CN104611016B - 一种劣质原料加氢裂化方法 - Google Patents

一种劣质原料加氢裂化方法 Download PDF

Info

Publication number
CN104611016B
CN104611016B CN201310540381.8A CN201310540381A CN104611016B CN 104611016 B CN104611016 B CN 104611016B CN 201310540381 A CN201310540381 A CN 201310540381A CN 104611016 B CN104611016 B CN 104611016B
Authority
CN
China
Prior art keywords
reaction zone
reaction
oil
paragraph
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310540381.8A
Other languages
English (en)
Other versions
CN104611016A (zh
Inventor
白振民
王凤来
曹均丰
王平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201310540381.8A priority Critical patent/CN104611016B/zh
Publication of CN104611016A publication Critical patent/CN104611016A/zh
Application granted granted Critical
Publication of CN104611016B publication Critical patent/CN104611016B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Abstract

本发明公开了一种劣质原料加氢裂化方法。劣质原料首先进行一段加氢精制反应,反应流出物进行分离;液体进入二段精制段进行深度脱氮和芳烃饱和反应,在二段中同时采用气液并流和逆流流程,二段得到精制生成油与氢气混合后进入第三段反应区,进行加氢裂化反应。本发明方法可在较缓和条件下对劣质原料中的含氮杂质进行加氢处理,使其满足加氢裂化进料要求,从而拓宽了加氢裂化的原料来源;同时由于加氢精制温度大大降低,从而可以提高装置的运转周期,加工更劣质原料或者在同样运转周期下提高装置的加工能力。

Description

一种劣质原料加氢裂化方法
技术领域
本发明公开了一种加氢裂化方法,特别是一种加工含氮劣质原料的加氢裂化方法。
背景技术
随着我国经济的高速发展,石油加工能力快速增长。与此同时,国内加氢裂化技术也获得了大规模的工业应用,截至2011年底,我国正在运行的加氢裂化装置有40多套,总加工能力已经超过50.0Mt/a,加工能力跃居世界第二位。另外,由于国内原油质量的逐年变差,进口高硫原油加工量的大幅增加,环保对炼油工艺及石油产品质量的要求日趋严格,以及市场对清洁燃油及化工原料需求量的不断增加,尤其是作为交通运输燃料的清洁中间馏分油和为重整、乙烯等装置提供的优质进料,因此市场对加氢裂化技术水平的进步提出了更高的要求。加氢裂化所加工的原料范围宽,产品方案灵活,液体产品收率高,可获得优质动力燃料和化工原料,加氢裂化工艺和技术越来越受到世界各大石油公司的普遍重视。
加氢裂化工艺一般可分为一段法和两段法,其中一段法又包括单段(也称单段一剂)和单段串联。操作方式主要分为循环操作方式和一次通过操作方式。单段工艺使用一种耐有机氮的加氢裂化催化剂,原料直接通过加氢裂化催化剂,工艺过程最简单,操作空速较高,但加工的原料范围窄,产品中航煤质量较差。单段串联使用加氢精制催化剂和加氢裂化催化剂串联,中间无需分离,因为所用加氢裂化催化剂不具有耐有机氮的能力,要求在加氢精制反应器将硫氮杂质脱除干净,所以一般只能在较低空速下操作。随着炼油企业的日趋大型化,规划建设的大型加氢裂化装置越来越多,以达到规模效益。这些装置的单套加工能力大都在200万吨/年以上。这些大型加氢裂化装置如果采用常规单段串联或单段工艺技术按单套装置建设,由于反应器、原料泵、换热器等特大型设备的制造费用和运输费用巨大,将使装置建设投资大大增加,影响企业的经济效益;而如果建成两套装置,则将由于设备台数显著增加,同样也将增加装置的建设投资,并将增加操作费用。
现有的两段加氢裂化工艺,如US3702818,涉及第一段原料油首先经过加氢精制段脱除杂质,分离的液体进入加氢裂化段,第一段尾油进入第二段继续裂化,这是常规两段加氢裂化工艺过程。US3549515第一段使用一段串联流程,第一段尾油进入第二段继续裂化,存在着上述一段串联工艺的不足。US4404088涉及增加一个加氢裂化反应段,在改变产品方案时提高液体产品收率,但流程较长。这些技术虽然方案灵活,但工艺流程复杂,投资增加。CN100526433A涉及第一段采用单段两剂流程,第一段尾油进入第二段继续裂化,最大量生产中间馏分油。CN1940030A涉及使用热高分,将高氮原料和低氮原料分开加工,最大量生产柴油。
目前原油质量日益变差,杂质含量增高,以及原油减压深拔和其它非常规能源的开发,使得加氢裂化的原料杂质含量越来越高,特别是某些加氢裂化原料的氮含量较高,而现有加氢裂化方法处理高氮含量的加氢裂化原料时,需要较高的反应温度或较低的操作空速,装置的加工能力下降,同时能耗增加,操作周期缩短。
发明内容
针对现有技术的不足,本发明的目的在于提供一种改进的两段加氢裂化工艺,加工氮含量较高的加氢裂化原料。同现有两段加氢裂化技术相比,工艺流程更加灵活,可加工更加劣质的原料;同现有一段串联加氢裂化技术相比,可大大提高装置的加工能力。
本发明的一种劣质原料加氢裂化方法,包括以下内容:
(1)在加氢精制条件下,劣质原料油和氢气混合进入第一段反应区,第一段反应区使用加氢精制催化剂,第一段反应区的脱氮率一般控制为60%~95%;
(2)第一段反应区流出物进入分离系统,气液分离后的气相经脱杂质后循环使用;
(3)步骤(2)中气液分离后的液相与氢气混合后进入第二段反应区,第二段反应区使用加氢精制催化剂,第二段反应区的上部为气液并流反应区,反应流出物进入气液分离区进行分离,气体引出反应器;液体进入下部的催化剂床层,与反应器底部引入的氢气进行逆流接触反应,反应后的气体从气液分离区离开反应器;
(4)步骤(3)得到的加氢精制油与氢气混合后进入第三段反应区,第三段反应区使用加氢裂化催化剂;
(5)第三段反应区得到反应流出物进入分离系统,得到各种加氢裂化产品。
根据本发明的加氢裂化工艺,其中在步骤(2)中,优选对气液分离后的液相先用水进行洗涤,以降低第一段加氢精制生成油中的氨(NH3)含量,经过水洗后的液相再与氢气进入第二段反应区。此处所述的水洗操作为本领域技术人员的常规操作。
其中在步骤(3)的第二段反应区中,上部的气液并流反应区和气液逆流反应区的催化剂装填体积比可以根据劣质原料的性质和第一段的加氢脱氮率具体确定。
本发明方法中,所述的劣质原料油为氮含量较高的劣质重质馏分油。劣质原料油的氮含量一般为1500μg/g以上,优选为2000μg/g以上,最优选为2500~15000μg/g。
本发明方法中,步骤(1)中第一段反应区的脱氮率一般控制为60%~95%,优选控制为70%~90%。第一段反应区的工艺条件为:反应温度为330~480℃,反应压力为5.0~20.0MPa,氢油体积比为100:1~4000:1,液时体积空速为0.2~4.0h-1。优选的操作条件为:反应温度为350~450℃,反应压力为8.0~17.0MPa,氢油体积比为400:1~2000:1,液时体积空速为0.5~3.0h-1
本发明方法中,步骤(3)所述的第二段反应区中,并流反应区的工艺条件为:反应温度为250~500℃,优选为300~440℃;反应压力为5.0~20.0MPa,优选为8.0~17.0MPa;氢油体积比为100:1~4000:1,优选为400:1~2000:1;液时体积空速为1.0~10.0h-1,优选为1.0~4.0h-1。第二段反应区中逆流反应区的工艺条件为:应温度为250~500℃,优选为300~440℃;反应压力为5.0~20.0MPa,优选为8.0~17.0MPa;氢油体积比为100:1~2000:1,优选为400:1~1000:1;液时体积空速为1.0~10.0h-1,优选为1.0~4.0h-1
所述的第二段反应区中,气液并流反应区与气液逆流反应区中的催化剂装填体积比,可以根据加氢裂化原料的性质以及第一段反应区的脱氮率具体进行确定。
本发明方法中,根据装置规模,第一段反应区可以设置一台或几台反应器,第二段反应区也可以设置一台或几台反应器,第三段反应区一般设置一台反应器。
本发明方法中,第一段反应区反应流出物进行气液分离,气相经脱除硫化氢和氨后可以循环使用,液相进入第二段反应区。第二段反应区反应流出物首先进行气液分离,气相脱除硫化氢和氨后循环使用,液相进入分馏塔得到石脑油馏分、煤油馏分、柴油馏分和加氢裂化尾油。
本发明方法中,加氢精制催化剂可以是本领域任意的产品,加氢裂化催化剂可以根据反应产物的分布要求选择适宜的产品,如为多产中间馏分油(煤油和柴油)则选择中油型加氢裂化催化剂,如为多产石脑油则选择轻油型加氢裂化催化剂,如为灵活生产石脑油和中间馏分油则选择灵活型加氢裂化催化剂。上述选择是本领域技术人员所熟知的内容。加氢精制催化剂和加氢裂化催化剂在反应状态下,加氢活性组分为硫化态。
本发明方法中,第一段反应区主要发生原料的加氢脱硫、脱氮、脱氧、芳烃饱和等反应;第二段反应区的加氢精制催化剂上继续进行发生加氢脱硫、脱氮、脱氧、芳烃饱和等反应,在加氢裂化催化剂上进行加氢裂化反应。
与现有技术相比,本发明的工艺方法具有以下突出效果:
1、在加工氮含量很高的劣质原料油时,本发明可以明显降低系统中的硫化氢和氨含量,提高氢分压,有效发挥加氢精制催化剂和加氢裂化催化剂的活性。目前加氢裂化进料一般包括减压馏分油、溶剂精制脱沥青油或费托合成油,而劣质原料经过第一反应区进行脱硫、脱氮、脱氧、芳烃饱和等反应后,第二反应区进料质量达到一般加氢裂化进料质量要求,可以扩大加氢裂化原料的来源。
2、本领域技术人员一般认为,加氢精制催化剂具有耐氮性,循环氢中的硫化氢和氨对催化剂没有抑制作用。但通过对现有加氢裂化工艺的深入分析得知,在加工含氮量很高的原料油时,由于硫氮等杂质含量很高,反应过程生成大量的硫化氢和氨,对加氢精制催化剂的脱氮性能产生很强的抑制。如果采用本领域的常规方法,需要在更高的反应温度下才能获得所需的脱氮效果。而本发明通过优化加氢精制工艺流程,将加氢精制催化剂按适宜比例分配到不同的精制反应区中;并且在第二段精制反应器采用上部气液并流、下部气液逆流操作的流程,实现了在相同的加氢脱杂质深度的同时,大幅降低了反应温度,提高了加氢精制流出物质量,并延长了运转周期。同时,第二段较低的温度也可促进芳烃饱和反应,而脱氮反应一般为开环反应,从而使反应温度进一步降低。也就是说,在相同的空速下加工同一种劣质原料时,由于两段反应具有较高的氢分压和较快的芳烃饱和反应,使用两个反应器将其脱除到<10μg/g将比使用一个反应器需要更低的平均反应温度。
3、本发明根据原料油氮含量高的特点,优选在第一段反应区中采用由氯化物方法制备载体生产的加氢精制催化剂,其特点是孔道大且集中,杂质含量低,载体和金属的作用强,能更有效地降低氨对催化剂的抑制作用,尤其是对加工劣质原料具有更好的活性稳定性;而在第二段反应器中优选使用由硫酸化合物方法制备载体生产的加氢精制催化剂,其特点是孔道相对较小而且分散,载体和金属的作用相对较弱。第二段中的精制催化剂对于已脱除了大部分氮杂质的原料具有更高的活性和更好的活性稳定性。从而,这两种催化剂的级配能更好的发挥催化剂的活性。
4、第一段反应流出物液相优选先经过水洗洗掉硫化氢和氨后再进入第二段加氢精制反应器,更可以进一步降低第二段反应器中的氨含量,更有效地发挥第二段加氢精制催化剂的活性。
附图说明
图1是本发明的一种原则工艺流程图。
具体实施方式
本发明的工艺流程为:采用三段工艺流程,在适宜加氢条件下,劣质原料油和氢气与第一段催化剂接触,反应流出物进入分离系统,分离出的液体作为第二段进料,第二段进料和氢气与第二段催化剂接触,反应流出物进入分离系统。第一段加氢裂化和第二段加氢裂化可以采用共同的分离系统。
本发明所用的劣质原料油可以是原油的焦化蜡油、脱沥青油、页岩油和煤合成油、原油减压深拔馏分油等馏分中的一种或几种。
第一段反应区和第二段反应区中所使用的加氢精制催化剂可以是常规重质馏分油加氢精制催化剂。常规加氢精制催化剂一般由载体和载在载体上的加氢金属组分组成,通常包括元素周期表中第ⅥB族活性金属组分,如钨和/或钼,以金属氧化物重量计一般为8%~35%,12%~30%更好;以及第Ⅷ族活性金属组分,如镍和/或钴,以金属氧化物重量计为1%~7%,1.5%~6%更好。加氢精制催化剂使用的载体是无机耐熔氧化物,如氧化铝、无定型硅铝、氧化硅、氧化钛等。催化剂中还可以含有磷、硼、氟和氯中的一种或几种作为助剂组分。
本发明方法中,特别推荐在第一段反应区中使用具有以下性质的催化剂:催化剂的平均孔直径为7.5~9.5nm,优选8~9nm;孔直径4~10nm的孔的孔容占总孔容的体积分数为70%~90%,优选为75%~85%;<4nm孔的孔容占总孔容的5%以下。第一段反应区使用的加氢精制催化剂,通常为由氯化物方法制备载体生产的催化剂,催化剂的焙烧温度一般在480℃左右。所述的加氢精制催化剂可以选择已有的商业加氢精制催化剂,或者根据本领域的知识制备符合要求的催化剂。
由于第一段反应区已经将原料油的氮含量脱除到相对较低的水平,第二段反应区可以使用第一段反应区使用的加氢精制催化剂,本发明优选在第二段反应区使用具有以下性质的催化剂:催化剂的平均孔直径为4至小于7.5nm,优选5~7nm;其中孔直径为4~10nm的孔的孔容占总孔容的体积分数为50%~75%,优选55%~65%;<4nm的孔的孔容占总孔容的体积分数一般低于10%。其中与第一段中的加氢精制催化剂相比较,第二段加氢精制催化剂的平均孔直径要小0.5~3nm,优选小1.0~2.5nm;孔径4~10nm的孔占总孔容的体积分数小10~30个百分数,优选小15~25个百分数。第二段反应区中的催化剂通常为由硫酸化合物如硫酸铝方法制备载体生产的催化剂,催化剂的焙烧温度一般在450℃左右。第二段反应区中使用的加氢精制催化剂可以选择已有的商业加氢精制催化剂,或者根据本领域的知识制备符合要求的催化剂。
或者本发明中还可以在第二段反应区中使用体相加氢催化剂,以进一步改善第二段反应区的加氢温度。体相加氢催化剂含有Mo、W、Ni三种金属组分,氧化态催化剂中W、Ni以复合氧化物形态存在:NixWyOz,z=x+3y,Mo以氧化物形态存在:MoO3;复合氧化物NixWyOz中x和y的比例为1:8~8:1,复合氧化物NixWyOz和氧化物MoO3的重量比为1:10~10:1;体相催化剂中复合氧化物NixWyOz和氧化物MoO3的总重量含量为40%~100%。体相催化剂中可以根据需要含有氧化铝、氧化硅、无定形硅铝、磷氧化物、钛氧化物、锆氧化物、分子筛等组分中的一种或几种,这些组分在催化剂中的重量含量为0~60%,优选为20%~50%。体相催化剂的比表面积为120~400m2/g,孔容为0.10~0.50mL/g。体相加氢催化剂可以选择抚顺石油化工研究院开发的商业催化剂,或者根据本领域的常规知识进行制备。
第三段的加氢裂化反应区可以使用常规商业加氢裂化催化剂,由于可以将进料的杂质含量脱到较低,无须采用耐氮的加氢裂化催化剂,可以使用的商业加氢裂化催化剂除可以选用具有耐有机氮功能的商业单段加氢裂化催化剂,如抚顺石油化工研究院研制开发的ZHC-01、ZHC-02、ZHC-04、FC-14、FC-28,FC-34,CHEVRON公司研制开发的ICR126等。还可以使用如:UOP公司的DHC-32、DHC-39、HC-43、HC-115等,抚顺石油化工研究院研制开发的3971、3974、3976、FC-12、FC-16、FC-26等。
以下结合附图及实施例进一步解释本发明。
劣质原料油经过管线1与管线2的循环氢混合后进入第一段加氢精制反应器R1,脱除大部分杂质后,反应流出物沿管线3进入分离器4进行分离,分离出的气体经管线5出装置;第一段反应区生成油可以经水洗后(图上未示出)经过管线6与管线7的循环氢混合,进入第二段加氢精制反应器R2的A区进一步脱除S、N、O等杂质,A区流出物进入气液分离区C区进行分离,气相反应流出物经管线9进入水洗塔10洗掉硫化氢和氨后经管线11进入循环氢系统,C区得到液相与B区底部经管线8引入的新氢在B区逆流接触进行加氢精制反应;逆流加氢后气体进入气液分离区C区并排出,液相经管线12与管线13的循环氢混合后进入加氢裂化反应器R3进行加氢裂化反应,加氢裂化反应流出物经管线14进入分离系统15进行分离,分离为气体16、石脑油17、煤油18、柴油19和尾油20,分离系统通常包括高压分离器、低压分离器和分馏塔。
下面通过具体实施例说明本发明的技术方案和效果。所用催化剂均为抚顺石油化工研究院研制生产的商品催化剂。
下面通过具体实施例说明本发明方案和效果。所用加氢裂化催化剂为抚顺石油化工研究院研制生产的商品催化剂,所用原料油的性质列于表1。所使用加氢精制催化剂的性质列于表2。本发明中,wt%为重量百分比。
实施例1
采用图1所示的工艺流程,第三段加氢裂化为单程通过流程。第一段中装填催化剂A,第二段装填催化剂B。第二段精制反应区上部采用气液并流反应,下部采用气液逆流反应,并流段与逆流段的催化剂装填体积比为1:1。
实施例2
第一段和第二段均装填加氢精制催化剂B,其他同实施例1。
比较例1
工艺基本流程同实施例1,第二段反应区中仅采用并流工艺流程,未包括逆流过程。第三段的加氢裂化为单程通过流程。
比较例2
采用常规的两段加氢裂化工艺流程,加氢精制反应仅包括一段反应区,未包括第二段反应区,一段反应区的流出物进行气液分离,气液分离得到的液体生成油进行加氢裂化,加氢裂化采用单程通过流程。
实施例1-2和比较例1-2运转500小时的试验结果列于表3,运转6000小时的试验结果列于表5。
表1 原料油
密度(20℃)/kg·m-3 947.3
馏程/℃ 275~548
硫含量/wt% 3.00
氮含量/μg·g-1 4453
凝点/℃ 34
BMCI值 65.4
表2 加氢精制催化剂
编号 A B
载体 氧化铝 氧化铝
MoO3,wt% 24.9 24.5
NiO,wt% 4.12 4.26
P,wt% 2.67 2.71
平均孔直径,nm 8.4 6.5
4~10nm孔占总孔容的比例,v% 85 61
表3 试验结果(为运转500小时的结果)
实施方案 实施例1 实施例2 比较例1 比较例2
工艺条件
催化剂 A/(B/B)/FC-32* B/(B/B)/FC-32* B/B/FC-32* B/FC-32#
反应压力/MPa 15.7 15.7 15.7 15.7
反应温度/℃ 378/(377/373)/381 375/(377/373)/381 378/378/381 398/382
体积空速/h-1 1.2/(2.4/2.4)/1.8 1.2/(2.4/2.4)/1.8 1.2/1.2/1.8 0.6/1.8
氢油体积比 900/(900/900)/1300 900/(900/900)/1300 900/900/1300 900/1300
第一段脱氮率,wt% 82 82 82 精制N,10μg/g
裂化段>370℃单程转化率,wt% 71.7 71.9 72.1 72.0
主要产品性质
喷气燃料
收率,wt% 27.96 27.87 27.19 26.89
烟点,mm 28.0 28.0 26.0 24.0
柴油
收率,wt% 20.09 20.13 20.92 21.33
十六烷值 59.1 58.2 56.5 54.3
尾油
收率 28.30 28.10 27.90 28.00
BMCI值 12.1 12.3 13.2 13.6
粘度指数 142 142 141 139
*分别为第一段、第二段和第三段中使用的催化剂;#分别为精制段和裂化段使用的催化剂。
实施例3
主要流程如图1所示,其中>370℃馏分部分循环到第二段加氢精制反应器入口,循环量为尾油的25%。控制第一段反应区的脱氮率为75wt%。试验结果列于表3。
实施例4
主要流程如图1所示,其中>370℃馏分部分循环到第二段加氢精制反应器入口,循环量为尾油的25%。控制第一段反应区的脱氮率为87wt%。试验结果列于表3。
比较例3
采用现有技术中的两段加氢裂化流程,加氢精制反应仅包括一段反应区,未包括第二段反应区,一段反应区的流出物进行气液分离,气液分离得到的液体生成油进行加氢裂化,>370℃加氢裂化尾油部分循环回加氢精制反应器入口,尾油循环量为25%。
实施例3-4和比较例3的试验结果列于表4。
表4 试验结果
编号 实施例3 实施例4 比较例3
加氢裂化段工艺条件
催化剂 A/(B/B)/FC-50* A/(B/B)/FC-50* B/FC-50#
反应压力/MPa 15.7 15.7 15.7
氢油体积比 900/(900/900)/1300 900/(900/900)/1300 900/1300
体积空速/h-1 1.2/(2.4/2.4)/1.8 1.2/(2.4/2.4)/1.8 0.6/1.8
反应温度/℃ 368/(378/378)/386 376/(370/370)/386 396/387
第一段脱氮率,wt% 75 87
裂化段>370℃单程转化率,wt% 60 60 60
裂化段>370℃总转化率,wt% 70.0 70.0 70.0
主要产品性质
喷气燃料
收率,wt% 27.90 27.82 27.11
烟点,mm 27.0 27.0 26.0
柴油
收率,wt% 20.17 20.18 21.02
十六烷值 58.4 57.9 56.1
尾油
收率 30.0 30.0 30.0
BMCI值 12.4 12.6 13.4
粘度指数 143 143 141
*分别为第一段、第二段和第三段中使用的催化剂;#分别为精制段和裂化段中使用的催化剂。
表5 试验结果(运转6000小时)
实施方案 实施例1 实施例2 比较例1 比较例2
加氢精制工艺条件
催化剂 A/(B/B)/FC-32* B/(B/B)/FC-32* B/B/FC-32* B/FC-32#
反应压力/MPa 15.7 15.7 15.7 15.7
反应温度/℃ 383/(380/376)/381 388/(380/376)/381 388/382/381 413/382
体积空速/h-1 1.2/(2.4/2.4)/1.8 1.2/(2.4/2.4)/1.8 1.2/1.2/1.8 0.6/1.8
氢油体积比 900/(900/900)/1300 900/(900/900)/1300 900/900/1300 900/1300
第一段脱氮率,wt% 82 82 82 精制N,10μg/g
主要产品性质
喷气燃料
收率,wt% 27.97 27.88 27.21 26.93
烟点,mm 28.0 28.0 26.0 24.0
柴油
收率,wt% 20.04 20.10 20.89 21.28
十六烷值 58.8 58.0 56.3 54.1
尾油
收率 28.30 28.10 27.90 28.00
BMCI值 12.2 12.4 13.3 13.7
粘度指数 142 142 141 139
通过以上的实施例表明,采用三段加氢裂化工艺,第一段反应器和第二段反应器分别采用不同类型的加氢精制催化剂,第二段反应区上部采用气液并流反应,下部采用气液逆流反应的工艺流程,在加工含氮量较高的原料时,可以明显降低系统中的硫化氢和氨含量,提高系统氢分压,有效发挥加氢精制催化剂和加氢裂化催化剂的活性,生产优质马达燃料和润滑油基础油原料,并能够丰富加氢裂化单元原料来源。
由于加氢精制和加氢裂化反应温度大大降低,从而提高了装置的运转周期,或者在同样的运转周期下提高装置的加工能力。

Claims (13)

1.一种劣质原料加氢裂化方法,包括如下内容:
(1)在加氢精制条件下,劣质原料油和氢气混合进入第一段反应区,第一段反应区使用加氢精制催化剂,第一段反应区的脱氮率控制为60wt%~95wt%;
(2)第一段反应区流出物进入分离系统进行分离;
(3)步骤(2)中气液分离后的液相与氢气混合后进入第二段反应区,第二段反应区使用加氢精制催化剂,第二段反应区的上部为气液并流反应区,并流反应区流出物进入气液分离区进行分离,气体引出反应器;液体进入下部的催化剂床层,与反应器底部引入的氢气进行逆流接触反应,反应后的气体从气液分离区离开反应器;
(4)步骤(3)得到的加氢精制油与氢气混合后进入第三段反应区,第三段反应区使用加氢裂化催化剂;
(5)第三段反应区得到反应流出物进入分离系统,经分离得汽油、煤油和柴油的一种或几种和尾油;
其中,第一段反应区中使用的加氢精制催化剂具有以下性质:催化剂的平均孔直径为7.5~9.5nm,孔径为4~10nm的孔占总孔容的体积分数为70%~90%;第二段反应区中使用的加氢精制催化剂具有以下性质:催化剂的平均孔直径为4至小于7.5nm,孔径为4~10nm的孔的孔容占总孔容的体积分数为50%~75%;其中与第一段中的加氢精制催化剂相比较,第二段加氢精制催化剂的平均孔直径要小0.5~3nm,孔径4~10nm的孔占总孔容的体积分数小10~30个百分数。
2.按照权利要求1所述的方法,其特征在于,所述劣质原料油的氮含量为1500μg/g以上。
3.按照权利要求2所述的方法,其特征在于,所述的劣质原料油的氮含量为2000μg/g以上。
4.按照权利要求3所述的方法,其特征在于,所述的劣质原料油的氮含量为2500~15000μg/g。
5.按照权利要求1所述的方法,其特征在于,步骤(1)中第一段反应区的脱氮率控制为70wt%~90wt%。
6.按照权利要求1所述的方法,其特征在于,步骤(1)和步骤(3)中所述的加氢精制催化剂由载体和载在载体上的加氢金属组分组成,催化剂包括元素周期表中第ⅥB族活性金属组分以金属氧化物重量计8%~35%,以及第Ⅷ族活性金属组分以金属氧化物重量计1%~7%。
7.按照权利要求1所述的方法,其特征在于,与第一段反应区中使用的加氢精制催化剂相比较,第二段加氢精制催化剂的平均孔直径小1.0~2.5nm,孔径4~10nm的孔占总孔容的体积分数小15~25个百分数。
8.按照权利要求1所述的方法,其特征在于,第一段反应区中使用的加氢精制催化剂的平均孔直径为8~9nm,孔直径4~10nm的孔的孔容占总孔容的体积分数为75%~85%。
9.按照权利要求1所述的方法,其特征在于,第二段反应区中使用的加氢精制催化剂的平均孔直径为5~7nm,其中孔直径为4~10nm的孔的孔容占总孔容的体积分数为55%~65%。
10.按照权利要求1所述的方法,其特征在于,步骤(1)中第一段反应区的工艺条件为:反应温度为330~480℃,反应压力为5.0MPa ~20.0MPa,氢油体积比为100:1~4000:1,液时体积空速为0.2~4.0h-1
11.按照权利要求1所述的方法,其特征在于,步骤(3)的第二段反应区中,并流反应区的工艺条件为:反应温度为250~500℃,反应压力为5.0~20.0MPa,氢油体积比为100:1~4000:1,液时体积空速为1.0~10.0h-1;第二段反应区中逆流反应区的工艺条件为:反应温度为250~500℃,反应压力为5.0~20.0MPa,氢油体积比为100:1~2000:1,液时体积空速为1.0~10.0h-1
12.按照权利要求1所述的方法,其特征在于,第三段加氢裂化反应区的工艺条件为:反应温度为250~500℃,反应压力为5.0~20.0MPa,氢油体积比为100:1~4000:1,液时体积空速为1.0~10.0h-1
13.按照权利要求1所述的方法,其特征在于,在步骤(2)中对气液分离后的液相用水进行洗涤,以降低第一段加氢精制生成油中的氨含量。
CN201310540381.8A 2013-11-05 2013-11-05 一种劣质原料加氢裂化方法 Active CN104611016B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310540381.8A CN104611016B (zh) 2013-11-05 2013-11-05 一种劣质原料加氢裂化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310540381.8A CN104611016B (zh) 2013-11-05 2013-11-05 一种劣质原料加氢裂化方法

Publications (2)

Publication Number Publication Date
CN104611016A CN104611016A (zh) 2015-05-13
CN104611016B true CN104611016B (zh) 2016-08-17

Family

ID=53145670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310540381.8A Active CN104611016B (zh) 2013-11-05 2013-11-05 一种劣质原料加氢裂化方法

Country Status (1)

Country Link
CN (1) CN104611016B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100699A (zh) * 2018-10-29 2020-05-05 中国石油化工股份有限公司 一种高氮高干点原料油的加氢裂化方法
CN112795401B (zh) * 2019-10-28 2022-08-12 中国石油化工股份有限公司 一种处理高氮劣质原料的加氢裂化方法
CN114196438B (zh) * 2020-09-17 2023-01-10 中国石油化工股份有限公司 一种处理高氮原料的加氢工艺与加氢系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173186A (zh) * 2006-11-01 2008-05-07 中国石油化工股份有限公司 一种中压加氢裂化方法
JP2008121019A (ja) * 2002-03-21 2008-05-29 Chevron Usa Inc 重質軽油から高品質留出油を生産するための新しい水素化分解法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313574C (zh) * 2003-05-31 2007-05-02 中国石油化工股份有限公司 一种柴油深度脱硫和脱芳烃工艺
CN103102957A (zh) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 一种高氮原料两段加氢裂化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121019A (ja) * 2002-03-21 2008-05-29 Chevron Usa Inc 重質軽油から高品質留出油を生産するための新しい水素化分解法
CN101173186A (zh) * 2006-11-01 2008-05-07 中国石油化工股份有限公司 一种中压加氢裂化方法

Also Published As

Publication number Publication date
CN104611016A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
CN104611018B (zh) 一种劣质原料生产润滑油基础油的工艺方法
CN103102966B (zh) 一种高氮原料加氢裂化方法
CN103102957A (zh) 一种高氮原料两段加氢裂化方法
CN104611037B (zh) 一种劣质重质馏分油生产润滑油基础油的加氢方法
CN104611022B (zh) 一种劣质重质馏分油加氢裂化方法
CN104611047B (zh) 劣质原料生产润滑油基础油的工艺方法
CN104611016B (zh) 一种劣质原料加氢裂化方法
CN104611039B (zh) 劣质原料加氢裂化方法
CN102329640B (zh) 一种联合加氢裂化工艺方法
CN104611032B (zh) 一种高干点原料生产润滑油基础油的工艺方法
CN104611054B (zh) 一种高干点原料生产润滑油基础油的加氢方法
CN104611041B (zh) 劣质原料生产润滑油基础油的加氢方法
CN104611017B (zh) 高干点原料生产润滑油基础油的加氢方法
CN104611014B (zh) 一种劣质原料两段加氢处理方法
CN104611052B (zh) 劣质原料两段加氢处理方法
CN104611024B (zh) 一种劣质重质馏分油生产润滑油基础油的工艺方法
CN104611009B (zh) 一种劣质重质馏分油加氢处理方法
CN104611051B (zh) 一种高干点重质馏分油加氢裂化方法
CN104611053B (zh) 一种高干点原料加氢裂化工艺
CN104611055B (zh) 一种高干点原料两段加氢处理方法
CN104611036B (zh) 一种高干点重质馏分油加氢处理方法
CN104611010B (zh) 一种高干点原料加氢裂化方法
CN104611038B (zh) 高干点原料生产润滑油基础油的工艺方法
CN104611042B (zh) 一种劣质原料生产润滑油基础油的加氢方法
CN104611048B (zh) 高干点原料两段加氢处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant