CN104650889A - 钐掺杂硫代锑酸盐发光材料、制备方法及其应用 - Google Patents

钐掺杂硫代锑酸盐发光材料、制备方法及其应用 Download PDF

Info

Publication number
CN104650889A
CN104650889A CN201310578481.XA CN201310578481A CN104650889A CN 104650889 A CN104650889 A CN 104650889A CN 201310578481 A CN201310578481 A CN 201310578481A CN 104650889 A CN104650889 A CN 104650889A
Authority
CN
China
Prior art keywords
thioantimoniate
xsm
light
samarium doping
emitting film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310578481.XA
Other languages
English (en)
Inventor
周明杰
陈吉星
王平
钟铁涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Engineering Co Ltd
Original Assignee
Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceans King Lighting Science and Technology Co Ltd, Shenzhen Oceans King Lighting Engineering Co Ltd filed Critical Oceans King Lighting Science and Technology Co Ltd
Priority to CN201310578481.XA priority Critical patent/CN104650889A/zh
Publication of CN104650889A publication Critical patent/CN104650889A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

一种钐掺杂硫代锑酸盐发光材料,其化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。该钐掺杂硫代锑酸盐发光材料制成的发光薄膜的电致发光光谱(EL)中,在638nm和727nm波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。本发明还提供该钐掺杂硫代锑酸盐发光材料的制备方法及其应用。

Description

钐掺杂硫代锑酸盐发光材料、制备方法及其应用
【技术领域】
本发明涉及一种钐掺杂硫代锑酸盐发光材料、其制备方法、钐掺杂硫代锑酸盐发光薄膜、其制备方法、薄膜电致发光器件及其制备方法。
【背景技术】
薄膜电致发光显示器(TFELD)由于其主动发光、全固体化、耐冲击、反应快、视角大、适用温度宽、工序简单等优点,已引起了广泛的关注,且发展迅速。目前,研究彩色及至全色TFELD,开发多波段发光的材料,是该课题的发展方向。但是,可应用于薄膜电致发光显示器的钐掺杂硫代锑酸盐发光材料,仍未见报道。
【发明内容】
基于此,有必要提供一种可应用于薄膜电致发光器件的钐掺杂硫代锑酸盐发光材料、其制备方法、钐掺杂硫代锑酸盐发光薄膜、其制备方法、使用该钐掺杂硫代锑酸盐发光材料的薄膜电致发光器件及其制备方法。
一种钐掺杂硫代锑酸盐发光材料,其化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
一种钐掺杂硫代锑酸盐发光材料的制备方法,包括以下步骤:
根据Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种;及
将混合均匀的粉体在900℃~1300℃下烧结0.5小时~5小时即得到化学式为Me2-xSb2S7:xSm3+的钐掺杂硫代锑酸盐发光材料,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
一种钐掺杂硫代锑酸盐发光薄膜,该钐掺杂硫代锑酸盐发光薄膜的材料的化学通式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
一种钐掺杂硫代锑酸盐发光薄膜的制备方法,包括以下步骤:
根据Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀在900℃~1300℃下烧结0.5小时~5小时制成靶材,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种;
将所述靶材以及衬底装入脉冲激光沉积镀膜设备的真空腔体,并将真空腔体的真空度设置为1.0×10-3Pa~1.0×10-5Pa;及
调整脉冲激光沉积镀膜工艺参数为:基靶间距为45mm~95mm,脉冲激光沉积压强0.2Pa~4Pa,辅助气体的流量为10sccm~40sccm,衬底温度为250℃~750℃,激光能量为80mJ~300mJ,接着进行制膜,得到化学式为Me2-xSb2S7:xSm3+的钐掺杂硫代锑酸盐发光薄膜,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
所述真空腔体的真空度为5.0×10-4Pa,基靶间距为60mm,脉冲激光沉积压强为2.0Pa,辅助气体为氩气,辅助气体的流量为20sccm,衬底温度为500℃,激光能量为150mJ。
一种薄膜电致发光器件,该薄膜电致发光器件包括依次层叠的衬底、阳极层、发光层以及阴极层,所述发光层的材料为钐掺杂硫代锑酸盐发光材料,该钐掺杂硫代锑酸盐发光材料的化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
一种薄膜电致发光器件的制备方法,包括以下步骤:
提供具有阳极的衬底;
在所述阳极上形成发光层,所述发光层的材料为钐掺杂硫代锑酸盐发光材料,该钐掺杂硫代锑酸盐发光材料的化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种;
在所述发光层上形成阴极。
所述发光层的制备包括以下步骤:
根据Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀在900℃~1300℃下烧结0.5小时~5小时制成靶材,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种;
将所述靶材以及所述衬底装入脉冲激光沉积镀膜设备的真空腔体,并将真空腔体的真空度设置为1.0×10-3Pa~1.0×10-5Pa;
调整脉冲激光沉积镀膜工艺参数为:基靶间距为45mm~95mm,脉冲激光沉积压强0.2Pa~4Pa,辅助气体的流量为10sccm~340sccm,衬底温度为250℃~750℃,激光能量为80mJ~300mJ,接着进行制膜,得到化学式为Me2-xSb2S7:xSm3+的钐掺杂硫代锑酸盐发光薄膜,在所述阳极上形成发光层。
上述钐掺杂硫代锑酸盐发光材料(Me2-xSb2S7:xSm3+)制成的发光薄膜的电致发光光谱(EL)中,在638nm和727nm波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。
【附图说明】
图1为一实施方式的薄膜电致发光器件的结构示意图;
图2为实施例1制备的钐掺杂硫代锑酸盐发光薄膜的电致发光谱图;
图3为实施例1制备的钐掺杂硫代锑酸盐发光薄膜的XRD图;
图4是实施例1制备的薄膜电致发光器件的电压与电流密度和电压与亮度之间的关系曲线图。
【具体实施方式】
下面结合附图和具体实施例对钐掺杂硫代锑酸盐发光材料、其制备方法、钐掺杂硫代锑酸盐发光薄膜、其制备方法、薄膜电致发光器件及其制备方法进一步阐明。
一实施方式的钐掺杂硫代锑酸盐发光材料,其化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
优选的,x为0.03。
该钐掺杂硫代锑酸盐发光材料中Me2-xSb2S7是基质,Sm3+离子是激活元素。该钐掺杂硫代锑酸盐发光材料制成的发光薄膜的电致发光光谱(EL)中,在638nm和727nm波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。
上述钐掺杂硫代锑酸盐发光材料的制备方法,包括以下步骤:
步骤S11、根据Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
该步骤中,优选的,x为0.03。
步骤S12、将混合均的粉体在900℃~1300℃下烧结0.5小时~5小时即可得到钐掺杂硫代锑酸盐发光材料,其化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
该步骤中,优选的在1250℃下烧结3小时。
一实施方式的钐掺杂硫代锑酸盐发光薄膜,该钐掺杂硫代锑酸盐发光薄膜的材料的化学通式为Me2-xSb2S7:xSm3+的钐掺杂硫代锑酸盐发光材料,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种
优选的,x为0.03。
上述钐掺杂硫代锑酸盐发光薄膜的制备方法,包括以下步骤:
步骤S21、按Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀在900℃~1300℃下烧结0.5小时~5小时制成靶材,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
该步骤中,优选的,x为0.03,在1250℃下烧结3小时成直径为50mm,厚度为2mm的陶瓷靶材。
步骤S22、将步骤S21中得到的靶材以及衬底装入脉冲激光沉积镀膜设备的真空腔体,并将真空腔体的真空度设置为1.0×10-3Pa~1.0×10-5Pa。
该步骤中,优选的,真空度为5×10-4Pa。
步骤S23、调整脉冲激光沉积镀膜工艺参数为:基靶间距为45mm~95mm,脉冲激光沉积压强0.2Pa~4Pa,辅助气体的流量为10sccm~40sccm,衬底温度为250℃~750℃;激光能量为80mJ~300mJ,接着进行制膜,得到化学式为Me2-xSb2S7:xSm3+的钐掺杂硫代锑酸盐发光薄膜,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
该步骤中,优选的基靶间距为60mm,脉冲激光沉积压强3Pa,辅助气体为氧气,辅助气体的流量为20sccm,衬底温度为500℃,激光能量为150mJ。
请参阅图1,一实施方式的薄膜电致发光器件,该薄膜电致发光器件包括依次层叠的衬底1、阳极2、发光层3以及阴极4。
衬底1为玻璃衬底。阳极2为形成于玻璃衬底上的氧化铟锡(ITO)。发光层3的材料为钐掺杂硫代锑酸盐发光材料,该钐掺杂硫代锑酸盐发光材料的化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。阴极4的材质为银(Ag)。
上述薄膜电致发光器件的制备方法,包括以下步骤:
步骤S31、提供具有阳极2的衬底1。
本实施方式中,衬底1为玻璃衬底,阳极2为形成于玻璃衬底上的氧化铟锡(ITO)。具有阳极2的衬底1先后用丙酮、无水乙醇和去离子水超声清洗并用对其进行氧等离子处理。
步骤S32、在阳极2上形成发光层3,发光层3的材料为钐掺杂硫代锑酸盐发光材料,该钐掺杂硫代锑酸盐发光材料的化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
本实施方式中,发光层3由以下步骤制得:
首先,将Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
该步骤中,优选的,x为0.03,在1250℃下烧结3小时成直径为50mm,厚度为2mm的陶瓷靶材。
其次,将靶材以及衬底装入脉冲激光沉积镀膜设备的真空腔体,并将真空腔体的真空度设置为1.0×10-3Pa~1.0×10-5Pa。
该步骤中,优选的,真空度为5×10-4Pa。
然后,调整脉冲激光沉积镀膜工艺参数为:基靶间距为45mm~95mm,脉冲激光沉积压强0.2Pa~4Pa,辅助气体的流量为10sccm~40sccm,衬底温度为250℃~750℃,激光能量为80mJ~300mJ,接着进行制膜,在阳极2上形成发光层3。
该步骤中,优选的基靶间距为60mm,脉冲激光沉积压强3Pa,辅助气体为氧气,辅助气体的流量为20sccm,衬底温度为500℃,激光能量为150mJ。
步骤S33、在发光层3上形成阴极4。
本实施方式中,阴极4的材料为银(Ag),由蒸镀形成。
下面为具体实施例。
实施例1
选用纯度为99.99%的粉体,将MgS,Sb2S5和Sm2S3粉体按照摩尔数为1.97mmol,1mmol和0.015mmol,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,辅助气体氧气的流量为20sccm,压强调节为3.0Pa,衬底温度为500℃,激光能量100mJ。得到的样品化学式为Mg1.97Sb2S7∶0.03Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
本实施例中得到的钐掺杂硫代锑酸盐发光薄膜的化学通式为Mg1.97Sb2S7∶0.03Sm3+,其中Mg1.97Sb2S7是基质,Sm3+是激活元素。
请参阅图2,图2所示为得到的钐掺杂硫代锑酸盐发光薄膜的电致发光谱(EL)。由图2可以看出,电致发光谱中,在638nm和727nm波长区都有很强的发光峰,能够应用于薄膜电致发光显示器中。
请参阅图3,图3为实施例1制备的钐掺杂硫代锑酸盐发光薄膜的XRD曲线,测试对照标准PDF卡片。从图3中可以看出,所示的衍射峰都是硫代锑酸盐的结晶峰,没有出现掺杂元素以及其它杂质的衍射峰,证明钐是进入了硫代锑酸盐的晶格,没有出现分相。
请参阅图4,图4是实施例1制备的薄膜电致发光器件的电压与电流密度和电压与亮度之间的关系曲线图,曲线1是电压与电流密度关系曲线,可看出该器件从电压5.0V开始发光,曲线2是电压与亮度关系曲线,可以看出该器件的最大亮度为88cd/m2,表明器件具有良好的发光特性。
实施例2
选用纯度为99.99%的粉体,将MgS,Sb2S5和Sm2S3粉体按照摩尔数为1.99mmol,1mmol和0.005mmol,经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,辅助气体氧气的流量为10sccm,压强调节为0.5Pa,衬底温度为250℃,激光能量80mJ。得到的样品的化学式为Mg1.99Sb2S7∶0.01Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例3
选用纯度为99.99%的粉体,将MgS,Sb2S5和Sm2S3粉体按照摩尔数为1.95mmol,1mmol和0.025mmol,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,辅助气体氧气的流量为40sccm,压强调节为5.0Pa,衬底温度为750℃,激光能量300mJ。得到的样品的化学式为Mg1.95Sb2S7∶0.05Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例4
选用纯度为99.99%的粉体,将CaS,Sb2S5和Sm2S3粉体按照摩尔数为1.97mmol,1mmol和0.015mmol,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,辅助气体氧气的流量为20sccm,压强调节为3.0Pa,衬底温度为500℃,激光能量150mJ。得到的样品的化学式为Ca1.97Sb2S7∶0.03Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例5
选用纯度为99.99%的粉体,将CaS,Sb2S5和Sm2S3粉体按照摩尔数为1.99mmol,1mmol和0.005mmol,经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,辅助气体氧气的流量为10sccm,压强调节为0.5Pa,衬底温度为250℃,激光能量80mJ。得到的样品的化学式为Ca1.99Sb2S7∶0.01Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例6
选用纯度为99.99%的粉体,将CaS,Sb2S5和Sm2S3粉体按照摩尔数为1.95mmol,1mmol和0.025mmol,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,辅助气体氧气的流量为40sccm,压强调节为5.0Pa,衬底温度为750℃,激光能量300mJ。得到的样品的化学式为Ca1.95Sb2S7∶0.05Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例4
选用纯度为99.99%的粉体,将CaS,Sb2S5和Sm2S3粉体按照摩尔数为1.97mmol,1mmol和0.015mmol,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,辅助气体氧气的流量为20sccm,压强调节为3.0Pa,衬底温度为500℃,激光能量150mJ。得到的样品的化学式为Ca1.97Sb2S7∶0.03Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例5
选用纯度为99.99%的粉体,将CaS,Sb2S5和Sm2S3粉体按照摩尔数为1.99mmol,1mmol和0.005mmol,经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,辅助气体氧气的流量为10sccm,压强调节为0.5Pa,衬底温度为250℃,激光能量80mJ。得到的样品的化学式为Ca1.99Sb2S7∶0.01Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例6
选用纯度为99.99%的粉体,将CaS,Sb2S5和Sm2S3粉体按照摩尔数为1.95mmol,1mmol和0.025mmol,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,辅助气体氧气的流量为40sccm,压强调节为5.0Pa,衬底温度为750℃,激光能量300mJ。得到的样品的化学式为Ca1.95Sb2S7∶0.05Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例7
选用纯度为99.99%的粉体,将SrS,Sb2S5和Sm2S3粉体按照摩尔数为1.97mmol,1mmol和0.015mmol,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,辅助气体氧气的流量为20sccm,压强调节为3.0Pa,衬底温度为500℃,激光能量150mJ。得到的样品的化学式为Sr1.97Sb2S7∶0.03Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例8
选用纯度为99.99%的粉体,将SrS,Sb2S5和Sm2S3粉体按照摩尔数为1.99mmol,1mmol和0.005mmol,经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,辅助气体氧气的流量为10sccm,压强调节为0.5Pa,衬底温度为250℃,激光能量80mJ。得到的样品的化学式为Sr1.99Sb2S7∶0.01Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例9
选用纯度为99.99%的粉体,将SrS,Sb2S5和Sm2S3粉体按照摩尔数为1.95mmol,1mmol和0.025mmol,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,辅助气体氧气的流量为40sccm,压强调节为5.0Pa,衬底温度为750℃,激光能量300mJ。得到的样品的化学式为Sr1.95Sb2S7:0.05Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例10
选用纯度为99.99%的粉体,将BaS,Sb2S5和Sm2S3粉体按照摩尔数为1.97mmol,1mmol和0.015mmol,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,辅助气体氧气的流量为20sccm,压强调节为3.0Pa,衬底温度为500℃,激光能量150mJ。得到的样品的化学式为Ba1.97Sb2S7∶0.03Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例11
选用纯度为99.99%的粉体,将BaS,Sb2S5和Sm2S3粉体按照摩尔数为1.99mmol,1mmol和0.005mmol,经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,辅助气体氧气的流量为10sccm,压强调节为0.5Pa,衬底温度为250℃,激光能量80mJ。得到的样品的化学式为Ba1.99Sb2S7∶0.01Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例12
选用纯度为99.99%的粉体,将BaS,Sb2S5和Sm2S3粉体按照摩尔数为1.95mmol,1mmol和0.025mmol,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,辅助气体氧气的流量为40sccm,压强调节为5.0Pa,衬底温度为750℃,激光能量300mJ。得到的样品的化学式为Ba1.95Sb2S7∶0.05Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例13
选用纯度为99.99%的粉体,将ZnS,Sb2S5和Sm2S3粉体按照摩尔数为1.97mmol,1mmol和0.015mmol,经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,辅助气体氧气的流量为20sccm,压强调节为3.0Pa,衬底温度为500℃,激光能量150mJ。得到的样品的化学式为Ca1.97Sb2S7∶0.03Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例14
选用纯度为99.99%的粉体,将ZnS,Sb2S5和Sm2S3粉体按照摩尔数为1.99mmol,1mmol和0.005mmol,经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,辅助气体氧气的流量为10sccm,压强调节为0.5Pa,衬底温度为250℃,激光能量80mJ。得到的样品的化学式为Zn1.99Sb2S7∶0.01Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
实施例15
选用纯度为99.99%的粉体,将ZnS,Sb2S5和Sm2S3粉体按照摩尔数为1.95mmol,1mmol和0.025mmol,经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗带ITO的玻璃衬底,并用对其进行氧等离子处理,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,辅助气体氧气的流量为40sccm,压强调节为5.0Pa,衬底温度为750℃,激光能量300mJ。得到的样品的化学式为Zn1.95Sb2S7∶0.05Sm3+的发光薄膜,然后在发光薄膜上面蒸镀一层Ag,作为阴极。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

1.一种钐掺杂硫代锑酸盐发光材料,其特征在于:其化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
2.一种钐掺杂硫代锑酸盐发光材料的制备方法,其特征在于,包括以下步骤:
根据Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种;及
将混合均匀的粉体在900℃~1300℃下烧结0.5小时~5小时即得到化学式为Me2-xSb2S7:xSm3+的钐掺杂硫代锑酸盐发光材料。
3.一种钐掺杂硫代锑酸盐发光薄膜,其特征在于,该钐掺杂硫代锑酸盐发光薄膜的材料的化学通式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
4.一种钐掺杂硫代锑酸盐发光薄膜的制备方法,其特征在于,包括以下步骤:
根据Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀在900℃~1300℃下烧结0.5小时~5小时制成靶材,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种;
将所述靶材以及衬底装入脉冲激光沉积镀膜设备的真空腔体,并将真空腔体的真空度设置为1.0×10-3Pa~1.0×10-5Pa;及
调整脉冲激光沉积镀膜工艺参数为:基靶间距为45mm~95mm,脉冲激光沉积压强0.2Pa~4Pa,辅助气体的流量为10sccm~40sccm,衬底温度为250℃~750℃,激光能量为80mJ~300mJ,接着进行制膜,得到化学式为Me2-xSb2S7:xSm3+的钐掺杂硫代锑酸盐发光薄膜,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
5.根据权利要求4所述的钐掺杂硫代锑酸盐发光薄膜的制备方法,其特征在于,所述真空腔体的真空度为5.0×10-4Pa,基靶间距为60mm,脉冲激光沉积压强为2.0Pa,辅助气体为氧气,辅助气体的流量为20sccm,衬底温度为500℃,激光能量为150mJ。
6.一种薄膜电致发光器件,该薄膜电致发光器件包括依次层叠的衬底、阳极层、发光层以及阴极层,其特征在于,所述发光层的材料为钐掺杂硫代锑酸盐发光材料,该钐掺杂硫代锑酸盐发光材料的化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种。
7.一种薄膜电致发光器件的制备方法,其特征在于,包括以下步骤:
提供具有阳极的衬底;
在所述阳极上形成发光层,所述发光层的材料为钐掺杂硫代锑酸盐发光材料,该钐掺杂硫代锑酸盐发光材料的化学式为Me2-xSb2S7:xSm3+,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种;
在所述发光层上形成阴极。
8.根据权利要求7所述的薄膜电致发光器件的制备方法,其特征在于,所述发光层的制备包括以下步骤:
根据Me2-xSb2S7:xSm3+各元素的化学计量比称取MeS,Sb2S5和Sm2S3粉体并混合均匀在900℃~1300℃下烧结0.5小时~5小时制成靶材,其中,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种;
将所述靶材以及所述衬底装入脉冲激光沉积镀膜设备的真空腔体,并将真空腔体的真空度设置为1.0×10-3Pa~1.0×10-5Pa;
调整脉冲激光沉积镀膜工艺参数为:基靶间距为45mm~95mm,脉冲激光沉积压强0.2Pa~4Pa,辅助气体的流量为10sccm~40sccm,衬底温度为250℃~750℃,激光能量为80mJ~300mJ,接着进行制膜,得到化学式为Me2-xSb2S7:xSm3+的钐掺杂硫代锑酸盐发光薄膜,x为0.01~0.05,Me为镁元素,钙元素,锶元素,钡元素和锌元素中至少一种,在所述阳极上形成发光层。
9.根据权利要求8所述的薄膜电致发光器件的制备方法,其特征在于,所述x为0.03。
CN201310578481.XA 2013-11-18 2013-11-18 钐掺杂硫代锑酸盐发光材料、制备方法及其应用 Pending CN104650889A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310578481.XA CN104650889A (zh) 2013-11-18 2013-11-18 钐掺杂硫代锑酸盐发光材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310578481.XA CN104650889A (zh) 2013-11-18 2013-11-18 钐掺杂硫代锑酸盐发光材料、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN104650889A true CN104650889A (zh) 2015-05-27

Family

ID=53242548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310578481.XA Pending CN104650889A (zh) 2013-11-18 2013-11-18 钐掺杂硫代锑酸盐发光材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN104650889A (zh)

Similar Documents

Publication Publication Date Title
CN104673298A (zh) 钐掺杂碱土铌锌酸盐发光材料、制备方法及其应用
CN103805192A (zh) 钐掺杂稀土硼酸盐发光薄膜、制备方法及其应用
CN104449685A (zh) 铈掺杂碱土镓酸盐发光材料、制备方法及其应用
CN104449680A (zh) 氟铜双掺杂碱土硫化物发光材料、制备方法及其应用
CN104449684A (zh) 铕掺杂碱土铟酸盐发光材料、制备方法及其应用
CN104342158A (zh) 铕铒双掺杂硒化锌发光材料、制备方法及其应用
CN104673297A (zh) 铈铕共掺杂碱土铌锌酸盐发光材料、制备方法及其应用
CN104650889A (zh) 钐掺杂硫代锑酸盐发光材料、制备方法及其应用
CN104342142A (zh) 铈掺杂碱土砷酸盐发光材料、制备方法及其应用
CN102863956B (zh) 镨掺杂钛酸钡发光材料、制备方法及其应用
CN104650871A (zh) 钐掺杂硫代铌酸盐发光材料、制备方法及其应用
CN104650918A (zh) 铕铋共掺杂三族氟化钇发光材料、制备方法及其应用
CN104650890A (zh) 钐掺杂镓锑酸盐发光材料、制备方法及其应用
CN104673282A (zh) 锰铬共掺杂碱土锌酸盐发光材料、制备方法及其应用
CN103571477A (zh) 铕铋共掺杂三族钼酸盐发光材料、制备方法及其应用
CN104342144A (zh) 铕掺杂碱稀土磷酸盐发光材料、制备方法及其应用
CN104119906A (zh) 锑铽共掺杂氮化硅发光材料、制备方法及其应用
CN104277831A (zh) 铕掺杂铝锗酸盐发光薄膜、制备方法及其应用
CN104449721A (zh) 铕镝共掺杂稀土磷铟酸盐发光薄膜、制备方法及其应用
CN104650869A (zh) 铕铽共掺杂铝铌酸盐发光材料、制备方法及其应用
CN103421510B (zh) 锑铽共掺杂碱土卤磷酸盐发光材料、制备方法及其应用
CN104178135A (zh) 铈掺杂碱土氮化硅发光材料、制备方法及其应用
CN104119864A (zh) 钐掺杂氮化硅发光材料、制备方法及其应用
CN103571468A (zh) 锑铽共掺杂硅铝氮氧化合物发光材料、制备方法及其应用
CN104140814A (zh) 铕掺杂硫代铝酸盐发光材料、制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150527

WD01 Invention patent application deemed withdrawn after publication