
agatacaatg tctaaagctg ccacgcagct tcatgccatt gatccaggaa ttgctctcta 3180
cggtgagcca tggacaggag gaacatccgc gctgccagcc gatcagcttt taacaaaagg 3240
agctcaaaaa ggcatgggag tggctgtatt taatgacaat ctgcgaaacg gtttggacgg 3300
cagtgtcttt gattcatctg ctcaaggttt tgcgacaggt gctactggtt taacggatgc 3360
tattaaaaat ggagttgaag gaagtattaa tgacttcacc gcttcaccag gcgagacgat 3420
caactatgtc acaagtcatg ataactatac cctttgggac aagattgccc aaagcaatcc 3480
aaacgattct gaagcggatc gaattaaaat ggatgagctc gctcaagcga tcgtcatgac 3540
ctcacaaggc attcctttca tgcagggcgg ggaagaaatg cttcgtacga aaggcggcaa 3600
cgacaatagc tataatgctg gtgatgtagt gaacgagttt gattggagca gaaaagctca 3660
atatccagat gttttcaatt attatagcgg gctgattcat cttcgtcttg atcacccagc 3720
cttccgcatg acgacagcta atgaaatcaa tagccacctc caattcctaa atagcccaga 3780
gaacacagtg gcctatgaat tatctgatca tgcaaataaa gatacatggg gtaatattgt 3840
ggttatttat aatccaaata aaacggcaga aaccattaat ttgccaagcg ggaaatggga 3900
aatcaatgcg acgagcggta aggtgggaga atccacactt ggtcaagcag agggcagtgt 3960
tcaagttcca ggcatatcta tgatgattct tcatcaagaa gtaagcccat ctgatggtaa 4020
ataagaattc tgctacaggt cacgtggcta tgtgaaggat cgcgcgtcca gttaagagca 4080
aaaacattga caaaaaaatt tatttatgct aaaatttact attaatatat ttgtatgtat 4140
aataagattc tcctggccag gggaatctta ttttttgtgg aggatcattt catgaggaaa 4200
aatgagtcca gcttaacgtc tctaatttca gcttttgccc gtgcatatca cagccgatat 4260
gacacacctc ttatttttga tgattttatc gcaaaagatc tcattaacga aaaagagttt 4320
atcgacatca gtaaaaatat gattcaagaa atatcgtttt tcaacaaaga gatcgccgaa 4380
cgtcttcaaa atgatcctga aaaaatatta aaatgggttg cacaaatcca gctgtctcca 4440
acgcccctag cacgtgcttc ttattgtgaa aaagtcttgc acaacgaatt aatcctgggg 4500
gcaaaacagt atgtcattct tggagcggga ctggatactt tctgctttcg gcatccagaa 4560
ttagaaaaca gcttacaggt tttcgaggtt gatcatccgg ccacacagca attgaaaaaa 4620
aataagctga aggatgcaaa tctgacaatt ccgggtcatc ttcattttgt tcctatggat 4680
ttcaccaaaa cgttttcgta tgatcctctc ttagatgaag gatttaaaaa cacaaaaaca 4740
ttcttcagcc ttctcggagt gtcttattat gtaacacggg aagaaaatgc aagcttgatc 4800
agcaatttat tttctcatgt cccgcctgga acccgggtta aaccgtgtgc tctacgacca 4860
aaactataaa acctttaaga actttctttt tttacaagaa aaaagaaatt agataaatct 4920
ctcatatctt ttattcaata atcgcatccg attgcagtat aaatttaacg atcactcatc 4980
atgttcatat ttatcagagc tcgtgctata attatactaa ttttataagg aggaaaaaat 5040
atgggcattt ttagtatttt tgtaatcagc acagttcatt atcaaccaaa caaaaaataa 5100
gtggttataa tgaatcgtta ataagcaaaa ttcatataac caaattaagg agggaaataa 5160
tgaacgagaa aaatataaaa cacagtcaaa actttattac ttcaaaacat aatatagata 5220
aaataatgac aaatataaga ttaaatgaac atgataatat ctttgaaatc ggctcaggaa 5280
aaggccattt tacccttgaa ttagtaaaga ggtgtaattt cgtaactgcc attgaaatag 5340
accataaatt atgcaaaact acagaaaata aacttgttga tcacgataat ttccaagttt 5400
taaacaagga tatattgcag tttaaatttc ctaaaaacca atcctataaa atatatggta 5460
atatacctta taacataagt acggatataa tacgcaaaat tgtttttgat agtatagcta 5520
atgagattta tttaatcgtg gaatacgggt ttgctaaaag attattaaat acaaaacgct 5580
cattggcatt acttttaatg gcagaagttg atatttctat attaagtatg gttccaagag 5640
aatattttca tcctaaacct aaagtgaata gctcacttat cagattaagt agaaaaaaat 5700
caagaatatc acacaaagat aaacaaaagt ataattattt cgttatgaaa tgggttaaca 5760
aagaatacaa gaaaatattt acaaaaaatc aatttaacaa ttccttaaaa catgcaggaa 5820
ttgacgattt aaacaatatt agctttgaac aattcttatc tcttttcaat agctataaat 5880
tatttaataa gtaagttaag ggatgcataa actgcatccc ttaacttgtt tttcgtgtgc 5940
ctattttttg tgaattgatt atcgatcttt tgcgccatgg atccgcggcg cgcccatatg 6000
catgcactag tgtcgacaag cttctagatc tactagcgca gcttaattaa cctaggctgc 6060
tgccaccgct gagcaataac tagcataacc ccttggggcc tctaaacggg tcttgagggg 6120
ttttttgctg aaaggcggcc gctgttccgg atctgcatcg caggatgctg ctggctaccc 6180
tgtggaacac ctacatctgt attaacgaag cgctggcatt gaccctgagt gatttttctc 6240
tggtcccgcc gcatccatac cgccagttgt ttaccctcac aacgttccag taaccgggca 6300
tgttcatcat cagtaacccg tatcgtgagc atcctctctc gtttcatcgg tatcattacc 6360
cccatgaaca gaaatccccc ttacacggag gcatcagtga ccaaacagga aaaaaccgcc 6420
cttaacatgg cccgctttat cagaagccag acattaacgc ttctggagaa actcaacgag 6480
ctggacgcgg atgaacaggc agacatctgt gaatcgcttc acgaccacgc tgatgagctt 6540
taccgcagct gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc 6600
ccggagacgg tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc 6660
gcgtcagcgg gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc 6720
ggagtgtata ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata 6780
tgcggtgtga aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg 6840
cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc 6900
actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt 6960
gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc 7020
ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa 7080
acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc 7140
ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg 7200
cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc 7260
tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc 7320
gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca 7380
ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact 7440
acggctacac tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg 7500
gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt 7560
ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct 7620
tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga 7680
gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa 7740
tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac 7800
ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga 7860
taactacgat acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc 7920
cacgctcacc ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca 7980
gaagtggtcc tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta 8040
gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt tgccattgct gcaggcatcg 8100
tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc 8160
gagttacatg atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg 8220
ttgtcagaag taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt 8280
ctcttactgt catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt 8340
cattctgaga atagtgtatg cggcgaccga gttgctcttg cccggcgtca acacgggata 8400
ataccgcgcc acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc 8460
gaaaactctc aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac 8520
ccaactgatc ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa 8580
ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct 8640
tcctttttca atattattga agcatttatc agggttattg tctcatgagc ggatacatat 8700
ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc 8760
cacctgacgt cttaag 8776
 
<210> 2
<211> 317
<212> DNA
<213> artificial sequence
<400> 2
ccatggccgg ccgaccggga caatgaagga aatggaacat ttaaccgcat caagaaaaaa 60
agcttcaact ggtatcagca ggttatcgcc acaaacggag agagtctctg acaatttttt 120
gaaaactcat gcgcttcaat tgacaataac gaaatgcagg cggacaataa aagagaaaga 180
tgaaccaccc acagaaagga gggatgccta aaaacgaaga acattaaaaa catatatttg 240
caccgtctaa tggatttatg aaaaatcatt ttatcagttt gaaaattatg tattatgata 300
agaaagggag gaagaaa 317
 
<210> 3
<211> 2580
<212> DNA
<213> artificial sequence
<400> 3
ctaacgtttc accgcatcat tcgaaaagga tggatgttcc tgctcgcgtt tttgctcact 60
gcctcgctgt tctgcccaac aggacagcac gccaaggctg ccgcaccgtt taaccccggg 120
gcacaacctg ctgtaagtaa cgcttattta gatgcttcca accaagtgtt ggtcaagctt 180
agccagccgt ttactcttgg tgaaggttca agcggtttta cggttcatga tgacacagca 240
aataaggata ttccagttac atctgttagt gatgccaatc aggtaacggc tgttttagca 300
ggtactttcc agcatatttt tggggggagt gattgggcac cggataatca caatacttta 360
ctaaaaaagg tgaatagcaa tctctatcaa ttttcaggaa atcttcctga aggaaactac 420
caatataaag tggctttaaa tgatagctgg aataatccga gctacccatc tgataacatt 480
aatttgacag tgccagctgg tggtgcccat gttacatttt cttatatacc atccacccat 540
gctgtttatg acacgattaa caatcctaat gcggatttac aagtagatag cagcggtgtt 600
aagacggatc tcgtggcggt tactcttgga gaaaatcctg atgtaagcca taccctgtcc 660
attcaaacag aggactatca ggcaggacag gtcatacctc gtaaggtgct tgattcatcc 720
cagtactact attccggaga tgatctcggg aatacctata caaagaatgc aactaccttt 780
aaggtctggg cgcctacatc cactcaagta aatgtccttc tttataatag tgcaaccggc 840
gcggtaacta aaacggttcc aatgaccgca tcaggccatg gtgtatggga agcaacagtc 900
aaccaagacc ttgaaaattg gtattacatg tatgaggtaa caggacaagg ctcaacccga 960
acggctgttg atccgtatgc aacagctatt gcaccaaacg gaacgagagg catgattgtg 1020
gacctagcca aaacagaccc ggccggatgg gagagtgaca aacatattac gccaaagaat 1080
atagaagatg aagtcatcta tgaaatggat gttcgtgact tttccatcga ctctaattcg 1140
ggtatgaaaa ataaaggaaa gtatttggca cttacagaaa aaggaactaa aggccctgac 1200
aatgtaaaga caggggtaga ttccttaaaa caacttggga ttactcatgt tcagcttcag 1260
cctgttttcg catttaatag tgtcaatgaa aacgatccaa ctcaatataa ttggggttat 1320
gaccctcgca actacaatgt tcctgaggga caatatgcta ctaatgcaaa cggaacaact 1380
cggattaaag agtttaagga aatggttctt tcactccatc aggaccacat tggggttaat 1440
atggatgttg tttataatca tacctttgcc acgcaaatct ctgacttcga taagattgtg 1500
ccagaatatt actaccgcac ggatgatgct ggtaactaca ctaacggctc aggtactgga 1560
aacgaaatcg cagccgaaag accaatggtt caaaaattta ttatcgattc acttaagttt 1620
tgggtcaatg agtaccacgt tgacggtttc cgttttgact taatggcgtt gcttggaaaa 1680
gatacaatgt ctaaagctgc cacgcagctt catgccattg atccaggaat tgctctctac 1740
ggtgagccat ggacaggagg aacatccgcg ctgccagccg atcagctttt aacaaaagga 1800
gctcaaaaag gcatgggagt ggctgtattt aatgacaatc tgcgaaacgg tttggacggc 1860
agtgtctttg attcatctgc tcaaggtttt gcgacaggtg ctactggttt aacggatgct 1920
attaaaaatg gagttgaagg aagtattaat gacttcaccg cttcaccagg cgagacgatc 1980
aactatgtca caagtcatga taactatacc ctttgggaca agattgccca aagcaatcca 2040
aacgattctg aagcggatcg aattaaaatg gatgagctcg ctcaagcgat cgtcatgacc 2100
tcacaaggca ttcctttcat gcagggcggg gaagaaatgc ttcgtacgaa aggcggcaac 2160
gacaatagct ataatgctgg tgatgtagtg aacgagtttg attggagcag aaaagctcaa 2220
tatccagatg ttttcaatta ttatagcggg ctgattcatc ttcgtcttga tcacccagcc 2280
ttccgcatga cgacagctaa tgaaatcaat agccacctcc aattcctaaa tagcccagag 2340
aacacagtgg cctatgaatt atctgatcat gcaaataaag atacatgggg taatattgtg 2400
gttatttata atccaaataa aacggcagaa accattaatt tgccaagcgg gaaatgggaa 2460
atcaatgcga cgagcggtaa ggtgggagaa tccacacttg gtcaagcaga gggcagtgtt 2520
caagttccag gcatatctat gatgattctt catcaagaag taagcccatc tgatggtaaa 2580
 
<210> 4
<211> 3010
<212> DNA
<213> artificial sequence
<400> 4
gaattccatg gccggccgac cgggacaatg aaggaaatgg aacatttaac cgcatcaaga 60
aaaaaagctt caactggtat cagcaggtta tcgccacaaa cggagagagt ctctgacaat 120
tttttgaaaa ctcatgcgct tcaattgaca ataacgaaat gcaggcggac aataaaagag 180
aaagatgaac cacccacaga aaggagggat gcctaaaaac gaagaacatt aaaaacatat 240
atttgcaccg tctaatggat ttatgaaaaa tcattttatc agtttgaaaa ttatgtatta 300
tgataagaaa gggaggaaga aaatgatcca aaaacgtaaa cgtacagttt ctttccgtct 360
tgttcttatg tgcacacttc ttttcgtttc tcttcctatc acaaaaacat ctgctgttaa 420
cctaacgttt caccgcatca ttcgaaaagg atggatgttc ctgctcgcgt ttttgctcac 480
tgcctcgctg ttctgcccaa caggacagca cgccaaggct gccgcaccgt ttaaccccgg 540
ggcacaacct gctgtaagta acgcttattt agatgcttcc aaccaagtgt tggtcaagct 600
tagccagccg tttactcttg gtgaaggttc aagcggtttt acggttcatg atgacacagc 660
aaataaggat attccagtta catctgttag tgatgccaat caggtaacgg ctgttttagc 720
aggtactttc cagcatattt ttggggggag tgattgggca ccggataatc acaatacttt 780
actaaaaaag gtgaatagca atctctatca attttcagga aatcttcctg aaggaaacta 840
ccaatataaa gtggctttaa atgatagctg gaataatccg agctacccat ctgataacat 900
taatttgaca gtgccagctg gtggtgccca tgttacattt tcttatatac catccaccca 960
tgctgtttat gacacgatta acaatcctaa tgcggattta caagtagata gcagcggtgt 1020
taagacggat ctcgtggcgg ttactcttgg agaaaatcct gatgtaagcc ataccctgtc 1080
cattcaaaca gaggactatc aggcaggaca ggtcatacct cgtaaggtgc ttgattcatc 1140
ccagtactac tattccggag atgatctcgg gaatacctat acaaagaatg caactacctt 1200
taaggtctgg gcgcctacat ccactcaagt aaatgtcctt ctttataata gtgcaaccgg 1260
cgcggtaact aaaacggttc caatgaccgc atcaggccat ggtgtatggg aagcaacagt 1320
caaccaagac cttgaaaatt ggtattacat gtatgaggta acaggacaag gctcaacccg 1380
aacggctgtt gatccgtatg caacagctat tgcaccaaac ggaacgagag gcatgattgt 1440
ggacctagcc aaaacagacc cggccggatg ggagagtgac aaacatatta cgccaaagaa 1500
tatagaagat gaagtcatct atgaaatgga tgttcgtgac ttttccatcg actctaattc 1560
gggtatgaaa aataaaggaa agtatttggc acttacagaa aaaggaacta aaggccctga 1620
caatgtaaag acaggggtag attccttaaa acaacttggg attactcatg ttcagcttca 1680
gcctgttttc gcatttaata gtgtcaatga aaacgatcca actcaatata attggggtta 1740
tgaccctcgc aactacaatg ttcctgaggg acaatatgct actaatgcaa acggaacaac 1800
tcggattaaa gagtttaagg aaatggttct ttcactccat caggaccaca ttggggttaa 1860
tatggatgtt gtttataatc atacctttgc cacgcaaatc tctgacttcg ataagattgt 1920
gccagaatat tactaccgca cggatgatgc tggtaactac actaacggct caggtactgg 1980
aaacgaaatc gcagccgaaa gaccaatggt tcaaaaattt attatcgatt cacttaagtt 2040
ttgggtcaat gagtaccacg ttgacggttt ccgttttgac ttaatggcgt tgcttggaaa 2100
agatacaatg tctaaagctg ccacgcagct tcatgccatt gatccaggaa ttgctctcta 2160
cggtgagcca tggacaggag gaacatccgc gctgccagcc gatcagcttt taacaaaagg 2220
agctcaaaaa ggcatgggag tggctgtatt taatgacaat ctgcgaaacg gtttggacgg 2280
cagtgtcttt gattcatctg ctcaaggttt tgcgacaggt gctactggtt taacggatgc 2340
tattaaaaat ggagttgaag gaagtattaa tgacttcacc gcttcaccag gcgagacgat 2400
caactatgtc acaagtcatg ataactatac cctttgggac aagattgccc aaagcaatcc 2460
aaacgattct gaagcggatc gaattaaaat ggatgagctc gctcaagcga tcgtcatgac 2520
ctcacaaggc attcctttca tgcagggcgg ggaagaaatg cttcgtacga aaggcggcaa 2580
cgacaatagc tataatgctg gtgatgtagt gaacgagttt gattggagca gaaaagctca 2640
atatccagat gttttcaatt attatagcgg gctgattcat cttcgtcttg atcacccagc 2700
cttccgcatg acgacagcta atgaaatcaa tagccacctc caattcctaa atagcccaga 2760
gaacacagtg gcctatgaat tatctgatca tgcaaataaa gatacatggg gtaatattgt 2820
ggttatttat aatccaaata aaacggcaga aaccattaat ttgccaagcg ggaaatggga 2880
aatcaatgcg acgagcggta aggtgggaga atccacactt ggtcaagcag agggcagtgt 2940
tcaagttcca ggcatatcta tgatgattct tcatcaagaa gtaagcccat ctgatggtaa 3000
ataagaattc 3010
 
<210> 5
<211> 46
<212> DNA
<213> artificial sequence
<400> 5
tagtaaaaag aagcaggttc ctccatacct gcttcttttt aagctt 46
 
<210> 6
<211> 2024
<212> DNA
<213> artificial sequence
<400> 6
aacccgacat ccggcgttct catggcggtg cttgccgcca gcggtattcc gtatgtcaag 60
tggctgcggt ttatggtgcc gcttgctctg atttggttct tgatcgggct tgtctttatc 120
gtgatcggag tcatgatcaa ttgggggccg ttttaacgat tgctgcccgc cggcttgtac 180
ggcgggcttt tgagttattc attgcagaag cgcaggctgt tattgtaaca tgtaagccat 240
aagccattcg taaaagtgcg ggaggaaggt catgaataat ctgcgtaata gactttcagg 300
cgtgaatggg aaaaataaga gagtaaaaga aaaagaacaa aaaatctggt cggagattgg 360
gatgatagcg ggagcatttg cgctgcttga tgtgatcatc cgcggcatta tgtttgaatt 420
tccgtttaaa gaatgggctg caagccttgt gtttttgttc atcattatct tatattactg 480
catcagggct gcggcatccg gaatgctcat gccgagaata gacaccaaag aagaactgca 540
aaaacgggtg aagcagcagc gaatagaatc aattgcggtc gcctttgcgg tagtggtgct 600
tacgatgtac gacaggggga ttccccatac attcttcgct tggctgaaaa tgattcttct 660
ttttatcgtc tgcggcggcg ttctgtttct gcttcggtat gtgattgtga agctggctta 720
cagaagagcg gtaaaagaag aaataaaaaa gaaatcatct tttttgtttg gaaagcgagg 780
gaagcgttca cagtttcggg cagctttttt tataggaaca ttgatttgta ttcactctgc 840
caagttgttt tgatagagtg attgtgataa ttttaaatgt aagcgttaac aaaattctcc 900
agtcttcaca tcggtttgaa aggaggaagc ggaagaatga agtaagaggg atttttgact 960
ccgaagtaag tcttcaaaaa atcaaataag gagtgtcaag gctagcaagg aattcttagg 1020
taccgggcaa ggctagacgg gacttaccga aagaaaccat caatgatggt ttcttttttg 1080
ttcataaatc agacaaaact tttctcttgc aaaagtttgt gaagtgttgc acaatataaa 1140
tgtgaaatac ttcacaaaca aaaagacatc aaagagaaac ataccctgga aggatgatta 1200
atgatgaaca aacatgtaaa taaagtagct ttaatcggag cgggttttgt tggaagcagt 1260
tatgcatttg cgttaattaa ccaaggaatc acagatgagc ttgtggtcat tgatgtaaat 1320
aaagaaaaag caatgggcga tgtgatggat ttaaaccacg gaaaggcgtt tgcgccacaa 1380
ccggtcaaaa catcttacgg aacatatgaa gactgcaagg atgctgatat tgtctgcatt 1440
tgcgccggag caaaccaaaa acctggtgag acacgccttg aattagtaga aaagaacttg 1500
aagattttca aaggcatcgt tagtgaagtc atggcgagcg gatttgacgg cattttctta 1560
gtcgcgacaa atccggttga tatcctgact tacgcaacat ggaaattcag cggcctgcca 1620
aaagagcggg tgattggaag cggcacaaca cttgattctg cgagattccg tttcatgctg 1680
agcgaatact ttggcgcagc gcctcaaaac gtacacgcgc atattatcgg agagcacggc 1740
gacacagagc ttcctgtttg gagccacgcg aatgtcggcg gtgtgccggt cagtgaactc 1800
gttgagaaaa acgatgcgta caaacaagag gagctggacc aaattgtaga tgatgtgaaa 1860
aacgcagctt accatatcat tgagaaaaaa ggcgcgactt attatggggt tgcgatgagt 1920
cttgctcgca ttacaaaagc cattcttcat aatgaaaaca gcatattaac tgtcagcaca 1980
tatttggacg ggcaatacgg tgcagatgac gtgtacatcg gtgt 2024
 

Claims (10)

1. a recombined bacillus subtilis for high yield Pullulanase, is characterized in that: by substituting the neutral protease gene nprE of subtilis containing the artificial operons BPB original position expressing Pullulanase gene, obtain described recombined bacillus subtilis; The nucleotide sequence of described artificial operons BPB is as shown in SEQ ID NO.4.
2. the recombined bacillus subtilis of high yield Pullulanase as claimed in claim 1, it is characterized in that: described artificial operons BPB proceeds in subtilis by recombinant plasmid pGE-BPB, the nucleotide sequence of described recombinant plasmid pGE-BPB is as shown in SEQ ID NO.1; Described artificial operons BPB includes the pulB gene through codon optimized acquisition, and the nucleotide sequence of described pulB gene is as shown in SEQ ID NO.3.
3. the recombined bacillus subtilis of high yield Pullulanase as claimed in claim 1 or 2, is characterized in that: adopt type strain subtilis 168 to build described recombined bacillus subtilis as starting strain.
4. the method for the recombined bacillus subtilis fermentative production Pullulanase of the high yield Pullulanase described in claim 1 or 2, the method is: in basic medium, add the sucrose of 4.5% and the wheat bran of 6.0% adds dregs of beans, controlling starting fermentation pH value is 6.2-6.3, fermentation culture is carried out to described recombined bacillus subtilis, produces and obtain Pullulanase.
5. a construction process for the recombined bacillus subtilis of high yield Pullulanase, the method comprises the steps:
Step 1, will be used for the artificial operons BPB construction recombination plasmid pGE-BPB expressing Pullulanase; The nucleotide sequence of described artificial operons BPB is as shown in SEQ ID NO.4;
Step 2, is converted in bacillus subtilis bacterium competence cell by the recombinant plasmid pGE-BPB of aforementioned structure, and described artificial operons BPB substitutes the neutral protease gene nprE in bacillus subtilis bacterium competence cell by secondary recombination form original position.
6. the construction process of the recombined bacillus subtilis of high yield Pullulanase as claimed in claim 5, it is characterized in that, described artificial operons BPB includes: promotor PyxiE, cry3A RNA critical sequences, from the signal peptide sequence SPamyL of bacillus licheniformis amylase secretion, through codon optimized pulB gene, and from the terminator sequence T-aprE of bacillus amyloliquefaciens aprE gene; The nucleotide sequence of described promotor PyxiE and cry3A RNA critical sequences is as shown in SEQ ID NO.2; The nucleotide sequence of described pulB gene is as shown in SEQ ID NO.3; The nucleotide sequence of described T-aprE is as shown in SEQ ID NO.5.
7. the construction process of the recombined bacillus subtilis of high yield Pullulanase as claimed in claim 5, it is characterized in that: the neutral protease gene nprE in bacillus subtilis bacterium competence cell is knocked out by secondary recombination form by described recombinant plasmid pGE-BPB, the nucleotide sequence of the restructuring arm DNA knocked out for neutral protease gene nprE is as shown in SEQ ID NO.6.
8. one kind for expressing the gene order of Pullulanase, it is characterized in that: this gene order is the nucleotide sequence of artificial operons BPB or has the nucleotide sequence of more than 90% homology with artificial operons BPB, and the nucleotide sequence of described artificial operons BPB is as shown in SEQ ID NO.4.
9. for expressing a recombinant plasmid pGE-BPB for Pullulanase, it is characterized in that: the nucleotide sequence of described recombinant plasmid pGE-BPB is as shown in SEQ ID NO.1.
10. a Pullulanase gene, is characterized in that: the nucleotide sequence of described Pullulanase gene is as shown in SEQ ID NO.3.
CN201510143787.1A 2015-03-30 2015-03-30 A kind of recombined bacillus subtilis and its construction method of high yield Pullulanase Active CN104694452B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510143787.1A CN104694452B (en) 2015-03-30 2015-03-30 A kind of recombined bacillus subtilis and its construction method of high yield Pullulanase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510143787.1A CN104694452B (en) 2015-03-30 2015-03-30 A kind of recombined bacillus subtilis and its construction method of high yield Pullulanase

Publications (2)

Publication Number Publication Date
CN104694452A true CN104694452A (en) 2015-06-10
CN104694452B CN104694452B (en) 2019-03-01

Family

ID=53342011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510143787.1A Active CN104694452B (en) 2015-03-30 2015-03-30 A kind of recombined bacillus subtilis and its construction method of high yield Pullulanase

Country Status (1)

Country Link
CN (1) CN104694452B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925553A (en) * 2016-07-14 2016-09-07 江南大学 Recombinant pullulanase pretreatment method for improving output of amylose
CN106084016A (en) * 2016-03-07 2016-11-09 南宁邦尔克生物技术有限责任公司 A kind of mutant of signal peptide that can improve restructuring pullulanase expression and application thereof
CN107058367A (en) * 2017-06-03 2017-08-18 白银赛诺生物科技有限公司 The construction method of the recombined bacillus subtilis of high yield Pullulanase
CN108330079A (en) * 2017-10-25 2018-07-27 南京福斯弗瑞生物科技有限公司 The structure of Pullulanase and recombinant vector and application that a kind of bacillus amyloliquefaciens of production Pullulanase, its fermentation obtain
CN111607626A (en) * 2020-06-24 2020-09-01 江南大学 Application of cyclodextrin enzyme in preparation of maltoheptaose
CN111826368A (en) * 2020-07-23 2020-10-27 中国农业科学院农产品加工研究所 Mutant enzyme of type I pullulanase and preparation method and application thereof
CN111850096A (en) * 2020-07-29 2020-10-30 江南大学 Method for modifying and regulating protein expression based on N-terminal coding sequence
CN118147036A (en) * 2024-03-18 2024-06-07 中国科学院天津工业生物技术研究所 Bacillus subtilis capable of stably expressing target product and application thereof
CN118147036B (en) * 2024-03-18 2024-07-05 中国科学院天津工业生物技术研究所 Bacillus subtilis capable of stably expressing target product and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224949A (en) * 2013-05-13 2013-07-31 南宁邦尔克生物技术有限责任公司 Bacillus subtilis for high-efficiency expression of recombination pullulanase and obtaining method thereof
CN104073458A (en) * 2013-03-26 2014-10-01 南京金斯瑞生物科技有限公司 Bacillus subtilis strain capable of efficiently expressing exogenous secretory proteinase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073458A (en) * 2013-03-26 2014-10-01 南京金斯瑞生物科技有限公司 Bacillus subtilis strain capable of efficiently expressing exogenous secretory proteinase
CN103224949A (en) * 2013-05-13 2013-07-31 南宁邦尔克生物技术有限责任公司 Bacillus subtilis for high-efficiency expression of recombination pullulanase and obtaining method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YAO NIE等: "High-Level Expression of Bacillus naganoensis Pullulanase from Recombinant Escherichia coli with Auto-Induction: Effect of lac Operator", 《PLOS》 *
刘逸寒等: "枯草芽孢杆菌工程菌株产普鲁兰酶发酵条件的优化", 《食品研究与开发》 *
张艳等: "长野芽孢杆菌普鲁兰酶基因在枯草芽孢杆菌中的表达及酶学性质研究", 《生物技术通报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106084016A (en) * 2016-03-07 2016-11-09 南宁邦尔克生物技术有限责任公司 A kind of mutant of signal peptide that can improve restructuring pullulanase expression and application thereof
CN106084016B (en) * 2016-03-07 2020-03-20 南宁邦尔克生物技术有限责任公司 Signal peptide mutant capable of improving expression quantity of recombinant pullulanase and application thereof
CN105925553A (en) * 2016-07-14 2016-09-07 江南大学 Recombinant pullulanase pretreatment method for improving output of amylose
CN105925553B (en) * 2016-07-14 2019-07-02 江南大学 A kind of recombination Pullulanase pre-treating method improving amylose production
CN107058367A (en) * 2017-06-03 2017-08-18 白银赛诺生物科技有限公司 The construction method of the recombined bacillus subtilis of high yield Pullulanase
CN108330079A (en) * 2017-10-25 2018-07-27 南京福斯弗瑞生物科技有限公司 The structure of Pullulanase and recombinant vector and application that a kind of bacillus amyloliquefaciens of production Pullulanase, its fermentation obtain
CN111607626A (en) * 2020-06-24 2020-09-01 江南大学 Application of cyclodextrin enzyme in preparation of maltoheptaose
CN111826368A (en) * 2020-07-23 2020-10-27 中国农业科学院农产品加工研究所 Mutant enzyme of type I pullulanase and preparation method and application thereof
CN111826368B (en) * 2020-07-23 2021-11-23 中国农业科学院农产品加工研究所 Mutant enzyme of type I pullulanase and preparation method and application thereof
CN111850096A (en) * 2020-07-29 2020-10-30 江南大学 Method for modifying and regulating protein expression based on N-terminal coding sequence
CN111850096B (en) * 2020-07-29 2022-02-01 江南大学 Method for modifying and regulating protein expression based on N-terminal coding sequence
CN118147036A (en) * 2024-03-18 2024-06-07 中国科学院天津工业生物技术研究所 Bacillus subtilis capable of stably expressing target product and application thereof
CN118147036B (en) * 2024-03-18 2024-07-05 中国科学院天津工业生物技术研究所 Bacillus subtilis capable of stably expressing target product and application thereof

Also Published As

Publication number Publication date
CN104694452B (en) 2019-03-01

Similar Documents

Publication Publication Date Title
CN104694452B (en) A kind of recombined bacillus subtilis and its construction method of high yield Pullulanase
CN110747198B (en) Method for producing recombinant human type-II collagen single chain by pichia pastoris
CN104342410B (en) Ketone reductase mutant and preparation method thereof
CN104342411B (en) The Ketoreductase mutant of increased activity, coded sequence and preparation method thereof
CN104342406B (en) Enhanced formic dehydrogenase mutant of heat stability and preparation method thereof
CN104342412B (en) For producing the Ketoreductase mutant of (S) -4- chloro-3-hydroxyl ethyl butyrate
CN113302305A (en) Methods of increasing productivity of filamentous fungal cells in the production of polypeptides
CN1995384A (en) Quick and convenient authentication technology fro transgenic insert locus
CN112522205B (en) Cell line for over-expressing angiotensin converting enzyme 2 as well as preparation method and application thereof
CN115161251B (en) Polygene mutant of rhizobium HH103 and application thereof
CN101492685A (en) Gene sequence of recombinant expression vector and construction method thereof
CN113755518B (en) Method for constructing recombinant yarrowia lipolytica and application thereof
CN113846019B (en) Marine nannochloropsis targeted epigenomic genetic control method
CN111635907B (en) Method for constructing astaxanthin-producing strain
CN109182241B (en) Engineering bacterium for expressing epoxide hydrolase and construction method and application thereof
CN109337851B (en) Method for efficiently displaying trehalose synthase on spore surface of bacillus subtilis
KR102422842B1 (en) Compositon for regulating translation of RNA using CRISPRi
CN107475279B (en) Construction method and application of expression T vector of Vip gene of Bacillus thuringiensis
AT509050B1 (en) HYDROLASE ACTIVATOR FROM TRICHODERMA REESEI
CN113528450B (en) Establishment and application of rice protoplasm high-efficiency biotin marking system
CN109055413B (en) Shuttle plasmid vector and construction method and application thereof
CN108728466A (en) A kind of carrier that can be quickly obtained lefteye flounder and surely turn cell line
KR101224218B1 (en) Novel vector for use detecting aromatic hydrocarbon and the use thereof
CN116987686A (en) Engineering optimized nuclease, guide RNA, editing system and application
KR101435954B1 (en) Development of recombinant Escherichia coli which can overflow fatty acid biosynthesis pathway by overproducing malonyl-CoA

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant