CN104649481B - 一种用于处理废乳化液的设备 - Google Patents

一种用于处理废乳化液的设备 Download PDF

Info

Publication number
CN104649481B
CN104649481B CN201510061317.0A CN201510061317A CN104649481B CN 104649481 B CN104649481 B CN 104649481B CN 201510061317 A CN201510061317 A CN 201510061317A CN 104649481 B CN104649481 B CN 104649481B
Authority
CN
China
Prior art keywords
oil
emulsified mixture
water
waste emulsified
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510061317.0A
Other languages
English (en)
Other versions
CN104649481A (zh
Inventor
吴盟盟
庄洪雷
童京华
战欣欣
倪丽琴
赵慧敏
李晓君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongguancun Zhizhen environmental protection Co., Ltd
Original Assignee
Beijing Sinorichen Environmental Protection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sinorichen Environmental Protection Co Ltd filed Critical Beijing Sinorichen Environmental Protection Co Ltd
Priority to CN201510061317.0A priority Critical patent/CN104649481B/zh
Publication of CN104649481A publication Critical patent/CN104649481A/zh
Application granted granted Critical
Publication of CN104649481B publication Critical patent/CN104649481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供了一种用于处理废乳化液的设备,其特征在于,包括:用于对待处理废乳化液进行除浮油处理的除浮油装置,去除漂浮于废乳化液液面上的浮油;用于对去除了浮油的废乳化液进行油水分离处理的油水分离装置,去除悬浮于废乳化液中的分散油;用于对油水分离处理后的废乳化液进行电化学处理的电化学处理装置,使其中的乳化油和溶解油絮凝;其中,利用通电的铝板和纳米陶瓷膜进行所述的电化学处理;其中,利用断电的纳米陶瓷膜对静置沉淀处理后粗处理乳化液进行超滤处理。经本发明的设备处理后,出水水质良好,可完全满足北京市《水污染物综合排放标准》DB11/307‑2013中排入公共污水处理系统的排放限制要求。

Description

一种用于处理废乳化液的设备
技术领域
本发明涉及一种工业废水处理设备,具体涉及一种处理废乳化液的设备,属于环境保护技术领域。
背景技术
机械制造及加工企业在生产过程中,金属切削加工使用大量乳化液作为润滑冷却之用,乳化液经过一段时间使用后,就会变成废水排出。此种废乳化液中主要含有机油和表面活性剂,是用乳化油根据需要用水稀释后再加入乳化剂配制而成的。同时,由于在金属切削过程中溶入大量金属颗粒。因此,该种废乳化液废水还含有大量金属颗粒污染物。
由于废乳化液高含油,导致其中的有机污染物浓度很高,一般高达2万~5万mg/L,无法满足排入公共污水处理系统的排放限值要求。因此,必须进行有效、必要的预处理,才可经过公共污水处理系统进行进一步处理。
对于废乳化液废水的处理,目前在世界范围内,仅有以下几种方法可以实现污染物的达标排放或转移处置,具体如下:(1)将废乳化液暂存,交由有危废处理资质的单位代行处置。该法较昂贵,不适于产量大的项目。(2)燃烧法。由于该法在燃烧过程中又产生大气污染物,而我国排放标准中对大气污染物的规定又非常严格。因此,燃烧法产生的废气问题很难达标排放。因此,该法亦不适宜。(3)化学处理和蒸发法:此种方法处理效果有限,且一次性投资和运行费用较高。
纳米陶瓷材料是新近发展起来的一种新型材料,其主体材料的过滤尺寸为纳米尺度,这大大改善了陶瓷材料的韧性、耐磨性和高温力学等性能,使其具有耐磨损、耐高温、耐油污等优良特性。近年来,纳米陶瓷已广泛应用于石油化工、冶金机械等领域。同时,纳米陶瓷还具有良好的电学性能,并已广泛用于电子技术、激光技术、通讯、生物、医学、导航、自动控制、精密加工、传感技术、计量检测等领域。
电化学法处理废水的方法最初应用于20世纪40年代。当时,由于一次性投资较大,电力紧张,成本较高,因而发展缓慢。到20世纪60年代,随着电力工业的发展,电化学法才逐渐被应用到废水处理过程中。近年来,由于电化学法设备占地面积小,操作灵活,排污量小,不仅可以处理无机污染物,也可以处理有机污染物,甚至连一些无法生物降解的有毒有机物与某些含重金属污水都可用此方法进行处理,再加上风力、核电等新兴发电技术的大力发展和推广应用带来的电能成本降低,使得电化学方法在治理废水方面的应用愈加广泛。
本发明充分吸收纳米陶瓷材料和电化学处理的优势,首次将两种技术耦合在一起,开发出可去除高含油、高COD(化学需氧量)的纳米陶瓷超滤及电化学氧化耦合的设备,其优点在于运行费用低,一次性投资省,处理效果高效,工艺简单易行,无二次污染。
发明内容
本发明的目的是针对现有技术对高含油、高COD废乳化液处理的存在的技术问题,提供一种用于处理废乳化液的设备,该方法运行成本低、去除效率高、操作简单,对处理后的出水水质可完全达到北京市《水污染物综合排放标准》。
为实现上述目的,本发明提供一种用于处理废乳化液的设备,包括:
除浮油装置,用于对待处理废乳化液进行除浮油处理,去除漂浮于废乳化液液面上的浮油;
油水分离装置,用于对去除了浮油的废乳化液进行油水分离处理,去除悬浮于废乳化液中的分散油;
电化学处理装置,用于对油水分离处理后的废乳化液进行电化学处理,使其中的乳化油和溶解油絮凝,得到去除了浮油、分散油并且其乳化油和溶解油已经絮凝的粗处理废乳化液;
其中,利用通电的铝板和纳米陶瓷膜进行所述的电化学处理;
其中,利用断电的纳米陶瓷膜对静置沉淀处理后粗处理乳化液进行超滤处理,得到不含浮油、分散油、乳化油和溶解油的清水。
其中,所述除浮油装置为细格过滤网。
特别是,所述细格过滤网的过滤精度为80-100μm。
尤其是,所述细格过滤网的材质为不锈钢。
废水中的高COD是由废水中的油类物质引起的。废水中的油类物质可分为浮油、分散油、乳化油和溶解油4种类型:(1)浮油,其粒径一般大于100μm,以连续相的形式漂浮于水面,形成油膜或油层。(2)分散油,以微小的油滴悬浮于水中,不稳定,静置一段时间后通常变成浮油,油滴的粒径一般介于10~100μm之间。(3)乳化油,当废水中含有某种表面活性剂时,油滴便成为稳定的乳化液分散于水中,油滴粒径极小,一般小于10μm,多数在0.1~2μm之间。(4)溶解油,以一种化学方式溶解的微粒分散油,油粒直径一般小于0.1μm。
经过除浮油装置处理后,废水中的浮油和粒径大于80-100μm的大颗粒物质基本被去除掉。
其中,所述油水分离装置包括:
隔油池,用于接收所述去除了浮油的废乳化液并对其进行油水分离处理;
配水管,用于将所述去除了浮油的废乳化液引入所述隔油池;
倾斜设置于所述隔油池中的多个油水分离管,废乳化液自下而上流经所述油水分离管,其中比重大于水的污染物向下聚集沉淀,比重小于水的分散油向上聚集浮至水面;
位于所述隔油池顶部的油聚结管,用于对浮至水面的分散油进行收集,实现废乳化液的油水分离。
特别是,所述配水管的出水口位于所述隔油池的底部。
尤其是,所述配水管的出水口位于所述油水分离管的下面。
特别是,所述油水分离管与水平面的夹角为55-65°。
尤其是,所述油水分离管为PVC聚氯乙烯管,直径:35mm;管壁厚:2mm;管长1000mm;比重:1.35-1.46。
特别是,所述多个油水分离管紧密排列于所述隔油池中。
尤其是,所述油聚结管为一横卧的不完整圆柱体,其沿竖直方向的断面为一四分之三圆,所述断面靠近进水一侧的半圆的上半部缺失,形成一面向水流方向的缺口。
特别是,所述油聚结管位于所述隔油池的顶部,其断面上的水平直径与所述废乳化液的水面相切。
经过油水分离管后,废乳化液中比重小于水的分散油向上聚集浮至水面,由于其位于水面上方,恰好被置于水面上的油聚结管收集,而由于油聚结管的另一侧高于进水一侧,固收集到的分散油不会从另一侧漏掉,保证了对分散油的收集完全。
其中,所述油水分离装置还包括竖直设置于所述隔油池内的挡板,所述挡板位于所述隔油池的进水口和所述油水分离管之间,用于使所述废乳化液经由配水管进入所述隔油池的底部。
特别是,所述油水分离装置还包括位于所述隔油池底部的排泥管,用于排出经过所述油水分离管分离后的废乳化液中比重大于水而聚集沉至底部的污染物。
其中,对去除了浮油的废乳化液进行油水分离处理包括:
过滤后的废乳化液通过配水管流入所述隔油池;
在自下而上流经倾斜的管路的过程中与所述油水分离管的管壁发生碰撞,其中比重大于水的污染物向下聚集沉淀,比重小于水的分散油向上聚集浮至水面;
通过所述油聚结管对浮至水面的分散油进行收集,实现废乳化液的油水分离。
其中,所述纳米陶瓷膜作为所述电化学处理装置的阴极连接电源负极。
特别是,所述铝板作为所述电化学处理装置的阳极连接电源正极。
尤其是,所述纳米陶瓷膜和所述铝板在所述电解池中交错排列。
其中,所述电化学处理装置还包括:
电解池,用于接收所述进行了油水分离处理后的废乳化液并对其进行电化学处理;
位于所述电解池底部的排泥装置,用于排出所述电解池中的污泥;
位于所述电解池上部的反洗装置,用于对所述纳米陶瓷膜进行清洗;
位于所述电解池侧壁下部的进水管,用于将油水分离后的乳化液引入所述电解池;
位于所述电解池与所述进水管相反一侧侧壁上部的出水管,用于排出所述清水。
其中,所述纳米陶瓷膜断电后即作为超滤装置对静置沉淀处理后粗处理乳化液进行超滤处理,得到不含浮油、分散油、乳化油和溶解油的清水。
特别是,在所述纳米陶瓷膜的顶端通过软管与所述出水管相连,所述静置沉淀处理后粗处理乳化液通过纳米陶瓷膜后经由软管进入所述出水管排出。
其中,所述纳米陶瓷膜的支撑体材质为α-Al2O3,膜层材质为ZrO2
特别是,所述纳米陶瓷膜的过滤精度为50-100nm,通道孔径为3.6mm,膜管外径为12mm,膜管长为1000mm,膜管使用范围:PH值0~14,温度≤180℃。
尤其是,所述铝板的成分为:Al>93.17%,Si:0.09%,Fe:0.19%,Cu:0.10%,Mn:0.79%,Mg:4.46%,Cr:0.085%,Ni<0.05%,Zn<0.2%,Ti<0.10%。
特别是,所述电解池的材质为SUS304不锈钢。
经过油水分离处理后的废乳化液经由进水管进入电解池,在电解池中经过通电的铝板和纳米陶瓷膜进行电化学处理,其中阳极溶解出金属离子,与水反应生产氢氧化物,吸附、凝聚乳化油和溶解油,然后聚集结块成为较大的颗粒的油泥;然后,其中比重大于水的油泥,经过静置沉淀处理后沉淀至电化学反应装置的底部,通过排泥装置去除;然后开启与所述出水管相连的抽吸泵,将电解池中的液体抽出,由于出水管与纳米陶瓷膜相连,出水必须经过纳米陶瓷膜排出,在此过程中,废乳化液中比重小于水的油泥细小颗粒团,被纳米陶瓷膜截留,出水即为经过超滤的不含浮油、分散油、乳化油和溶解油的清水。
本发明的工作过程和工作原理如下:
首先,待处理的废乳化液通过细格过滤网进行除浮油处理,细格过滤网的过滤精度为80-100μm,废乳化液中粒径大于80-100μm的浮油被去除。
接着,去除了浮油的废乳化液经由配水管进入油水分离装置,自下而上流经油水分离管,废乳化液与管壁发生碰撞,其中比重大于水的污染物向下聚集沉淀,通过排泥管排出;比重小于水的分散油向上聚集浮至水面;浮至水面的分散油通过油聚结管收集,因此废乳化液中粒径10~100μm之间的分散油基本被去除掉。
然后,经过油水分离处理后的废乳化液进入电化学处理装置,在电解池中经过通电的铝板和纳米陶瓷膜进行电化学处理,其中阳极溶解出金属离子,与水反应生产氢氧化物,吸附、凝聚乳化油和溶解油,然后聚集结块成为较大的颗粒的油泥;然后,其中比重大于水的油泥,经过静置沉淀处理后沉淀至电化学反应装置的底部,通过排泥装置去除;然后开启与所述出水管相连的抽吸泵,将电解池中的液体抽出,由于出水管与纳米陶瓷膜相连,出水必须经过纳米陶瓷膜排出,在此过程中,废乳化液中比重小于水的油泥细小颗粒团,被纳米陶瓷膜截留,出水即为经过超滤的不含浮油、分散油、乳化油和溶解油的清水。
当出水压力降低到进入所述电化学处理装置前的压力的30%左右时,即开启反洗装置对所述纳米陶瓷膜进行清洗。
本发明的优点和有益技术效果如下:
1、本发明用于处理废乳化液的设备,首次将电化学和纳米陶瓷超滤两种技术耦合在一起,利用电化学方法将废乳化液中的乳化油和溶解油絮凝,利用纳米陶瓷膜将絮凝后的产物过滤,对废乳化液中的油类物质具有很好的去除效果。
2、本发明用于处理废乳化液的设备采取分多个装置,逐级对废乳化液中的污染物进行去除,首先通过除浮油装置去除废乳化液中粒径较大的浮油,利用油水分离装置去除废乳化液中的分散油,最后经过电化学和纳米陶瓷膜超滤去除废乳化液中较微小的溶解油和乳化油,逐级处理既可以保证对废乳化液中的污染处理完全,又可以减轻后续处理的压力,增加陶瓷膜的使用寿命。
3、本发明对去除了浮油和分散油的废乳化液进行电化学处理,其中主要含有乳化油和溶解油,乳化油粒径小,易分散与水中,溶解油以化学方式溶解于废乳化液中,均不易过滤去除;经电化学处理后,废水中的乳化油和溶解油与阳极产生的氢氧化铝沉淀发生混凝、凝聚反应后生成矾花沉淀,变成SS类物质被絮凝,可通过进一步的过滤去除。
4、本发明的纳米陶瓷膜既是电化学处理装置的阴极,又是超滤处理的介质;在电化学处理中,纳米陶瓷膜通电,吸收电子,使废乳化液中的污染物絮凝,然后其作为超滤材料将絮凝后的污染物截留,纳米陶瓷膜可以截留分子量大于10000以上的油类物质,废乳化液中的浮油、分散油、乳化油和溶解油几乎全部被去除。
5、本发明采用纳米陶瓷膜进行超滤处理,纳米陶瓷超滤膜的使用寿命远远大于普通的有机膜材料,使用寿命可达10-15年。
6、本发明的设备对高含油、高COD废水处理效果好,适用于处理废乳化液的污染物浓度为:COD为20000-50000mg/L,石油类1000-3000mg/L,SS为500-2000mg/L。
6、本发明的设备对废乳化液的处理效果好,废乳化液中的初始COD浓度为40153-42683mg/L,经过本发明方法处理后,出水的COD浓度降低到334.1-381.4mg/L,去除率高达99.05-99.18%;废乳化液中的初始石油类浓度为2689-2987mg/L,经过本发明方法处理后,出水的石油类浓度降低到4.6-7.5mg/L,去除率高达99.72-99.83%;废乳化液中的初始SS浓度为1488-1657mg/L,经过本发明方法处理后,出水的SS浓度降低到27.4-34.2mg/L,去除率高达97.64-98.21%;出水水质可完全满足北京市《水污染物综合排放标准》DB11/307-2013中排入公共污水处理系统的排放限制要求。
附图说明
图1是本发明用于处理废乳化液的设备的结构示意图;
图2是本发明的电化学处理装置的剖视图;
图3是本发明的电化学处理装置的俯视图;
附图标记说明:1、除浮油装置;2、油水分离装置;3、电化学处理装置;4、隔油池;5、配水管;6、油水分离管;7、油聚结管;8、挡板;9、排泥管;10、电解池;11、反洗装置;12、排泥装置;13、进水管;14、出水管;15、抽吸泵;16、阳极;17、阴极;18、电源。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
本发明用于处理废乳化液的设备,包括:除浮油装置1,油水分离装置2,电化学处理装置3。
除浮油装置1为细格过滤网,其过滤精度为80-100μm。
油水分离装置2包括隔油池4,配水管5,油水分离管6,油聚结管7,挡板8和排泥管9。所述配水管5的出水口位于所述隔油池的底部,并位于所述油水分离管的下面。所述油水分离管6与水平面的夹角为55-65°,为PVC聚氯乙烯管,直径:35mm;管壁厚:2mm;管长:1000mm;比重:1.35-1.46。所述油聚结管位于所述隔油池的顶部,油聚结管尺寸:直径:80mm,管长520mm。所述排泥管9位于所述隔油池的底部。
所述电化学装置3包括电解池10,反洗装置11,排泥装置12,进水管13,出水管14,抽吸泵15,阳极16,阴极17和电源18。所述电解池10为SUS304不锈钢材质;所述反洗装置11位于所述电解池上部,用于对纳米陶瓷膜进行清洗;所述排泥装置12所述电解池10的底部,用于排出所述电解池中的污泥;所述进水管13位于所述电解池的侧壁下部,用于将油水分离后的乳化液引入所述电解池;所述出水管14位于所述电解池与所述进水管相反一侧的侧壁上部,用于排出所述清水;所述抽吸泵15与所述出水管相连,用于抽出所述清水;所述阳极16为铝板材质,其与电源18的正极相连;所述阴极17为纳米陶瓷膜,其与电源18的负极相连;所述阳极16与所述阴极17交错排列于所述电解池中,所述出水管的一端通过软管与所述纳米陶瓷膜相连,另一端连接所述抽吸泵;所述纳米陶瓷膜断电后即作为超滤材料,对所述经电化学和静置沉淀处理后的废乳化液进行超滤处理,制得清水。
首先,待处理的废乳化液通过除浮油装置1进行除浮油处理,其过滤精度为80-100μm,废乳化液中粒径大于80-100μm的浮油被去除。
接着,去除了浮油的废乳化液经由配水管5进入油水分离装置2,自下而上流经油水分离管6,废乳化液与管壁发生碰撞,其中比重大于水的污染物向下聚集沉淀,通过排泥管9排出;比重小于水的分散油向上聚集浮至水面;浮至水面的分散油通过油聚结管7收集,因此废乳化液中粒径10~100μm之间的分散油基本被去除掉。
然后,经过油水分离处理后的废乳化液进入电化学处理装置3,在电解池10中经过通电的铝板16和纳米陶瓷膜17进行电化学处理,其中阳极溶解出金属离子,与水反应生产氢氧化物,吸附、凝聚乳化油和溶解油,然后聚集结块成为较大的颗粒的油泥;然后,其中比重大于水的油泥,经过静置沉淀处理后沉淀至电化学反应装置的底部,通过排泥装置12去除;然后开启与所述出水管14相连的抽吸泵15,将电解池中的液体抽出,由于出水管14与纳米陶瓷膜17相连,出水必须经过纳米陶瓷膜排出,在此过程中,废乳化液中比重小于水的油泥细小颗粒团,被纳米陶瓷膜截留,出水即为经过超滤的不含浮油、分散油、乳化油和溶解油的清水。
当出水压力降低到进入所述电化学处理装置前的压力的30%左右时,即开启反洗装置11对所述纳米陶瓷膜进行清洗。
取北京市顺义SMC烧结材料有限公司废乳化液为例,利用本发明方法对其进行处理。
实施例1
1、使待处理的废乳化液通过细格过滤网,对其进行过滤处理,其中,细格过滤网的过滤精度为90μm;经过细格过滤网过滤后,废乳化液中粒径大于90μm的浮油被去除。
2、将去除了浮油的废乳化液经由配水管引入隔油池,使废乳化液自下向上流经油水分离管;经过油水分离管后,废乳化液中的分散油与水由于比重不同,分散油浮至水面,形成油水分离,利用油聚结管对浮至水面的分散油进行收集;其中,油水分离管与水平面的夹角为60°。
3、将经过油水分离处理后的废乳化液引入电化学处理装置,进水速度为0.8m/s;其中,电化学处理装置中纳米陶瓷超滤膜阴极和铝板阳极交错排列,间距为10mm,共分两行,每行中各分部5只纳米陶瓷超滤膜和5块铝板阳极板,同时,两行电极材料的排列方向为反向排列,这样,可保证传质均匀;
开启电化学处理装置,对其中的废乳化液进行处理,其中运行电压为15V,电流密度为30mA/cm2,处理时间为2h。
4、对经过电化学处理后的废乳化液进行静置处理,使其中的大颗粒物质沉降下来,得到上清液,其中静置处理的时间为60min;然后通过排泥装置将沉降到水底的污泥排出。
5、通过抽吸泵将上清液抽出,上清液经由纳米陶瓷膜流出,其中的微小污染物被截留,纳米陶瓷膜的过滤精度:80nm,通道孔径:3.6mm,膜管外径:12mm,膜管长:1000mm,出水即为不含浮油、分散油、乳化油和溶解油的清水。
6、当出水压力降低到进入所述电化学处理装置前的压力的30%时,即开启反洗装置利用碱式清洗剂对纳米陶瓷膜进行清洗。
按照国标方法方法测定出水的COD,石油类和SS含量,结果见表1。
表1实施例1中废乳化液处理前后水质列表
项目 进水浓度(mg/L) 出水浓度(mg/L) 标准值(mg/L) 去除率
COD 40746 334.1 500 99.18%
石油类 2725 4.6 10 99.83%
SS 1533 27.4 400 98.21%
实施例2
1、使待处理的废乳化液通过细格过滤网,对其进行过滤处理,其中,细格过滤网的过滤精度为100μm;经过细格过滤网过滤后,废乳化液中粒径大于100μm的浮油被去除。
2、将去除了浮油的废乳化液经由配水管引入隔油池,使废乳化液自下向上流经油水分离管;经过油水分离管后,废乳化液中的分散油与水由于比重不同,分散油浮至水面,形成油水分离,利用油聚结管对浮至水面的分散油进行收集;其中,油水分离管与水平面的夹角为55°。
3、将经由隔油池处理后的废乳化液引入电化学处理装置,进水速度为0.5m/s;其中,电化学处理装置中纳米陶瓷超滤膜阴极和铝板阳极交错排列,间距为10mm,共分两行,每行中各分部5只纳米陶瓷超滤膜和5块铝板阳极板,同时,两行电极材料的排列方向为反向排列,这样,可保证传质均匀;
开启电化学处理装置,对其中的废乳化液进行处理,其中运行电压为12V,电流密度为25mA/cm2,处理时间为1.5h。
4、对经过电化学处理后的废乳化液进行静置处理,使其中的大颗粒物质沉降下来,得到上清液,其中静置处理的时间为80min;然后通过排泥装置将沉降到水底的污泥排出。
5、通过抽吸泵将上清液抽出,上清液经由纳米陶瓷膜流出,其中的微小污染物被截留,纳米陶瓷膜的过滤精度:50nm,通道孔径:3.6mm,膜管外径:12mm,膜管长:1000mm,出水即为不含浮油、分散油、乳化油和溶解油的清水。
6、当出水压力降低到进入所述电化学处理装置前的压力的30%时,即开启反洗装置利用碱式清洗剂对纳米陶瓷膜进行清洗。
按照国标方法方法测定出水的COD,石油类和SS含量,结果见表2。
表2实施例2中废乳化液处理前后水质列表
项目 进水浓度(mg/L) 出水浓度(mg/L) 标准值(mg/L) 去除率
COD 40153 381.4 500 99.05%
石油类 2689 7.5 10 99.72%
SS 1448 34.2 400 97.64%
实施例3
1、使待处理的废乳化液通过细格过滤网,对其进行过滤处理,其中,细格过滤网的过滤精度为80μm;经过细格过滤网过滤后,废乳化液中粒径大于80μm的浮油被去除。
2、将去除了浮油的废乳化液经由配水管引入隔油池,使废乳化液自下向上流经油水分离管;经过油水分离管后,废乳化液中的分散油与水由于比重不同,分散油浮至水面,形成油水分离,利用油聚结管对浮至水面的分散油进行收集;其中,油水分离管与水平面的夹角为65°。
3、将经由隔油池处理后的废乳化液引入电化学处理装置,进水速度为1.0m/s;其中,电化学处理装置中纳米陶瓷超滤膜阴极和铝板阳极交错排列,间距为10mm,共分两行,每行中各分部5只纳米陶瓷超滤膜和5块铝板阳极板,同时,两行电极材料的排列方向为反向排列,这样,可保证传质均匀;
开启电化学处理装置,对其中的废乳化液进行处理,其中运行电压为18V,电流密度为35mA/cm2,处理时间为2.5h。
4、对经过电化学处理后的废乳化液进行静置处理,使其中的大颗粒物质沉降下来,得到上清液,其中静置处理的时间为40min;然后通过排泥装置将沉降到水底的污泥排出。
5、通过抽吸泵将上清液抽出,上清液经由纳米陶瓷膜流出,其中的微小污染物被截留,纳米陶瓷膜的过滤精度:100nm,通道孔径:3.6mm,膜管外径:12mm,膜管长:1000mm,出水即为不含浮油、分散油、乳化油和溶解油的清水。
6、当出水压力降低到进入所述电化学处理装置前的压力的30%时,即开启反洗装置利用碱式清洗剂对纳米陶瓷膜进行清洗。
按照国标方法方法测定出水的COD,石油类和SS含量,结果见表3。
表3实施例3中废乳化液处理前后水质列表
项目 进水浓度(mg/L) 出水浓度(mg/L) 标准值(mg/L) 去除率
COD 42683 376.2 500 99.12%
石油类 2987 6.4 10 99.79%
SS 1657 32.8 400 98.02%
由表1-3的数据可知,废乳化液中的初始COD浓度为40153-42683mg/L,经过本发明方法处理后,出水的COD浓度降低到334.1-381.4mg/L,去除率高达99.05-99.18%;废乳化液中的初始石油类浓度为2689-2987mg/L,经过本发明方法处理后,出水的石油类浓度降低到4.6-7.5mg/L,去除率高达99.72-99.83%;废乳化液中的初始SS浓度为1488-1657mg/L,经过本发明方法处理后,出水的SS浓度降低到27.4-34.2mg/L,去除率高达97.64-98.21%;本发明方法对废乳化液的处理效果好,出水可完全满足北京市《水污染物综合排放标准》DB11/307-2013中排入公共污水处理系统的排放限制要求。

Claims (6)

1.一种用于处理废乳化液的设备,其特征在于,包括:
除浮油装置,用于对待处理废乳化液进行除浮油处理,去除漂浮于废乳化液液面上的浮油;
油水分离装置,用于对去除了浮油的废乳化液进行油水分离处理,去除悬浮于废乳化液中的分散油;
电化学处理装置,用于对油水分离处理后的废乳化液进行电化学处理,使其中的乳化油和溶解油絮凝,得到去除了浮油、分散油并且其乳化油和溶解油已经絮凝的粗处理废乳化液;
其中,利用通电的铝板和纳米陶瓷膜进行所述的电化学处理;
其中,利用断电的纳米陶瓷膜对静置沉淀处理后粗处理乳化液进行超滤处理,得到不含浮油、分散油、乳化油和溶解油的清水;
其中,所述纳米陶瓷膜作为所述电化学处理装置的阴极连接电源负极;
所述铝板作为所述电化学处理装置的阳极连接电源正极。
2.如权利要求1所述的设备,其特征在于,所述油水分离装置包括:
隔油池,用于接收所述去除了浮油的废乳化液并对其进行油水分离处理;
配水管,用于将所述去除了浮油的废乳化液引入所述隔油池;
倾斜设置于所述隔油池中的多个油水分离管,废乳化液自下而上流经所述油水分离管,其中比重大于水的污染物向下聚集沉淀,比重小于水的分散油向上聚集浮至水面;
位于所述隔油池顶部的油聚结管,用于对浮至水面的分散油进行收集,实现废乳化液的油水分离。
3.如权利要求2所述的设备,其特征在于,所述油水分离管与水平面的夹角为55-65°。
4.如权利要求2所述的设备,其特征在于,对去除了浮油的废乳化液进行油水分离处理包括:
去除了浮油的废乳化液通过配水管流入所述隔油池;
在自下而上流经倾斜的油水分离管的过程中与所述油水分离管的管壁发生碰撞,其中比重大于水的污染物向下聚集沉淀,比重小于水的分散油向上聚集浮至水面;
通过所述油聚结管对浮至水面的分散油进行收集,实现废乳化液的油水分离。
5.如权利要求1所述的设备,其特征在于,所述电化学处理装置还包括:
电解池,用于接收所述进行了油水分离处理后的废乳化液并对其进行电化学处理;
位于所述电解池底部的排泥装置,用于排出所述电解池中的污泥;
位于所述电解池上部的反洗装置,用于对所述纳米陶瓷膜进行清洗。
6.如权利要求1所述的设备,其特征在于,所述纳米陶瓷膜的过滤精度为50-100nm。
CN201510061317.0A 2015-02-05 2015-02-05 一种用于处理废乳化液的设备 Active CN104649481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510061317.0A CN104649481B (zh) 2015-02-05 2015-02-05 一种用于处理废乳化液的设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510061317.0A CN104649481B (zh) 2015-02-05 2015-02-05 一种用于处理废乳化液的设备

Publications (2)

Publication Number Publication Date
CN104649481A CN104649481A (zh) 2015-05-27
CN104649481B true CN104649481B (zh) 2016-12-07

Family

ID=53241193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510061317.0A Active CN104649481B (zh) 2015-02-05 2015-02-05 一种用于处理废乳化液的设备

Country Status (1)

Country Link
CN (1) CN104649481B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923528B (zh) * 2015-06-10 2017-05-03 哈尔滨工业大学 一种航天员专用食品加工装置自动清洗系统
CN106115988A (zh) * 2016-08-03 2016-11-16 上海昱沛环保科技有限公司 一种处理废乳化液的方法
CN112142234A (zh) * 2020-10-22 2020-12-29 西安西热水务环保有限公司 一种火电厂含油废水高效处理回用系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306895B (zh) * 2008-07-11 2010-09-01 东北大学 一种混凝-电凝聚-超滤法处理采油废水装置及方法
KR101034869B1 (ko) * 2008-11-12 2011-05-17 한국전기연구원 관상의 나노다공질 산화물 세라믹 막과 이를 이용한 막 필터
CN203440191U (zh) * 2013-08-26 2014-02-19 厦门世达膜科技有限公司 一种油田废水处理装置

Also Published As

Publication number Publication date
CN104649481A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
CN206915935U (zh) 乳化液废水处理系统
CN206188537U (zh) 预处理加多级平板陶瓷膜含油废水处理系统
CN203530059U (zh) 一种钻井废弃泥浆滤液处理系统
CN1699223A (zh) 利用冶金污水制取纯水的方法
CN106115988A (zh) 一种处理废乳化液的方法
CN104649482B (zh) 一种用于处理废乳化液的方法
CN108862747A (zh) 废水处理和固体回收系统
CN105417802B (zh) 一种压铸废液循环使用系统及循环使用方法
CN108083585A (zh) 一种废水处理工艺
CN104649481B (zh) 一种用于处理废乳化液的设备
CN103708666A (zh) 脱硫废水回用与零排放处理方法及设备
CN109052712A (zh) 一种处理并回用纺织行业达标排放水的系统及方法
WO2018032830A1 (zh) 河湖泊涌污染底泥处理余水再生系统
CN109650653A (zh) 含镍电镀废水回收处理系统及处理方法
CN109019985A (zh) 一种含油重金属废水工业的处理方法
CN105923911A (zh) 一种垃圾渗滤液的预处理方法
CN107176729A (zh) 一种aec电絮凝废水处理工艺
CN216472704U (zh) 大规格棒材生产用水处理系统
CN105621761B (zh) 一种油田采油污水处理方法、处理装置
CN203625179U (zh) 一种油田废水处理设备
CN210340616U (zh) 一种垃圾渗滤液处理设备
CN107162289A (zh) 一种aec电絮凝废水处理系统
CN209940658U (zh) 一种三元复合驱采油废水的处理及原油回收装置
CN107215920A (zh) 一种处理乳化油装置
CN209522624U (zh) Ecsf型一体化电絮凝高悬浮物废水处理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100081 Beijing city Haidian District Dahui Temple Road No. 5 Building No. 9 layer 1-2

Applicant after: BEIJING SINORICHEN ENVIRONMENTAL PROTECTION CO., LTD.

Address before: 100081 Beijing city Haidian District Dahui Temple Road No. 5 Building No. 9 layer 1-2

Applicant before: BEIJING SINORICHEN ENVIRONMENTAL PROTECTION CO., LTD.

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: 856100 Naidong, Lhoka Prefecture, Tibet Prefecture, Shannan District, Hero Road, No. 21

Patentee after: Tibet China environmental protection Polytron Technologies Inc

Address before: 100081 Beijing city Haidian District Dahui Temple Road No. 5 Building No. 9 layer 1-2

Patentee before: BEIJING SINORICHEN ENVIRONMENTAL PROTECTION CO., LTD.

CP03 Change of name, title or address
CP01 Change in the name or title of a patent holder

Address after: 856100 Naidong, Lhoka Prefecture, Tibet Prefecture, Shannan District, Hero Road, No. 21

Patentee after: Zhongguancun Zhizhen environmental protection Co., Ltd

Address before: 856100 Naidong, Lhoka Prefecture, Tibet Prefecture, Shannan District, Hero Road, No. 21

Patentee before: Tibet China environmental protection Polytron Technologies Inc.

CP01 Change in the name or title of a patent holder