CN104659146A - 基于ⅱ型能带匹配的共振隧穿二极管近红外探测器 - Google Patents

基于ⅱ型能带匹配的共振隧穿二极管近红外探测器 Download PDF

Info

Publication number
CN104659146A
CN104659146A CN201510098628.4A CN201510098628A CN104659146A CN 104659146 A CN104659146 A CN 104659146A CN 201510098628 A CN201510098628 A CN 201510098628A CN 104659146 A CN104659146 A CN 104659146A
Authority
CN
China
Prior art keywords
infrared detector
layer
type
coupling
resonance tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510098628.4A
Other languages
English (en)
Inventor
裴康明
倪海桥
詹锋
董宇
牛智川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201510098628.4A priority Critical patent/CN104659146A/zh
Publication of CN104659146A publication Critical patent/CN104659146A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于II型能带匹配的共振隧穿二极管近红外探测器,包括:一衬底;一发射极接触层,其制作在衬底上;一发射区,其制作在发射极接触层上,发射极接触层另一侧形成一台面;一隔离层,其制作在发射极上;一双势垒结构,其制作在隔离层上;一吸收层,其制作在双势垒层结构上;一集电区,其制作在吸收层上;一上电极,其制作在集电区上;一下电极,其制作在发射极接触层另一侧的台面上。本发明能够更好地影响双势垒结构的电势,进而增大光生电流,产生明显的可探测电信号。探测器在室温下具有很高的响应度和灵敏度。

Description

基于Ⅱ型能带匹配的共振隧穿二极管近红外探测器
技术领域
本发明涉及近红外探测器,特别是指一种基于II型能带匹配的共振隧穿二极管近红外探测器。
背景技术
共振隧穿二极管具有高频率、低电压、负阻、用少量器件完成多种功能等优点,是当今最为成熟的纳电子器件之一。共振隧穿二极管作为第一个集中研究的纳电子器件,与其他纳电子器件相比,其发展更早、更快、更成熟,更具有应用前景,是唯一能用常规集成电路技术进行设计和制造的器件,现在主要用于探测器、振荡器、存储器和光电开关等中,是量子耦合器件及其电路发展的一个重要标志。
在微电子时代,低价格、高速度、高密度和高可靠性一直是人们所追求的方向,这也是电子器件发展的基础与核心。随着电子器件的不断发展,提出了“更小,更快,更冷”的要求。但根据Moore定律,微电子器件在经过不断发展后,随着其尺寸的不断减小,最终会达到一个极限,届时将不得不放下先前迅猛发展的的势头,甚至会停顿下来。而这时,纳电子器件必将会取代微电子器件,标志着纳电子器件时代的到来。而共振隧穿二极管作为纳电子器件中的佼佼者,将会得到更多的关注与发展。
共振隧穿二极管近红外探测器主要通过光生载流子(空穴)堆积在势垒旁来改变双势垒单势阱的电势来影响电子隧穿势垒,从而获得更高的光电流。这在共振隧穿二极管电压电流曲线上主要表现为光致电流偏移(左偏)暗电流。如果能够实现将光生空穴最大化地堆积在双势垒单势阱旁(或内),那么就能很好地改变其电势,从而实现更高灵敏度的探测。传统的共振隧穿二极管所采用的材料的能带匹配主要是I型能带匹配,主要是通过将光生空穴堆积在势垒以及集电极中间,来实现隧穿电流的增加。现如今共振隧穿二极管探测器想要实现高灵敏度的光电探测主要的方法是在势垒旁或势垒内生长量子点,通过量子点捕获载流子(空穴)来改变双势垒单势阱的电势,从而提高光电探测的灵敏度。但是在势垒旁或者势垒内生长量子点将会提高外延生长的难度,使得重复性难以得到保证。在势垒旁或者势垒内生长量子点,由于其所生长的量子点在形貌、尺寸等方面无法保证均匀,使得共振隧穿二极管性能稳定性无法保证。其次在外延层上生长量子点,由于晶格失配,可能将造成量子点后续外延层界面粗糙,这将会恶化共振隧穿二极管光电性能。最后,由于量子点对光生载流子的捕获,在量子点释放这些载流子时,将会产生很严重的后脉冲,使得探测噪声加大,给探测带来了难度。
上述所提到的通过在I型能带匹配的双势垒单势阱旁(或内)生长量子点是提高共振隧穿二极管探测器灵敏度的主要方法之一,但由于其本身所存在的种种不足在短时间内也无法完美解决,这也制约了高灵敏度共振隧穿探测器的发展。如何改变空穴的堆积来影响电子隧穿这是共振隧穿二极管光电探测的重点也是难点,也是人们研究所聚焦的一个地方。
发明内容
为了克服上述现有技术的不足,本发明提出了一种基于II型能带匹配的共振隧穿二极管近红外探测器,该探测器核心为基于II型能带匹配的双势垒单势阱结构的共振隧穿二极管。通过该结构,能够更好地堆积光生空穴以及通过光生空穴来影响双势垒单势阱的电势,从而提高光生电流,提高探测器的响应度和灵敏度。
本发明提供一种基于II型能带匹配的共振隧穿二极管近红外探测器,包括:
一衬底;
一发射极接触层,其制作在衬底上;
一发射区,其制作在发射极接触层上,发射极接触层另一侧形成一台面;
一隔离层,其制作在发射极上;
一双势垒结构,其制作在隔离层上;
一吸收层,其制作在双势垒层结构上;
一集电区,其制作在吸收层上;
一上电极,其制作在集电区上;
一下电极,其制作在发射极接触层另一侧的台面上。
从上述技术方案可以看出,本发明具有以下有益效果:
(1)通过将I型能带匹配的双势垒单势阱结构变更为II型能带匹配的双势垒结构,能够提高堆积的空穴对双势垒结构电势的影响;
(2)通过外延生长一层较厚的吸收层提高了探测器的响应度;
(3)探测器能够在室温下有很高的响应度和灵敏度;
(4)共振隧穿二极管外延层无需生长量子点等外延结构,结构简单,异质界面平整,在工艺的重复性、可靠性以及探测性能上都有良好的保障;
(5)本发明的主体结构为共振隧穿二极管,这是电路中的一种常用元件,因此本发明便于与其它光电子器件集成。
附图说明
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明,其中:
图1是本发明的结构示意图;
图2是现有结构的能带示意图;
图3是本发明结构的能带示意图。
具体实施方式
请参阅图1所示,本发明提供一种基于II型能带匹配的共振隧穿二极管近红外探测器,包括:
一衬底1,所述衬底1的材料为N+型InP,主要作用是作为外延层生长的基底;
一发射极接触层2,其制作在衬底1上,所述发射极接触层2的材料为In0.53Ga0.47As,掺杂浓度为n型2×1018-5×1018cm-3,厚度为400-600nm,主要作用是形成低电阻的发射极欧姆接触;
一发射区3,其制作在发射极接触层2上,发射极接触层2另一侧形成一台面21,所述发射极接触层的材料为In0.53Ga0.47As,掺杂浓度为n型1×1018-5×1018cm-3,厚度为200-400nm,主要作用是形成共振隧穿二极管的发射区,使发射区的费米能级位于导带能级之上,以提供电子源;
一隔离层4,其制作在发射区3上,所述隔离层4的材料为In0.53Ga0.47As,厚度为5-9nm,主要作用是为了阻挡发射区3的杂质向双势垒结构5扩散;
一双势垒结构5,其制作在隔离层4上,所述双势垒结构5包括一下势垒层51、一势阱层52和一上势垒层53,该下势垒层51和上势垒层53的材料为AlGaSb或GaAsSb,厚度分别为5-10ML,该势阱层52的材料为In0.53Ga0.47As,厚度为4-10nm,双势垒结构5主要作用是形成共振隧穿的条件;
一吸收层6,其制作在双势垒层结构5上,所述吸收层6的材料为In0.53Ga0.47As或InGaNAs,厚度为500-700nm,主要作用是吸收光源,产生电子-空穴对;
一集电区7,其制作在吸收层6上,所述集电区7的材料为n型In0.53Ga0.47As,掺杂浓度为2×1018-5×1018cm-3,厚度为80-120nm,主要作用是形成低电阻的发射极欧姆接触;
一上电极8,其制作在集电区7上,所述上电极8的材料为TiPtAu,该上电极8的形状为环形,主要作用是形成电极,便于与外电路连接;
一下电极9,其制作在发射极接触层2另一侧形成一台面21,所述下电极9的材料为TiPtAu,主要作用是形成电极,便于与外电路连接。
请参阅图2所示,现有结构的能带匹配为I型能带匹配。吸收层6产生的光生空穴在电场作用下向发射区3漂移,主要堆积于上势垒层53靠近吸收层6一侧。
请参阅图3所示,本发明结构的能带匹配为II型能带匹配。吸收层6产生的光生空穴在电场作用下向发射区3漂移,主要堆积于上势垒层53和下势垒层51。
需要说明的是,附图中未绘示或描述的实现方式,为所属技术领域中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。此外,以下实施例中提到的方向用语,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。
在本发明的一个示例性实施例中,提供了一种采用分子束外延技术,根据图1所示结构,制备II型能带匹配的共振隧穿近红外探测器的方法。
首先在N+型InP衬底1上外延生长厚度为500nm、掺杂浓度为5×1018cm-3的n型In0.53Ga0.47As作为发射极接触层2,形成低电阻的发射极欧姆接触;接着外延生长厚度为300nm、掺杂浓度为2×1018cm-3的n型In0.53Ga0.47As作为发射区3,形成共振隧穿二极管的发射区,使发射区的费米能级位于导带能级之上,以提供电子源;然后外延生长厚度为7nm的In0.53Ga0.47As隔离层4,阻挡发射区3的杂质向双势垒结构5扩散;接下来依次外延生长厚度为8ML AlGaSb下势垒层51、厚度为8nm In0.53Ga0.47As势阱层52、厚度为8ML AlGaSb上势垒层53,构成II型能带匹配的双势垒结构5,形成共振隧穿的条件;然后外延生长厚度为600nm的In0.53Ga0.47As吸收层6,吸收层6吸收光后,产生电子-空穴对;接着外延生长厚度为100nm、掺杂浓度为2×1018-5×1018cm-3的n型In0.53Ga0.47As作为集电区7,形成低电阻的发射极欧姆接触;最后通过光刻后溅射剥离TiPtAu形成环形上电极8和下电极9,便于与外电路连接。通过上述材料外延以及工艺制备,可获得一个II型能带匹配的共振隧穿二极管近红外探测器。
本发明提供的基于II型能带匹配的共振隧穿二极管近红外探测器的外延结构能带示意图3所示,探测器工作时加正向偏压,近红外光从集电区7入射后,在吸收层6被吸收并产生光生电子空穴对。光生电子在电场作用下向集电区7方向漂移,光生空穴在电场作用下向发射区3方向漂移。但与图2所示的现有结构I型能带匹配的双势垒结构5不同,传统I型能带匹配的双势垒结构5主要是将光生空穴堆积于上势垒层53靠近吸收层6一侧。如图3所示,II型能带匹配的双势垒结构5中,光生空穴在电场作用下,向发射区3漂移过程中主要被上势垒层53和下势垒层51捕获,造成光生空穴的堆积,这种形式的空穴堆积能够发挥它的空间距离优势,在空间距离上使得空穴离双势垒结构5更近,能更大地改变双势垒结构5的电势,增大光生电流,使探测器在室温下具有很高的响应度和灵敏度。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于II型能带匹配的共振隧穿二极管近红外探测器,包括:
一衬底;
一发射极接触层,其制作在衬底上;
一发射区,其制作在发射极接触层上,发射极接触层另一侧形成一台面;
一隔离层,其制作在发射极上;
一双势垒结构,其制作在隔离层上;
一吸收层,其制作在双势垒层结构上;
一集电区,其制作在吸收层上;
一上电极,其制作在集电区上;
一下电极,其制作在发射极接触层另一侧的台面上。
2.如权利要求1所述的基于II型能带匹配的共振隧穿二极管近红外探测器,其中衬底的材料为N+型InP。
3.如权利要求1所述的基于II型能带匹配的共振隧穿二极管近红外探测器,其中发射极接触层的材料为In0.53Ga0.47As,掺杂浓度为n型2×1018-5×1018cm-3,厚度为400-600nm。
4.如权利要求1所述的基于II型能带匹配的共振隧穿二极管近红外探测器,其中发射区的材料为In0.53Ga0.47As,掺杂浓度为n型1×1018-5×1018cm-3,厚度为200-400nm。
5.如权利要求1所述的基于II型能带匹配的共振隧穿二极管近红外探测器,其中隔离层的材料为In0.53Ga0.47As,厚度为5-9nm。
6.如权利要求1所述的基于II型能带匹配的共振隧穿二极管近红外探测器,其中双势垒结构包括一下势垒层、一势阱层和一上势垒层,该下势垒层和上势垒层的材料为AlGaSb或GaAsSb,厚度分别为510ML,该势阱层的材料为In0.53Ga0.47As,厚度为410nm。
7.如权利要求1所述的基于II型能带匹配的共振隧穿二极管近红外探测器,其中吸收层的材料为InGaAs或InGaNAs,厚度为500700nm。
8.如权利要求1所述的基于II型能带匹配的共振隧穿二极管近红外探测器,其中集电区的材料为n型In0.53Ga0.47As,掺杂浓度为n型2×10185×1018cm-3,厚度为80120nm。
9.如权利要求1所述的基于II型能带匹配的共振隧穿二极管近红外探测器,其中上电极和下电极的材料为TiPtAu,该上电极的形状为环形。
CN201510098628.4A 2015-03-06 2015-03-06 基于ⅱ型能带匹配的共振隧穿二极管近红外探测器 Pending CN104659146A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510098628.4A CN104659146A (zh) 2015-03-06 2015-03-06 基于ⅱ型能带匹配的共振隧穿二极管近红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510098628.4A CN104659146A (zh) 2015-03-06 2015-03-06 基于ⅱ型能带匹配的共振隧穿二极管近红外探测器

Publications (1)

Publication Number Publication Date
CN104659146A true CN104659146A (zh) 2015-05-27

Family

ID=53250054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510098628.4A Pending CN104659146A (zh) 2015-03-06 2015-03-06 基于ⅱ型能带匹配的共振隧穿二极管近红外探测器

Country Status (1)

Country Link
CN (1) CN104659146A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477717A (zh) * 2020-04-26 2020-07-31 中国科学院半导体研究所 自制冷型锑化物超晶格红外探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121370A (ja) * 1988-10-29 1990-05-09 Sumitomo Electric Ind Ltd 光検出器
US5489786A (en) * 1993-03-22 1996-02-06 Hughes Aircraft Company Current-controlled resonant tunneling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121370A (ja) * 1988-10-29 1990-05-09 Sumitomo Electric Ind Ltd 光検出器
US5489786A (en) * 1993-03-22 1996-02-06 Hughes Aircraft Company Current-controlled resonant tunneling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477717A (zh) * 2020-04-26 2020-07-31 中国科学院半导体研究所 自制冷型锑化物超晶格红外探测器及其制备方法
CN111477717B (zh) * 2020-04-26 2022-02-11 中国科学院半导体研究所 自制冷型锑化物超晶格红外探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN104659145B (zh) 低暗电流的共振隧穿二极管高灵敏度探测器
CN103545398B (zh) 基区渐变的单向载流子传输的双异质结光敏晶体管探测器
Pandey et al. High-performance self-powered perovskite photodetector with a rapid photoconductive response
CN105679857A (zh) 一种基于硅量子点/石墨烯/硅异质结构的光电传感器
CN105283964B (zh) 高速光探测器
CN102332456A (zh) 光探测器集成器件及制备方法
CN105140330A (zh) 一种低功耗、零偏压单行载流子光电探测器
CN104362198B (zh) 透明电极栅控横向pin蓝紫光探测器及其制备方法
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN113540273B (zh) 一种高速高增益的雪崩光电探测器及制备方法
CN107403848A (zh) 一种背照式级联倍增雪崩光电二极管
CN105957908A (zh) 倍增区控制的雪崩光电二极管及其制造方法
CN107452820A (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
CN104659146A (zh) 基于ⅱ型能带匹配的共振隧穿二极管近红外探测器
CN105244407B (zh) 共振隧穿二极管近红外探测器
Suhara et al. Analysis of terahertz zero bias detectors by using a triple-barrier resonant tunneling diode integrated with a self-complementary bow-tie antenna
CN103545399B (zh) 行波电极渐变耦合脊波导InP双异质结光敏晶体管
CN108305907B (zh) 一种新型同质结pin紫外探测器
CN101237003A (zh) 用于微弱光探测的量子点共振隧穿二极管及探测方法
CN107240616B (zh) 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
CN209675319U (zh) 一种氧化镓mis结构紫外探测器
Akeyoshi et al. An optoelectronic logic gate monolithically integrating resonant tunneling diodes and a uni-traveling-carrier photodiode
CN109801993B (zh) 一种具有强制p型表面态的InAs/GaSb(Bi)二类超晶格光探测器
CN207165584U (zh) 一种背照式级联倍增雪崩光电二极管
Shi et al. Novel back-to-back uni-traveling-carrier photodiodes with high responsivity and wide bandwidth

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150527

WD01 Invention patent application deemed withdrawn after publication