CN104678369A - Dual-polarization weather radar calibration method based on non-fixed metal ball - Google Patents

Dual-polarization weather radar calibration method based on non-fixed metal ball Download PDF

Info

Publication number
CN104678369A
CN104678369A CN201510036477.XA CN201510036477A CN104678369A CN 104678369 A CN104678369 A CN 104678369A CN 201510036477 A CN201510036477 A CN 201510036477A CN 104678369 A CN104678369 A CN 104678369A
Authority
CN
China
Prior art keywords
radar
metal ball
calibration
dual
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510036477.XA
Other languages
Chinese (zh)
Inventor
赵坤
杨正玮
陈建军
黄浩
邵世卿
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201510036477.XA priority Critical patent/CN104678369A/en
Publication of CN104678369A publication Critical patent/CN104678369A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于非固定金属球的双偏振天气雷达标校方法,包含如下步骤:根据雷达位置,确定标校场所,记录雷达位置和标校位置的经纬度;根据经纬度和雷达站高度,计算金属球在标校状态时相对于雷达的可能方位、仰角和距离,设置雷达的扫描仰角和扫描方式;在标校区域升起金属球,在金属球底部设置高精度GPS模块,控制雷达按照预设扫描方式工作,记录雷达的IQ数据和基数据;分析数据,找到雷达探测的金属球目标,与理论值进行比较,计算实测值和理论值的误差,根据误差进行修正。本发明方法简便易行,解决了金属球移动时的雷达参数标校问题,可以对偏振雷达的所有探测参量进行标校。

The invention discloses a dual-polarization weather radar calibration method based on non-fixed metal balls, which comprises the following steps: according to the radar position, determining the calibration site, recording the radar position and the longitude and latitude of the calibration position; according to the longitude and latitude and the height of the radar station, Calculate the possible azimuth, elevation angle and distance of the metal ball relative to the radar in the calibration state, set the scanning elevation angle and scanning mode of the radar; raise the metal ball in the calibration area, set a high-precision GPS module at the bottom of the metal ball, and control the radar according to Work in the preset scanning mode, record the IQ data and basic data of the radar; analyze the data, find the metal ball target detected by the radar, compare it with the theoretical value, calculate the error between the measured value and the theoretical value, and correct it according to the error. The method of the invention is simple and easy to implement, solves the problem of calibration of radar parameters when the metal ball moves, and can perform calibration of all detection parameters of the polarization radar.

Description

一种基于非固定金属球的双偏振天气雷达标校方法A Calibration Method for Dual-polarization Weather Radar Based on Unfixed Metal Ball

技术领域technical field

本发明涉及一种对双偏振雷达进行系统标校的方法,尤其涉及一种利用非固定金属球对双偏振雷达进行系统标校的方法,属于雷达信号处理研究领域。The invention relates to a system calibration method for a dual-polarization radar, in particular to a method for system calibration of a dual-polarization radar by using a non-fixed metal ball, which belongs to the field of radar signal processing research.

背景技术Background technique

在现代气象领域中,天气雷达广泛应用于实时天气监控、人影作业指挥等各个方面。而对于气象雷达系统来说,系统标校是必不可少的工作,未经标校的雷达无法以正确的参量来表达当前的天气状况。对于单偏振雷达来说,只需要进行一个通道的标校;而对于双偏振雷达,由于其有水平和垂直两个通道,则必须分别对两个通道进行标校,包括幅度和相位的一致性标校等。In the field of modern meteorology, weather radar is widely used in various aspects such as real-time weather monitoring and human shadow operation command. For the weather radar system, system calibration is an essential work, and the uncalibrated radar cannot express the current weather conditions with correct parameters. For single-polarization radar, only one channel needs to be calibrated; for dual-polarization radar, since it has two horizontal and vertical channels, the two channels must be calibrated separately, including the consistency of amplitude and phase Calibration etc.

雷达标校的方法有很多,一般分为在线标校和离线标校。在线标校利用集成在雷达内部的信号源、噪声源等器件,自身产生信号,并经过雷达接收处理,来对接收通道、发射通道等部分进行标定和校准。离线标定与在线标定的原理基本相同,只是通过外接仪表来代替集成的信号源等器件。王致君(1996)提出利用金属球对雷达增益进行标定的方法,该方法利用球体对入射波退偏振效应为零的特点,根据点目标的气象方程,通过雷达返回的功率来计算雷达增益。同时也提出,如果只需要测量水平和垂直通道的增益差,则可以通过小雨滴来标定。李相迎等(2002)利用雷达RCS(Radar Cross Section)目标特性对雷达进行标定。李永新等(2007)也开展了RCS测量雷达定标误差的工作,利用气球悬挂标准金属球作为标准定标体,对雷达进行标定,发现气球的RCS对雷达标定结果有较大影响。Earle Williams et al.(2012)利用金属球对KOUN雷达和WSR-88D雷达的ZDR进行标定,发现了这两部雷达存在的偏差。There are many methods of radar calibration, generally divided into online calibration and offline calibration. Online calibration uses the signal source, noise source and other devices integrated in the radar to generate signals by itself, and after the radar receiving and processing, the receiving channel, transmitting channel and other parts are calibrated and calibrated. The principle of offline calibration is basically the same as that of online calibration, except that the integrated signal source and other devices are replaced by external instruments. Wang Zhijun (1996) proposed a method to calibrate the radar gain by using a metal sphere. This method uses the characteristic that the sphere has zero depolarization effect on the incident wave, and calculates the radar gain by the power returned by the radar according to the meteorological equation of the point target. At the same time, it is also proposed that if only the gain difference between the horizontal and vertical channels needs to be measured, it can be calibrated by small raindrops. Li Xiangying et al. (2002) used radar RCS (Radar Cross Section) target characteristics to calibrate the radar. Li Yongxin et al. (2007) also carried out RCS measurement of radar calibration error. They used a balloon to hang a standard metal ball as a standard calibration body to calibrate the radar. They found that the RCS of the balloon had a great influence on the radar calibration results. Earle Williams et al. (2012) used metal balls to calibrate the ZDR of KOUN radar and WSR-88D radar, and found the deviation of these two radars.

对于偏振雷达来说,水平和垂直通道的一致性标定是必不可少的。利用小雨对雷达进行标校的方法虽然简便,但是由于降水本身的不确定性,标校精度无法精确量化。采用气球悬挂金属球的方式,由于气球RCS对标校结果有影响,因此标校精度也不容易把握。同时,偏振雷达有多个偏振参量,都需要进行标定,仅标定某一个或某几个是不够的。Consistent calibration of horizontal and vertical channels is essential for polarimetric radars. Although the method of using light rain to calibrate radar is simple, the calibration accuracy cannot be accurately quantified due to the uncertainty of precipitation itself. With the method of hanging metal balls by balloons, the calibration accuracy is not easy to grasp because the balloon RCS has an impact on the calibration results. At the same time, the polarization radar has multiple polarization parameters, all of which need to be calibrated, and it is not enough to calibrate only one or a few.

发明内容Contents of the invention

本发明针对目前技术的不足,在基于金属球RCS标校的基础上,利用高精度GPS模块来记录金属球位置,从时域和频域两个方面对雷达进行分析,在目标点计算时采用多点融合的计算方法,确保雷达计算结果的准确性。本发明对双偏振气象雷达的所有参量进行标校,在金属球运动的情况下依然可以正常使用。The present invention aims at the deficiencies of the current technology. On the basis of RCS calibration based on the metal ball, the high-precision GPS module is used to record the position of the metal ball, and the radar is analyzed from two aspects of the time domain and the frequency domain. The calculation method of multi-point fusion ensures the accuracy of radar calculation results. The invention calibrates all parameters of the dual-polarization weather radar, and can still be used normally when the metal ball is in motion.

为解决上述技术问题,本发明的基于非固定金属球的双偏振天气雷达标校方法的技术方案为:In order to solve the above-mentioned technical problems, the technical scheme of the dual-polarization weather radar calibration method based on non-fixed metal balls of the present invention is:

根据雷达所在的位置,确定标校场所,记录雷达位置和标校位置的经纬度;Determine the calibration location according to the location of the radar, and record the radar location and the latitude and longitude of the calibration location;

根据得到的经纬度和雷达站高度,计算金属球在标校状态时相对于雷达的可能方位、仰角和距离,设置雷达的扫描仰角和扫描方式;According to the obtained latitude and longitude and the height of the radar station, calculate the possible azimuth, elevation angle and distance of the metal ball relative to the radar in the calibration state, and set the scanning elevation angle and scanning mode of the radar;

在标校区域利用设备升起金属球,在金属球底部设置高精度GPS模块,同时控制雷达按照预设的扫描方式进行工作,记录雷达的IQ数据和基数据;升起金属球所用的设备可以采用传统的气球,也可以采用无人机,最佳采用是风筝。因为风筝基本没有续航能力的影响,同时风筝在空中可以很好的保持位置,不会产生大幅度飘移。在实际测试发现风筝对金属球的RCS无影响,解决了使用气球时对雷达标校有较大影响的问题。配合高精度GPS模块测试精度更为准确。Use the equipment to raise the metal ball in the calibration area, set a high-precision GPS module at the bottom of the metal ball, and at the same time control the radar to work according to the preset scanning mode, record the IQ data and basic data of the radar; the equipment used to raise the metal ball can be Using traditional balloons, drones can also be used, and the best use is a kite. Because the kite basically has no impact on the endurance, and the kite can maintain its position well in the air without significant drift. In the actual test, it is found that the kite has no effect on the RCS of the metal ball, which solves the problem that the balloon has a greater impact on the radar calibration. It is more accurate to test the accuracy with the high-precision GPS module.

分析IQ数据和基数据,找到雷达探测的金属球目标,与理论值进行比较,计算实测值和理论值的误差,根据误差结果对雷达进行修正。Analyze the IQ data and base data, find the metal ball target detected by the radar, compare it with the theoretical value, calculate the error between the measured value and the theoretical value, and correct the radar according to the error result.

本发明方法较现有技术的方法的有益效果是简便易行,可以对雷达整机做精确标校;提高了计算的精度,解决了金属球移动时的雷达参数标校问题,可以对偏振雷达的所有探测参量进行标校。Compared with the method of the prior art, the beneficial effect of the method of the present invention is that it is simple and easy to implement, and can accurately calibrate the whole radar machine; it improves the calculation accuracy, solves the problem of radar parameter calibration when the metal ball moves, and can calibrate the polarized radar All detection parameters are calibrated.

说明书附图Instructions attached

图1是金属球相对于雷达所在的方位和仰角计算;Figure 1 is the calculation of the azimuth and elevation angle of the metal ball relative to the radar;

图2是金属球所在距离单元的FFT频谱;Figure 2 is the FFT spectrum of the distance unit where the metal ball is located;

图3是金属球所在位置相邻几个仰角的雷达基数据;Figure 3 is the radar base data of several adjacent elevation angles where the metal ball is located;

图4是雷达探测的金属球反射率因子和理论值对比;Figure 4 is a comparison between the metal ball reflectivity factor detected by radar and the theoretical value;

图5是雷达探测到的多个体扫金属球差分反射率;Figure 5 is the differential reflectivity of multiple volume-scanning metal balls detected by radar;

图6是雷达探测到的多个体扫金属球相关系数;Figure 6 is the correlation coefficient of multiple volume-scanning metal balls detected by radar;

图7是雷达探测到的多个体扫金属球差分传播相移。Figure 7 is the differential propagation phase shift of multiple volume-scanning metal balls detected by radar.

具体实施方式Detailed ways

针对本发明的一种基于非固定金属球的双偏振天气雷达标校方案的详细说明,具体包括如下步骤:A detailed description of a dual-polarization weather radar calibration scheme based on a non-fixed metal ball of the present invention specifically includes the following steps:

根据雷达所在的经纬度和高度,选择合适的标校位置,要求该位置没有明显地物遮挡,且距离雷达站不远。标校位置的选择对于雷达标校成功是至关重要的,标校位置距离雷达如果太远,由于金属球只能升到一定高度,在雷达将以很低的仰角进行观测,这样很不利于目标的确定。同时要求标校位置附近没有较多遮挡,如树林、铁塔、山丘等目标。确定好区域后,就可以根据该位置和雷达的位置计算金属球可能所在的方位、仰角和距离,利用该数据来设置雷达的扫描方式和信号处理方式。According to the latitude, longitude and altitude of the radar, select a suitable calibration location, which requires no obvious object obstruction and not far from the radar station. The selection of the calibration position is crucial to the success of the radar calibration. If the calibration position is too far away from the radar, since the metal ball can only rise to a certain height, the radar will observe at a very low elevation angle, which is not conducive to Target determination. At the same time, it is required that there are not many obstacles near the calibration location, such as woods, iron towers, hills and other objects. After the area is determined, the possible azimuth, elevation and distance of the metal ball can be calculated based on the position and the position of the radar, and the data can be used to set the scanning mode and signal processing mode of the radar.

根据金属球升空后可能的最大高度,计算出该位置相对于雷达的可能方位、仰角和距离,据此设置雷达的工作方式和扫描方式;计算好金属球相对于雷达的可能位置后,就可以根据位置设置雷达的扫描方式和信号处理方式,如果条件允许的话,最好使用扇扫模式,这样可以减少不必要的数据记录。Calculate the possible azimuth, elevation angle and distance of the position relative to the radar according to the possible maximum height of the metal ball, and set the working mode and scanning mode of the radar accordingly; after calculating the possible position of the metal ball relative to the radar, it is The scanning method and signal processing method of the radar can be set according to the location. If conditions permit, it is best to use the sector scanning mode, which can reduce unnecessary data recording.

在标校区域内用风筝升起金属球,在该球底部加上高精度GPS模块,用来记录金属球的位置,控制雷达按照预定扫描模式工作。Raise the metal ball with a kite in the calibration area, and add a high-precision GPS module to the bottom of the ball to record the position of the metal ball and control the radar to work in a predetermined scanning mode.

观察标校区域,发现目标后,稳定地记录一段时间的IQ数据和基数据;进行标校时,首先在标校区域升起金属球,同时开启雷达,按照预设模式进行扫描。金属球升起后,在雷达上很容易观察到金属球目标,此时要确保雷达基数据和IQ数据都正常存储。IQ数据可以用来从频谱方面确认金属球的位置和强度,基数据用来比对雷达计算的结果和金属球本身的理论值,计算出二者的误差。Observe the calibration area, and after finding the target, record the IQ data and basic data stably for a period of time; when performing calibration, first raise the metal ball in the calibration area, turn on the radar at the same time, and scan according to the preset mode. After the metal ball is raised, it is easy to observe the metal ball target on the radar. At this time, make sure that the radar base data and IQ data are stored normally. The IQ data can be used to confirm the position and strength of the metal ball from the spectrum, and the base data is used to compare the results calculated by the radar with the theoretical value of the metal ball itself, and calculate the error between the two.

分析雷达记录的结果,与金属球计算的理论值进行比对,计算出雷达的测量误差,根据误差值对雷达进行校准。在该步骤中金属球反射率因子理论值的计算是很关键的步骤,假设金属球的半径为r(m),雷达发射机峰值功率为Pt(Kw),天线增益为G,接收机噪声系数为NF(dB),接收机的带宽为BW(MHz),雷达波长为λ(m),馈线损耗为L(dB),雷达1Km处的可探测强度为dBZ0,金属球与雷达的距离为R(Km),则按照以下公式计算金属球的反射率囚子:Analyze the results recorded by the radar, compare with the theoretical value calculated by the metal ball, calculate the measurement error of the radar, and calibrate the radar according to the error value. In this step, the calculation of the theoretical value of the reflectivity factor of the metal ball is a very critical step. Assume that the radius of the metal ball is r (m), the peak power of the radar transmitter is Pt (Kw), the antenna gain is G, and the noise figure of the receiver is NF(dB), the bandwidth of the receiver is BW(MHz), the radar wavelength is λ(m), the feeder loss is L(dB), the detectable intensity at 1Km of the radar is dBZ0, and the distance between the metal ball and the radar is R (Km), the reflectivity of the metal ball is calculated according to the following formula:

RCS=π×r2 RCS=π×r 2

PrPR == PtPt ×× GG 22 ×× RCSRCS ×× λλ 22 ×× 1010 LL 1010 44 ππ 33 ×× RR 44

SNR=10×log(Pr*1000)-(-114+NF+10×log BW)SNR=10×log(Pr*1000)-(-114+NF+10×log BW)

dBZdBZ == dBZdBZ 00 ++ SNRSNR ++ 2020 ×× loglog (( RR 10001000 ))

其中,RCS为金属球的雷达反射截面,Pr为雷达接收机接收到的功率,dBZ是最终的反射率因子计算结果。在分析数据时,由于金属球会移动,因此从时域和频域两个方面对数据进行处理,解决数据和目标点的匹配问题。Among them, RCS is the radar reflection cross section of the metal ball, Pr is the power received by the radar receiver, and dBZ is the final calculation result of the reflectivity factor. When analyzing the data, since the metal ball will move, the data is processed from both the time domain and the frequency domain to solve the matching problem between the data and the target point.

数据记录完成后,就要进行标校数据的分析了。金属球本身的反射率因子可以通过上面描述的公式计算,而其他偏振参量,由于金属球是球体,差分反射率和差分传播相移理论值为0,其相关系数理论值为1。由于金属球会移动,因此可以从频域方面来分析。图2计算的是雷达探测到的金属球所在位置的频谱,横坐标是FFT的通道数,纵坐标是幅度,从中可以得到金属球所在的位置。图3表示的是金属球所在位置附近几个仰角的基数据,横坐标是方位,纵坐标是距离。图4到图7则分别表示的是多个体扫下雷达探测到的金属球的反射率因子实测值和理论值对比以及实测的差分反射率、相关系数和差分传播相移,其横坐标是体扫次数,纵坐标是各自的参量。通过分析,就可以获知雷达测量参数的误差。After the data recording is completed, it is necessary to analyze the calibration data. The reflectivity factor of the metal sphere itself can be calculated by the formula described above, while for other polarization parameters, since the metal sphere is a sphere, the theoretical value of differential reflectivity and differential propagation phase shift is 0, and the theoretical value of its correlation coefficient is 1. Since the metal ball will move, it can be analyzed from the frequency domain. Figure 2 calculates the frequency spectrum at the position of the metal ball detected by the radar. The abscissa is the number of channels of the FFT, and the ordinate is the amplitude, from which the position of the metal ball can be obtained. Figure 3 shows the basic data of several elevation angles near the position of the metal ball, the abscissa is the azimuth, and the ordinate is the distance. Figures 4 to 7 respectively represent the comparison between the measured and theoretical values of reflectivity factors of metal balls detected by multi-volume scanning radars, as well as the measured differential reflectivity, correlation coefficient and differential propagation phase shift. The abscissa is volume The number of sweeps, the ordinates are the respective parameters. Through analysis, the error of radar measurement parameters can be known.

Claims (3)

1., based on a dual-polarization weather radar Calibration Method for on-fixed Metal Ball, it is characterized in that comprising following steps:
According to radar position, determine calibration place, record radar site and the longitude and latitude of calibration position;
According to the longitude and latitude obtained and radar station height, calculating Metal Ball relative to the possible orientation of radar, the elevation angle and distance, arranges the scanning elevation angle and the scan mode of radar when calibration state;
Utilize in calibration region equipment to rise Metal Ball, arrange high-precision GPS module bottom Metal Ball, control radar carries out work according to the scan mode preset simultaneously, the I/Q data of record radar and base data;
Analyze I/Q data and base data, find the Metal Ball target of radar detection, compare with theoretical value, calculate the error of measured value and theoretical value, according to error result, radar is revised.
2. a kind of dual-polarization weather radar Calibration Method based on on-fixed Metal Ball as claimed in claim 1, is characterized in that described scan mode is fan sweeping pattern.
3. a kind of dual-polarization weather radar Calibration Method based on on-fixed Metal Ball as claimed in claim 1 or 2, is characterized in that described rise Metal Ball equipment is unmanned plane or balloon or kite.
CN201510036477.XA 2015-01-20 2015-01-20 Dual-polarization weather radar calibration method based on non-fixed metal ball Pending CN104678369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510036477.XA CN104678369A (en) 2015-01-20 2015-01-20 Dual-polarization weather radar calibration method based on non-fixed metal ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510036477.XA CN104678369A (en) 2015-01-20 2015-01-20 Dual-polarization weather radar calibration method based on non-fixed metal ball

Publications (1)

Publication Number Publication Date
CN104678369A true CN104678369A (en) 2015-06-03

Family

ID=53313697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510036477.XA Pending CN104678369A (en) 2015-01-20 2015-01-20 Dual-polarization weather radar calibration method based on non-fixed metal ball

Country Status (1)

Country Link
CN (1) CN104678369A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772296A (en) * 2017-01-20 2017-05-31 南京大学 Meteorological radar echo intensity calibration device and method
CN107037415A (en) * 2017-06-22 2017-08-11 雷象科技(北京)有限公司 From record position radar calibration metal ball
CN107037414A (en) * 2017-06-22 2017-08-11 雷象科技(北京)有限公司 It is imaged positioning metal ball radar calibration method
CN107843884A (en) * 2017-09-13 2018-03-27 成都信息工程大学 The method for improving the Thunderstorm Weather early-warning and predicting degree of accuracy is observed based on dual polarization radar
CN107976657A (en) * 2016-10-25 2018-05-01 通用汽车环球科技运作有限责任公司 Radar calibration is carried out using the known global location of stationary objects
CN109270536A (en) * 2018-10-31 2019-01-25 安徽四创电子股份有限公司 A kind of signal processor of Doppler radar
CN109490858A (en) * 2018-11-06 2019-03-19 浙江大华技术股份有限公司 A kind of thunder ball sizing system and method
CN110068803A (en) * 2019-04-16 2019-07-30 北京遥感设备研究所 A kind of aerial bracketing device and method of radar equipment
CN110596666A (en) * 2019-11-04 2019-12-20 北京敏视达雷达有限公司 Deviation calibration method and device for radar differential reflectivity
CN111239741A (en) * 2020-01-21 2020-06-05 航天新气象科技有限公司 Phased array weather radar polarization control method and phased array weather radar system
CN111537965A (en) * 2020-04-28 2020-08-14 中国气象局气象探测中心 Weather radar calibration method and system based on unmanned aerial vehicle
CN112363129A (en) * 2020-11-03 2021-02-12 江苏省气象探测中心(江苏省(金坛)气象综合试验基地) Weather radar differential reflectivity factor parameter calibration method
CN113687324A (en) * 2021-10-26 2021-11-23 南京恩瑞特实业有限公司 Phased array weather radar calibration machine external verification system
CN114756045A (en) * 2022-05-18 2022-07-15 电子科技大学 Unmanned aerial vehicle control method for meteorological radar calibration
CN115061105A (en) * 2022-06-30 2022-09-16 广东纳睿雷达科技股份有限公司 Rapid calibration method and device for dual-polarization radar and storage medium
CN115356696A (en) * 2022-07-30 2022-11-18 中国气象局气象探测中心 Weather radar signal processing system algorithm calibration method and device
CN117419681A (en) * 2023-12-18 2024-01-19 华云敏视达雷达(北京)有限公司 Positioning processing method, system, storage medium and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288943A (en) * 2011-07-08 2011-12-21 西安电子科技大学 Single-channel SAR-GMTI (single-channel synthetic aperture radar and ground moving target indication) method based on two visual reality image processing
CN103323850A (en) * 2013-05-28 2013-09-25 芜湖航飞科技股份有限公司 Double-linear polarization Doppler weather radar system
CN103576702A (en) * 2013-11-22 2014-02-12 北京无线电测量研究所 Method for calibrating antenna angle of millimeter-wave weather radar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288943A (en) * 2011-07-08 2011-12-21 西安电子科技大学 Single-channel SAR-GMTI (single-channel synthetic aperture radar and ground moving target indication) method based on two visual reality image processing
CN103323850A (en) * 2013-05-28 2013-09-25 芜湖航飞科技股份有限公司 Double-linear polarization Doppler weather radar system
CN103576702A (en) * 2013-11-22 2014-02-12 北京无线电测量研究所 Method for calibrating antenna angle of millimeter-wave weather radar

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
刘君 等: "微波暗室低散射目标RCS测量方法", 《解放军理工大学学报(自然科学版)》 *
周自全: "飞行试验工程", 《飞行试验工程 *
姚海根 等: "《数字印刷质量检测与评价》", 30 April 2012, 印刷工业出版社 *
张振仟,李妙英: "双偏振多普勒天气雷达I/Q数据分析", 《第31届中国气象学会年会S1 气象雷达探测技术研究与应用》 *
文亮波: "低分辨雷达地面目标识别", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
王利华: "基于低分辨雷达的目标识别方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976657A (en) * 2016-10-25 2018-05-01 通用汽车环球科技运作有限责任公司 Radar calibration is carried out using the known global location of stationary objects
CN107976657B (en) * 2016-10-25 2021-08-13 通用汽车环球科技运作有限责任公司 Radar calibration using known global positioning of stationary objects
CN106772296A (en) * 2017-01-20 2017-05-31 南京大学 Meteorological radar echo intensity calibration device and method
CN106772296B (en) * 2017-01-20 2023-11-07 南京大学 Meteorological radar echo intensity calibration device and method
CN107037415A (en) * 2017-06-22 2017-08-11 雷象科技(北京)有限公司 From record position radar calibration metal ball
CN107037414A (en) * 2017-06-22 2017-08-11 雷象科技(北京)有限公司 It is imaged positioning metal ball radar calibration method
CN107037414B (en) * 2017-06-22 2019-10-25 雷象科技(北京)有限公司 Calibration method for imaging positioning metal ball radar
CN107843884A (en) * 2017-09-13 2018-03-27 成都信息工程大学 The method for improving the Thunderstorm Weather early-warning and predicting degree of accuracy is observed based on dual polarization radar
CN107843884B (en) * 2017-09-13 2021-09-14 成都信息工程大学 Method for improving accuracy of thunderstorm weather early warning forecast based on dual-polarization radar observation
CN109270536B (en) * 2018-10-31 2020-09-01 安徽四创电子股份有限公司 Signal processor of Doppler weather radar
CN109270536A (en) * 2018-10-31 2019-01-25 安徽四创电子股份有限公司 A kind of signal processor of Doppler radar
CN109490858A (en) * 2018-11-06 2019-03-19 浙江大华技术股份有限公司 A kind of thunder ball sizing system and method
CN109490858B (en) * 2018-11-06 2021-02-02 浙江大华技术股份有限公司 Rake ball calibration system and method
CN110068803A (en) * 2019-04-16 2019-07-30 北京遥感设备研究所 A kind of aerial bracketing device and method of radar equipment
CN110596666B (en) * 2019-11-04 2021-06-25 北京敏视达雷达有限公司 Deviation calibration method and device for radar differential reflectivity
CN110596666A (en) * 2019-11-04 2019-12-20 北京敏视达雷达有限公司 Deviation calibration method and device for radar differential reflectivity
CN111239741A (en) * 2020-01-21 2020-06-05 航天新气象科技有限公司 Phased array weather radar polarization control method and phased array weather radar system
CN111537965B (en) * 2020-04-28 2020-11-03 中国气象局气象探测中心 Weather radar calibration method and system based on unmanned aerial vehicle
CN111537965A (en) * 2020-04-28 2020-08-14 中国气象局气象探测中心 Weather radar calibration method and system based on unmanned aerial vehicle
CN112363129A (en) * 2020-11-03 2021-02-12 江苏省气象探测中心(江苏省(金坛)气象综合试验基地) Weather radar differential reflectivity factor parameter calibration method
CN113687324A (en) * 2021-10-26 2021-11-23 南京恩瑞特实业有限公司 Phased array weather radar calibration machine external verification system
CN114756045A (en) * 2022-05-18 2022-07-15 电子科技大学 Unmanned aerial vehicle control method for meteorological radar calibration
CN115061105A (en) * 2022-06-30 2022-09-16 广东纳睿雷达科技股份有限公司 Rapid calibration method and device for dual-polarization radar and storage medium
CN115356696A (en) * 2022-07-30 2022-11-18 中国气象局气象探测中心 Weather radar signal processing system algorithm calibration method and device
CN117419681A (en) * 2023-12-18 2024-01-19 华云敏视达雷达(北京)有限公司 Positioning processing method, system, storage medium and electronic equipment
CN117419681B (en) * 2023-12-18 2024-03-08 华云敏视达雷达(北京)有限公司 Positioning processing method, system, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
CN104678369A (en) Dual-polarization weather radar calibration method based on non-fixed metal ball
CN105866751B (en) The metal ball calibrating method of X-band solid-state DUAL POLARIZATION WEATHER RADAR
CN106405061B (en) A kind of wooden body internal abnormality lossless detection system based on radar wave
US7592948B2 (en) System and method for dual polarization radar with automatic built-in test equipment and calibration
CN106501793B (en) The device and method for calibrating plate calibration body and thz beam angle
CN102735697A (en) Method and apparatus for detecting deep soil humidity through microwave remote sensing
CN110887568B (en) Moon observation system
CN104360329A (en) Intensity calibrating method of all-digital array phased-array weather radar
CN112068133B (en) System simulation method for multimode microwave remote sensor scatterometer mode
CN110068803A (en) A kind of aerial bracketing device and method of radar equipment
CN205015473U (en) Online calibration device of dual -polarization weather radar ZDR
CN107192990B (en) Extrapolation surveys Radar Cross Section
CN103809175A (en) On-site rapid assessment system for scattering properties of invisible planes
CN104898101A (en) Ionosphere incoherent scatter radar coverage simulation method
CN109283525B (en) Terahertz radar scattering cross section test system and radar scattering cross section extraction method
CN104267440A (en) Common middle point (CMP) detection method used for ground penetrating radar (GPR)
CN103954945B (en) A kind of tellurometer survey radar gamut scaling method based on fibre delay line
CN104198985A (en) Single antenna direction-finding method
CN112881791A (en) Method for calculating transmitting power of unknown ground radiation source through pitch angle and azimuth angle
CN114966579A (en) Method and device for acquiring calibration parameters of radar system
CN114280547A (en) Radar maximum acting distance estimation method based on static test
CN106707251B (en) Answering machine power calibrating method and device
CN111190149B (en) External Calibration Method of C-band Polarization Meteorological Radar Based on Analog Calibration Volume
Kozintsev et al. Laser correlation method with adaptive choice of measuring base for on-the-fly measurements of wind velocity
RU103936U1 (en) METEOROLOGICAL RADAR STATION

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150603

WD01 Invention patent application deemed withdrawn after publication