CN104692464B - 二硫化钼量子点的制备及其在成品润滑油添加剂的应用 - Google Patents
二硫化钼量子点的制备及其在成品润滑油添加剂的应用 Download PDFInfo
- Publication number
- CN104692464B CN104692464B CN201510099044.9A CN201510099044A CN104692464B CN 104692464 B CN104692464 B CN 104692464B CN 201510099044 A CN201510099044 A CN 201510099044A CN 104692464 B CN104692464 B CN 104692464B
- Authority
- CN
- China
- Prior art keywords
- molybdenum disulfide
- quantum dot
- disulfide quantum
- graphene
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G39/00—Compounds of molybdenum
- C01G39/06—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/67—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
- C09K11/68—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
- C09K11/681—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M125/00—Lubricating compositions characterised by the additive being an inorganic material
- C10M125/02—Carbon; Graphite
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M125/00—Lubricating compositions characterised by the additive being an inorganic material
- C10M125/22—Compounds containing sulfur, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/68—Esters
- C10M129/70—Esters of monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Lubricants (AREA)
Abstract
本发明公开了一种二硫化钼量子点的制备及其在成品润滑油添加剂的应用,涉及润滑油添加剂领域。所述二硫化钼量子点制备原料包括:钼酸铵、硫粉、甘油和甲苯;所述成品润滑油添加剂组分重量份数比如下:石墨烯0.001‑10份,二硫化钼量子点 0.001‑10份,山梨糖醇酐油酸酯 80‑100份。本发明制备的润滑油添加剂分散性好,添加到到市售润滑油中,抗氧化能力、耐磨性能明显提高;高温使用过程中挥发性小,减少油泥和积碳;未添加表面改质剂制备过程简单,降低了成本。
Description
技术领域
本发明涉及润滑油添加剂领域,更具体的说,涉及一种二硫化钼量子点的制备及其在成品润滑油添加剂的应用。
背景技术
随着大型机械领域的发展,大型发动机应用越来越广泛,大功率发动机具有更高的发热值,发动机温度越高,润滑油蒸发损失大,易出现氧化或硝基化反应,增加油泥和积炭,加速发动机磨损、润滑油变质老化等问题。润滑油在高温作用下,其化学稳定性变差,各种功能如抗氧化、耐磨性能下降。目前市售成品润滑油存在高温条件下,化学稳定性差,耐磨性能差等缺点;而一些高性能市售润滑油成本太高,推广领域受到一定限制。
在添加剂中,固体润滑剂是一种常见的添加配方,主要包括石墨、二硫化钼、特氟龙树脂微粒、含铜、铅等重金属微粒等,主要起减摩抗磨作用。由于这类固体的尺寸较大,在润滑油中的分散效果不佳,状态不稳定,在一定的时间及温度条件下会发生析出现象。其析出物会造成油路的堵塞,并加速油泥的形成。因此,降低固体润滑剂的尺寸和提高分散效果是解决这一问题的关键。
二硫化钼(MoS2)的化学稳定性和热稳定性良好,比表面积大,表面活性高,是优良的固体润滑剂与催化剂,随着MoS2的粒径变小,它在摩擦材料的表面附着性与覆盖程度都会有明显的提高,抗磨减摩性能也得到明显提高,但是大尺寸的二硫化钼添加到润滑油中,效果并不突出,关于纳米尺寸二硫化钼量子点的制备,目前鲜有披露。中国专利号CN99104231.X,公开日2000年11月22日,名称为二硫化钼润滑油,该专利的缺陷在于使用了乳化、沉淀、合油、混溶、总调合等步骤,工艺复杂,在性能上,润滑油的化学稳定性和耐磨性不足。
发明内容
针对现有发动机润滑油应用中存在的问题以及市场成品润滑油添加剂的局限性,本发明公开一种二硫化钼量子点的制备方法及其在成品润滑油中的应用,本发明制备的二硫化钼量子点添加到市售的成品润滑油中化学稳定性好,具备优良的润滑和抗磨性能。
为了实现上述目的,本发明采用以下技术方案:
二硫化钼量子点的制备方法,所述二硫化钼量子点制备方法包括以下步骤:
①将钼酸铵、硫粉与甘油按照摩尔比1:5:100混合,在150℃下反应3h,形成反应液;
②向反应液中加入甲苯或环己烷等非极性溶剂萃取未反应的硫粉;
③取下层溶液用水反复洗涤,沉淀物烘干制成二硫化钼量子点粉末。
一种添加有上述二硫化钼量子点的制备方法制备出的二硫化钼量子点的成品润滑油添加剂,所述成品润滑油添加剂的组分重量份数比如下:
石墨烯 0.001-10份;
二硫化钼量子点 0.001-10份;
山梨糖醇酐油酸酯 80-100份。
优选的,所述二硫化钼量子点的尺寸小于10nm。
优选的,所述石墨烯为1~10层石墨烯。
优选的,所述石墨烯为多层石墨烯,层数在11~50层,层内为碳原子sp2杂化轨道组成的六角形蜂巢状晶格、层间为碳原子以π键结合。
优选的,所述石墨烯为官能团的改性石墨烯,所述改性官能团为羟基、羧基、羰基、氮基、氨基中的至少一种。
优选的,所述石墨烯中碳元素与非碳元素质量比大于4:1,非碳元素选自氟、氧、氮、硫、氢、氯、溴和碘。
本发明的有益效果为:
本发明制备的润滑油添加剂分散性好,添加到到市售润滑油中,抗氧化能力、耐磨性能明显提高;高温使用过程中挥发性小,减少油泥和积碳;未添加表面改质剂制备过程简单,降低了成本。
附图说明
图1 二硫化钼量子点的TEM图。
具体实施方式
以下结合具体实施例,对本发明作进一步的解释:
本发明所述试剂原料均为市场采购获得,制备方法未经特殊说明,均为本领域常规制备方法。
量子点材料在三维尺寸上都在100nm以下,具有极强的束缚电子的功能,同时由于纳米材料高的表面能,量子材料与其他带点粒子接触时,由于静电势吸附,化学稳定性好。二硫化钼量子点(MoS2)的化学稳定性和热稳定性良好,比表面积大,表面活性高,是优良的固体润滑剂与催化剂,随着MoS2的粒径变小,它在摩擦材料的表面附着性与覆盖程度都会有明显的提高,抗磨减摩性能也得到明显提高。
石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。作为新材料中最为耀眼的一员, 石墨烯具有超硬、最薄的特征、有很强的韧性、导电性以及导热性,这使其能够广泛应用于电子、航天、光学、能源、环境新材料等众多领域。由于石墨烯的尺寸为纳米量级、长径比大,具有密度小、自润滑的优点,故其可以成为润滑油改性添加剂的一种重要的填料。(1)复合材料的协同作用。石墨烯和二硫化钼都具有很好的润滑特性。将两种材料复合使用,可以发挥协同作用,取得更好的润滑效果。(2)固体颗粒尺寸小。通过使用纳米材料,提高了的分散稳定性,减少了大颗粒沉积,降低了固体使用量,节约成本。(3)未添加表面改质剂。本发明中使用的功能化石墨烯自身表面具有功能团,不需要额外添加其他的药品对其进行表面改性,提高了润滑油添加剂的稳定性,降低了成本。本发明将众多优点应用于实际的产品中,并改善了现有技术上所面临的各种问题。
实施例1
制备二硫化钼量子点:
称取1mol钼酸铵、5mol硫粉、10mol甘油放入反应釜中,搅拌,加热到150℃下,恒温反应3h; 向反应液中加入1mol的甲苯非极性溶剂萃取未反应的硫粉;
取下层溶液用水反复洗涤,沉淀物烘干制成二硫化钼量子点粉末。
采用本领域常规制备方法制备含有上述方法制备的二硫化钼量子点的润滑油添加剂, 组分重量份数配比为:
石墨烯0.001份,
二硫化钼量子0.001份,
山梨糖醇酐油酸酯80份;
其中选用的石墨烯为1~10层的石墨烯,二硫化钼量子为上述方法制备的尺寸小于10nm。
实施例2
制备二硫化钼量子点,同实施例1,不再赘述。
采用本领域常规制备方法制备含有上述方法制备的二硫化钼量子点的润滑油添加剂,组分重量份数配比为:
石墨烯0.5份,
二硫化钼量子0.5份,
山梨糖醇酐油酸酯90份;
其中选用的石墨烯为20~30层的多层石墨烯,二硫化钼量子为上述方法制备的尺寸小于10nm。
实施例3
制备二硫化钼量子点,同实施例1,不再赘述。
采用本领域常规制备方法制备含有上述方法制备的二硫化钼量子点的润滑油添加剂,组分重量份数配比为:
石墨烯10份,
二硫化钼量子10份,
山梨糖醇酐油酸酯100份;
其中选用的石墨烯带有羟基团能团的改性石墨烯,二硫化钼量子为上述方法制备的尺寸小于10nm。
图1为二硫化钼量子点的TEM图,可以看出,本发明制备出的二硫化钼量子点尺寸均匀,尺度在3nm~5nm尺寸均匀,分散性好。
在MS-800型四球摩擦磨损试验机上评价润滑油添加剂的极压和抗磨性能。使用直径为12.7mm、硬度为HRC60的GCr15钢球。最大无卡咬负荷Pn按照GB3142-90进行测试。实验条件:转速1500 r/min。采用销-盘式摩擦磨损机测定润滑油的摩擦系数,销试样为GCr15钢,直径5mm,硬度HRC60,盘试样为硬度HRC44的45钢,销试样和盘试样表面粗糙度为0.5μm(Rn)。对比润滑油选择长城车用润滑油SJ10W-40。
上述三个实施例的产品性能对比如表 1 所示,可以看出添加本发明实施例中制备的润滑油添加剂后,润滑油的化学稳定性明显提高,抗氧化能力、耐磨性能均有大幅度提高。
表1
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
Claims (7)
1.二硫化钼量子点的制备方法,其特征在于,所述二硫化钼量子点制备方法包括以下步骤:
将钼酸铵、硫粉与甘油按照摩尔比1:5:100混合,在150℃下反应3h,形成反应液;
向反应液中加入甲苯或环己烷等非极性溶剂萃取未反应的硫粉;
取下层溶液用水反复洗涤,沉淀物烘干制成二硫化钼量子点粉末。
2.一种添加有权利要求1二硫化钼量子点的制备方法制备出的二硫化钼量子点的成品润滑油添加剂,其特征在于,所述成品润滑油添加剂的组分重量份数比如下:
石墨烯 0.001-10份;
二硫化钼量子点 0.001-10份;
山梨糖醇酐油酸酯 80-100份。
3.根据权利要求2所述成品润滑油添加剂,其特征在于,所述二硫化钼量子点的尺寸小于10nm。
4.根据权利要求2所述成品润滑油添加剂,其特征在于,所述石墨烯为1~10层石墨烯。
5.根据权利要求2所述成品润滑油添加剂,其特征在于,所述石墨烯为多层石墨烯,层数在11~50层。
6.根据权利要求2所述成品润滑油添加剂,其特征在于,所述石墨烯为官能团的改性石墨烯,所述改性官能团为羟基、羧基、羰基、氮基、氨基中的至少一种。
7.根据权利要求6所述成品润滑油添加剂,其特征在于,所述石墨烯中碳元素与非碳元素质量比大于4:1,非碳元素选自氟、氧、氮、硫、氢、氯、溴和碘。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510099044.9A CN104692464B (zh) | 2015-03-06 | 2015-03-06 | 二硫化钼量子点的制备及其在成品润滑油添加剂的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510099044.9A CN104692464B (zh) | 2015-03-06 | 2015-03-06 | 二硫化钼量子点的制备及其在成品润滑油添加剂的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104692464A CN104692464A (zh) | 2015-06-10 |
CN104692464B true CN104692464B (zh) | 2017-07-11 |
Family
ID=53340083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510099044.9A Active CN104692464B (zh) | 2015-03-06 | 2015-03-06 | 二硫化钼量子点的制备及其在成品润滑油添加剂的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104692464B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106608653B (zh) * | 2015-10-29 | 2018-10-16 | 北京纳米能源与系统研究所 | 一种单分散球状纳米二硫化钼及其制备方法和应用 |
CN105271411B (zh) * | 2015-11-04 | 2017-03-08 | 太原理工大学 | 一种二硫化钼量子点的制备方法 |
CN105316077B (zh) * | 2015-11-16 | 2018-07-10 | 青岛星沃能源科技有限公司 | 一种石墨烯/氮化碳量子点复合纳米材料及润滑油摩擦改善剂 |
CN108067257B (zh) * | 2016-11-16 | 2021-03-16 | 中国科学院大连化学物理研究所 | 一种高活性位暴露的纳米二硫化钼加氢催化剂的制备方法 |
CN107937089A (zh) * | 2017-11-10 | 2018-04-20 | 中国科学院兰州化学物理研究所 | 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用 |
CN108410458B (zh) * | 2018-02-28 | 2021-01-26 | 复旦大学 | 一种以硫磺为硫源一步水热制备二硫化钼量子点的方法 |
CN110257135B (zh) * | 2019-05-07 | 2022-06-07 | 北京玖星智能科技有限公司 | 固体润滑剂及其制备方法和用途 |
CN111534095A (zh) * | 2020-06-09 | 2020-08-14 | 陕西科技大学 | 一种ZnS量子点/MXene/聚合物基超耐磨自润滑复合材料及其制备方法和应用 |
CN111662547A (zh) * | 2020-06-09 | 2020-09-15 | 陕西科技大学 | 一种二硫化钼量子点/石墨烯/聚合物基超耐磨自润滑复合材料及其制备方法和应用 |
CN116042291A (zh) * | 2023-01-06 | 2023-05-02 | 广州特种承压设备检测研究院 | 含有离子液体的石墨烯二硫化钼的润滑油复合添加剂及其制备与应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101812351B (zh) * | 2010-04-01 | 2013-08-14 | 江苏工业学院 | 基于单层或几层石墨稀的润滑油添加剂 |
CN101851006B (zh) * | 2010-06-08 | 2011-08-31 | 南开大学 | 一种采用溶剂热法制备MoS2微米球的方法 |
CN102807907B (zh) * | 2012-08-24 | 2014-03-12 | 江苏大学 | 一种石墨烯/MoS2纳米自润滑复合材料及其制备方法 |
CN103992839B (zh) * | 2014-05-19 | 2015-05-13 | 青岛大学 | 一种水基石墨烯-二硫化钼纳米管润滑添加剂的制备方法 |
-
2015
- 2015-03-06 CN CN201510099044.9A patent/CN104692464B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN104692464A (zh) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104692464B (zh) | 二硫化钼量子点的制备及其在成品润滑油添加剂的应用 | |
Upadhyay et al. | Epoxy-graphene-MoS2 composites with improved tribological behavior under dry sliding contact | |
Song et al. | A study of the tribological behavior of nano-ZnO-filled polyurethane composite coatings | |
CN101100624B (zh) | 一种润滑油的添加剂及其制备方法 | |
Zhang et al. | Fundamental understanding of the tribological and thermal behavior of Ag–MoS2 nanoparticle-based multi-component lubricating system | |
Wang et al. | Nitrogen-doped porous carbon nanospheres derived from hyper-crosslinked polystyrene as lubricant additives for friction and wear reduction | |
Miao et al. | MXenes in tribology: current status and perspectives | |
Jiang et al. | Tribological properties of oleylamine-modified ultrathin WS 2 nanosheets as the additive in polyalpha olefin over a wide temperature range | |
Rajendhran et al. | Enhancing the thermophysical and tribological performance of gear oil using Ni-promoted ultrathin MoS2 nanocomposites | |
Zhang et al. | A novel eco-friendly water lubricant based on in situ synthesized water-soluble graphitic carbon nitride | |
Liu et al. | Alkylated fullerene as lubricant additive in paraffin oil for steel/steel contacts | |
Nautiyal et al. | Tribological performance of Cu–rGO–MoS 2 nanocomposites under dry sliding | |
Qi et al. | Exploring the influence of counterpart materials on tribological behaviors of epoxy composites | |
Zhu et al. | WS2 nanopowders as high-temperature lubricants: an experimental and theoretical study | |
Tuktarov et al. | Fullerene-containing lubricants: Achievements and prospects | |
Yan et al. | Enhanced extreme pressure lubrication performance and load carrying capability of gallium-based liquid metal reinforced with MoSe2 and WSe2 nanoparticles | |
Yin et al. | Right way of using graphene oxide additives for water-lubricated PEEK: adding in polymer or water? | |
Zhang et al. | Synergistic lubrication mechanism of core/shell C@ MoS2 particles as lubricant additives | |
Qin et al. | Tribological performance of magnesium silicate hydroxide/Ni composite as an oil-based additive for steel–steel contact | |
Yu et al. | Novel nanocomposites reinforced with layered double hydroxide platelets: tribofilm growth compensating for lubrication insufficiency of oil films | |
Wang et al. | Structural, thermal, and tribological properties of intercalated polyoxymethylene/molybdenum disulfide nanocomposites | |
Li et al. | Improved tribological performance of epoxy self-lubricating composite coating by BNNSs/Ag | |
Cheng et al. | MoS2/montmorillonite nanocomposite: Preparation, tribological properties, and inner synergistic lubrication | |
Zhou et al. | Facile in situ preparation of Cu/RGO nanohybrid for enhancing the tribological performance of phenolic resins nanocomposites | |
Elagouz et al. | Thermophysical and tribological behaviors of multiwalled carbon nanotubes used as nanolubricant additives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 272000 A5 building, Chongwen Avenue research and production base, Jining hi tech Zone, Shandong Patentee after: Shandong lett Nano Technology Co., Ltd. Address before: 272000 A5 building, Chongwen Avenue research and production base, Jining hi tech Zone, Shandong Patentee before: Jining Leader Nano Technology Co., Ltd. |