CN104600799A - 一种串联电池组均衡电路及均衡方法 - Google Patents

一种串联电池组均衡电路及均衡方法 Download PDF

Info

Publication number
CN104600799A
CN104600799A CN201510013377.5A CN201510013377A CN104600799A CN 104600799 A CN104600799 A CN 104600799A CN 201510013377 A CN201510013377 A CN 201510013377A CN 104600799 A CN104600799 A CN 104600799A
Authority
CN
China
Prior art keywords
voltage
series battery
microcontroller
cell
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510013377.5A
Other languages
English (en)
Other versions
CN104600799B (zh
Inventor
王贤江
胡振营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edan Instruments Inc
Original Assignee
Edan Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edan Instruments Inc filed Critical Edan Instruments Inc
Priority to CN201510013377.5A priority Critical patent/CN104600799B/zh
Publication of CN104600799A publication Critical patent/CN104600799A/zh
Application granted granted Critical
Publication of CN104600799B publication Critical patent/CN104600799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及电池均衡技术领域,本发明提供一种串联电池组均衡电路及均衡方法,串联电池组均衡电路包括开关模块、微控制器、充电电路以及直流变换器;微控制器控制开关模块导通以采集串联电池组中每一个单体电池的电压值;计算最大电压值与最小电压值之间的电压差值,判断电压差值是否大于预设值,当判断结果为是时,控制开关模块导通使充电电路逐个向电压值小于所述电压均值的单体电池充电,完成充电后再驱动开关模块导通以采集串联电池组中每一个单体电池的电压值,直至所有单体电池的电压值达到电压均值,本发明提供的技术方案在充电、放电以及动态时均可实现均衡,使用较小的功率即可完成对电池的均衡,同时降低了功率器件的成本。

Description

一种串联电池组均衡电路及均衡方法
技术领域
本发明涉及电池均衡技术领域,尤其涉及一种串联电池组均衡电路及均衡方法。
背景技术
在电池应用系统中,为了给设备提供足够的电压,电池包通常由多个电池单体串联而成,但是如果电池之间的容量失配便会影响整个电池包的容量。串联而成的电池包在工作一定的时间后,由于其电芯本身的不一致、工作温度的不一致性等因素的影响,最后会表现出很大的差异,严重影响电池组的寿命和系统的使用,最终影响到了电子设备的正常使用。
对电池进行过充电以及过放电使得电池容易损坏,例如电池容量降低,寿命减小。温度过高或局部温度过高均会使电池的各项性能下降,最终导致内部短路和热失控,产生安全问题。
单体电池在长期使用中性能差异是不可避免的,这是造成电池组寿命下降的最为重要的因素之一,由于各个电池之间存在差异导致其电压不一致,并引发充电、放电时存在一系列问题。充电时,会导致有些电池过充、有些电池欠充;放电时会导致有些电池过放、有些电池欠放。为了保护电池组的安全加入了过充、过放保护电路,这样就会引发另外一个问题,那就是充电时有些电池存在欠充,即没有充满;放电时有些电池存在欠放,即整个电池组的能量没有放完,这直接影响了对电池能效的利用。为此,我们需要对失配的电池进行均衡。
现有技术中的一种电池均衡方法是在串联的每个电池上并联一个可控放电电阻来实现电压的均衡,如图1所示,分流是给每只电池添加一个额外的旁路补偿装置,图中的一个均衡单元201所示,通过外部电阻R1、开关S1的特性来补偿电池BT1的特性。充电时,当BT1电池的充电电压超过设定值时,开关S1处于闭合状态,通过并联在电池BT1的电阻R1分流该电池的一部分电流,从而达到降低该电池充电电压的目的。对于这种方案在分流时发热量大,而且仅在充电时具有实用性。这当然是难以接受的,因为这种采用将多余电能通过热能的方式进行释放,充电时如此,放电时亦然。
现有技术中的另一种电池均衡方法是切断法,在充电时,当某一电池的充电电压超过设定值时,通过自动控制开关切断该电池的电路,如图2所示。这种方法只能防止电池过压充电,但是没有均衡作用。其次,其所用的切断开关的负载能力,随电池容量增加而加得很大,不宜采用。此种方法需要充电器配合,要求充电器够适应1至n个电芯充电的能力,且在切换电池后要能够动态的调整充电电压,充电电流,实现恒流,恒压充电以及浮充等,对充电器的要求比较高,且要求智能化较高。
综上所述,现有技术中的电池均衡电路存在发热量大以及对充电器的要求高的问题。
发明内容
本发明的目的在于提供一种串联电池组均衡电路及均衡方法,旨在解决针对现有技术中的电池均衡电路存在发热量大以及对充电器的要求高的问题。
本发明是这样实现的,一种串联电池组均衡电路,所述串联电池组均衡电路包括开关模块、微控制器、充电电路以及直流变换器;
所述直流变换器的第一电压输入端和第二电压输入端连接所述串联电池组的正极和负极,所述直流变换器的电压输出端连接所述充电电路的电压输入端和所述微控制器的电压输入端,所述充电电路的电压输出端连接所述开关模块的电压输入端,所述充电电路和所述开关模块的控制端连接所述微控制器的输出端,所述开关模块的电压采集输出端连接所述微控制器的输入端;
所述直流变换器将所述串联电池组的电压进行直流变换后输出给所述充电电路和所述微控制器;
所述微控制器控制所述开关模块导通以采集所述串联电池组中每一个单体电池的电压值,并根据所述每一个单体电池的电压值获得最大电压值、最小电压值以及所有单体电池的电压均值,并计算所述最大电压值与所述最小电压值之间的电压差值,判断所述电压差值是否大于预设值,当判断结果为是时,控制所述开关模块导通使所述充电电路逐个向电压值小于所述电压均值的单体电池充电,完成充电后再驱动所述开关模块导通以采集所述串联电池组中每一个单体电池的电压值,直至所有单体电池的电压值达到电压均值;当判断结果为否时,驱动所述开关模块导通以采集所述串联电池组中每一个单体电池的电压值。
所述每一个隔离开关为电磁继电器或者场效应管式继电器。
所述直流变换器为隔离式直流变换器,所述隔离式直流变换器用于将所述串联电池组的负极与所述隔离式直流变换器的接地端隔离。
所述微控制器控制所述充电电路对所述串联电池组中的单体电池进行恒流充电或恒压充电。
所述微控制器包括:
第一降压模块、控制器、译码器以及第二反馈单元;
所述第一降压模块的输入端为所述微控制器的电压输入端,所述第一降压模块的输出端连接所述控制器的电压输入端和所述译码器的电压输入端,所述第二反馈单元的输入端为所述微控制器的输入端,所述第二反馈单元的反馈端连接所述控制器的输入端,所述控制器的输出端连接所述译码器的控制端,所述译码器的输出端分别连接所述每一个隔离开关的控制端;
所述微控制器判定所述电压差值是否大于预设值时,控制译码器使最小电压值的单体电池所对应的隔离开关导通,使所述最小电压值的单体电池的电压值达到均衡电压值。
所述微控制器的输出端连接所述充电电路的恒压控制端、恒流控制端以及使能端;
所述微控制器通过所述恒流控制端和所述使能端控制所述充电电路对所述串联电池组中的单体电池进行恒流充电,并在对所述单体电池进行恒流充电完毕后,通过所述恒压控制端和所述使能端控制所述充电电路对所述单体电池进行恒压充电。
本发明还提供一种基于上述的串联电池组均衡电路的均衡方法,所述均衡方法包括以下步骤:
A.所述直流变换器将所述串联电池组的电压进行直流变换后输出给所述充电电路和所述微控制器;
B.所述微控制器控制所述开关模块导通以采集所述串联电池组中每一个单体电池的电压值;
C.所述微控制器根据所述每一个单体电池的电压值获得最大电压值、最小电压值以及所有单体电池的电压均值,并计算所述最大电压值与所述最小电压值之间的电压差值;
D.所述微控制器判断所述电压差值是否大于预设值,是,则控制所述开关模块导通使所述充电电路逐个向电压值小于所述电压均值的单体电池充电,完成充电后返回执行所述步骤A,直至所有单体电池的电压值达到电压均值;否,则返回执行所述步骤A。
所述步骤D中,所述微控制器控制所述开关模块导通使所述充电电路逐个向电压值小于所述电压均值的单体电池充电步骤具体为:
所述微控制器按照电压值从小到大的顺序使所述充电电路依次向电压值小于所述电压均值的单体电池充电。
本发明提供串联电池组均衡电路及均衡方法,相对于现有技术可以达到如下技术效果:实现串联电池组之间电压的平衡,解决了串联电池组中的“木桶效应”,使得整个电池串联系统能实现正常的满充电和满放电,在均衡过程中具有较高的转换效率,通过采用独特的采样设计,即使再多的串联电池单体也仅需要一路ADC采样通道,同时ADC采样精度仅与单体电池电压有关,与整个串联电池组之间的电压无关,实现在充电、放电以及动态时均可实现均衡,使用较小的功率即可完成对电池的均衡,降低了功率器件的成本。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中分流法/旁路法均衡电路的结构框图;
图2是现有技术中切断法均衡电路的结构框图;
图3是本发明一种实施例提供的一种串联电池组均衡电路的结构示意图;
图4是本发明另一种实施例提供的一种串联电池组均衡电路的结构示意图;
图5是本发明一种实施例提供的一种串联电池组均衡电路中的隔离开关的电路原理图;
图6是本发明另一种实施例提供的一种串联电池组均衡电路中的隔离开关的电路原理图;
图7是本发明一种实施例提供的一种串联电池组均衡电路中的充电电路的电路原理图;
图8是本发明另一种实施例提供的一种串联电池组均衡电路中的充电电路的电路原理图;
图9是本发明一种实施例提供的一种串联电池组均衡电路中的直流变换器的电路原理图;
图10是本发明另一种实施例提供的一种串联电池组均衡电路中的直流变换器的电路原理图;
图11是本发明一种实施例提供的一种串联电池组均衡电路中的微控制器的电路原理图;
图12是本发明另一种实施例提供的一种串联电池组均衡电路中的微控制器的电路原理图;
图13是本发明一种实施例提供的串联电池组均衡电路的均衡方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明的技术方案,下面通过具体实施例来进行说明。
本发明一种串联电池组均衡系统,如图3所示,一种串联电池组101均衡电路,串联电池组均衡电路包括开关模块102、微控制器105、充电电路103以及直流变换器104。
直流变换器104的第一电压输入端和第二电压输入端连接串联电池组101的正极和负极,直流变换器104的电压输出端连接充电电路103的电压输入端和微控制器105的电压输入端,充电电路103的电压输出端连接开关模块102的电压输入端,充电电路103和开关模块102的控制端连接微控制器105的输出端,开关模块102的电压采集输出端连接微控制器105的输入端。
直流变换器104用于将串联电池组101的电压进行直流变换后输出给充电电路103和微控制器105。
微控制器105控制开关模块102导通以采集串联电池组中每一个单体电池的电压值,并根据每一个单体电池的电压值获得最大电压值、最小电压值以及所有单体电池的电压均值,并计算最大电压值与最小电压值之间的电压差值,判断电压差值是否大于预设值,当判断结果为是时,控制开关模块102导通使充电电路103逐个向电压值小于电压均值的单体电池充电,完成充电后再驱动开关模块102导通以采集串联电池组中每一个单体电池的电压值,直至所有单体电池的电压值达到电压均值;当判断结果为否时,驱动开关模块导通以采集串联电池组中每一个单体电池的电压值。
本发明一种串联电池组均衡系统的工作方式为:采集串联电池组101两端的电压作为直流变换器104的输入电压,直流变换器104的输出电压为VCC,用于提供给充电电路103以及经过降压后提供给微控制器105供电,充电电路103的输出端连接到开关模块102,微控制器105控制开关采样串联电池组101的单体电池电压值,经过计算判断后确定需要充电的单体电池,对开关模块102进行控制以实现充电电路103对特定的电池单体进行充电。
具体的,微控制器105控制开关模块102导通使充电电路103逐个向电压值小于电压均值的单体电池充电的过程为:
微控制器105按照电压值从小到大的顺序使充电电路103依次向电压值小于电压均值的单体电池充电。
为了进一步了解本发明,现通过具体的实施例对本发明的进行描述,如图4所示,串联电池组101为串联电芯BT1、BT2、BT3以及BTn所构成的电池组,所得输出的差分电压点依次为BT0、BT1、BT2、BT3、BTn-1、BTn,其中BT0与BIT1两端的电压为串联电池BT1的电压;BT1与BIT2两端的电压为串联电池BT2的电压;BT2与BIT3两端的电压为串联电池BT3的电压;BTn-1与BITn两端的电压为串联电池BTn的电压,串联电池组101均衡电路与串联电池组101之间的接口仅为BT0、BT1、BT2、BT3、BTn-1、BTn这几个差分电压点。
对于开关模块102,其包括多个隔离开关,每一个隔离开关的第一电压输入端和第二电压输入端连接串联电池组101中每一个单体电池的正极和负极,每一个隔离开关的控制端连接微控制器105的一个输出端,每一个隔离开关的电压采集输出端连接微控制器105的输入端和充电电路103的输出端。
充电电路103与串联电池组101通过多个隔离开关连接在一起,充电电路103的输入端连接隔离式DC/DC变换器的输出端,充电电路103的输出端连接多个隔离开关的采样电压端VO-ADJ,用来对微控制器105和隔离开关供电。
微控制器105对隔离开关与充电电路103相连部分的电压VO-ADJ进行采样,微控制器105的控制信号端C1~Cn分别连接隔离开关的C1~Cn,实现对BT1~BTn电压的分别采集,采集的电压值记为V1~Vn,当控制器的C1连接隔离开关的C1时,当前采集的电压是电源BT1两端的电压存在至微控制器105中,同理,依次对BT2…BTn的电压采样,存储在控制器中进行相应的运算。
具体的,作为隔离开关的一种实施方式,如图5所示,每一个隔离开关包括:第一场效应管Q1、第二场效应管Q2、第三场效应管Q3、第四场效应管Q4、第一发光二极管DS1、第二发光二极管DS2、第一电阻R1、第二电阻R2、第三电阻R3及第四电阻R4;第一场效应管Q1的漏极为隔离开关的第一电压输入端,第一场效应管Q1的源极连接第二场效应管Q2的源极,第一场效应管Q1的栅极连接第二场效应管Q2的栅极,第二场效应管Q2的漏极为隔离开关的电压采集输出端,第一发光二极管DS1的阴极与第一电阻R1的第一端共接于地,第一电阻R1的第二端连接第一发光二极管DS1的阳极和第二电阻R2的第一端,第二电阻R2的第二端为隔离开关的控制端,第三场效应管Q3的漏极为隔离开关的第二电压输入端,第三场效应管Q3的源极连接第四场效应管Q4的源极,第三场效应管Q3的栅极连接第四场效应管Q4的栅极,第四场效应管Q4的漏极与地连接,第二发光二极管DS2的阴极与第三电阻R3的第一端共接于地,第三电阻R3的第二端连接第二发光二极管DS2的阳极和第四电阻R4的第一端,第四电阻R4的第二端为隔离开关的控制端。
具体的,在隔离开关的本实施方式中,采用MOS继电器来实现的隔离开关,MOS继电器的原理是采用发光二极管来实现反串联MOS管的导通与截止,继而实现隔离控制,第一发光二极管DS1两端并联的第一电阻R1的目的是旁路与抗干扰作用,以防止第一发光二极管DS1被过大电流烧毁以及外部干扰电压造成误动作。第二电阻R2的目的也是用于限定第一发光二极管DS1的电流以防止被过大电流烧毁。当第一发光二极管DS1导通时,第一场效应管Q1和第二场效应管Q2导通;当第一发光二极管DS1截止时,第一场效应管Q1和第二场效应管Q2均不导通。由于第一场效应管Q1和第二场效应管Q2反串联,所以可以实现电流的双向控制,即交流控制。另一路第三场效应管Q3、第四场效应管Q4以及第二发光二极管DS2的工作原理与上述工作原理相同。
当控制信号C1为低电平时,第一发光二极管DS1和第二发光二极管DS2均处于截止状态,第一场效应管Q1、第二场效应管Q2、第三场效应管Q3和第四场效应管Q4均处于截止状态,即BT0、BT1与充电电路103的连接端(VO-ADJ、负极)处于断开状态;当控制信号C1为高电平时,图6中第一发光二极管DS1和第二发光二极管DS2均处于导通状态,第一场效应管Q1、第二场效应管Q2、第三场效应管Q3和第四场效应管Q4均处于导通状态,BT0连接至充电电路103的VO-ADJ,BT1连接至充电电路103的负极。
此时,控制器的控制信号C1使能时可以对BT1的电压进行采样,同理控制器控制实现依次对BT2…BTn的电压采样并存储在微控制器105中。
作为隔离开关的另一种实施方式,如图6所示,每一个隔离开关包括:双刀双掷电磁继电器、第五场效应管Q5以及第五电阻R5;双刀双掷电磁继电器K1的第一下端动触点和第二下端动触点为隔离开关的第一电压输入端和第二电压输入端,双刀双掷电磁继电器K1的第一静触点为隔离开关的电压采集输出端,双刀双掷电磁继电器K1的第二静触点与地连接,双刀双掷电磁继电器的控制端连接第五场效应管Q5的源极,第五场效应管Q5的栅极连接第五电阻R5的第一端,第五电阻R5的第二端与第五场效应管Q5的漏极共地连接,第五电阻R5的第一端为隔离开关的控制端。
在本实施方式中,采用双刀双掷电磁继电器K1来实现的隔离开关,当微控制器105的控制信号C1为低电平时,双刀双掷继电器K1处于常闭状态,BT0、BT1与充电电路103的连接端(VO-ADJ、负极)处于断开状态;当控制信号C1为高电平时,第五场效应管Q5导通,双刀双掷继电器处于工作状态,BT0连接至充电电路103的VO-ADJ,BT1连接至充电电路103的负极。
此时,控制器的控制信号C1对BT1的电压进行采样,同理控制器控制实现依次对BT2…BTn的电压采样,存储在微控制器105中,本实施例中优选电磁继电器式的开关,因其具有较低的导通电阻和较大的耐压值,采用简洁的电路并且成本较低。
对于直流变换器104,直流变换器104为隔离式直流变换器,隔离式直流变换器用于将串联电池组的负极与隔离式直流变换器的接地端隔离。
作为一种实施方式,隔离式直流变换器包括第一输入单元807、吸收单元802、变压器808、控制单元801、第一开关器件806以及第一反馈单元805;
第一输入单元807的第一输入端和第二输入端为隔离式直流变换器的第一输入端和第二输入端,第一输入单元807的输出端连接控制单元801的电压输入端、吸收单元802的第一输入端以及变压器808初级线圈的第一输入端,吸收单元802的第二输入端连接变压器808初级线圈的第二输入端和第一开关器件的输出端,控制单元801的输出端连接第一开关器件806的控制端,控制单元801的电流反馈端连接与第一开关器件806的输入端共接于地,控制单元801的电压反馈端连接第一反馈单元805的输出端,第一反馈单元805的输入端连接输出单元809的输出端,输出单元809的第一输入端和第二输入端连接变压器808次级线圈的第一输出端和第二输出端。
第一输入单元807用于将输入电压发送给变压器808,吸收单元802用于吸收变压器808初级线圈的谐波分量,第一反馈单元805用于将采集输出电压并将输出电压的采样信号发送给控制单元801,控制单元801用于采集流经第一开关器件806的电流,并根据电流值和输出电压的采样信号控制第一开关器件806的占空比以调节隔离式直流转换器的输出电压。
具体的,作为一种实施例,如图7所示,第一输入单元807包括第一电解电容C1,输出单元809包括第二电解电容C2,第一开关器件806为第六场效应管Q6,第一反馈单元805包括反馈模块804和光隔离器803,第一电解电容C1的阳极连接控制单元801的电压输入端、吸收单元802的第一输入端以及变压器初级线圈的同名端,第一电解电容C1的阳极和阴极分别为直流变换器104的第一电压输入端和第二电压输入端,吸收单元802的第二输入端连接变压器初级线圈的异名端和第六场效应管Q6的漏极,控制单元801的输出端连接第六场效应管Q6的栅极,控制单元801的电流反馈端连接第六场效应管Q6的源极和第六电阻R6的第一端,第六电阻R6的第二端与地连接,控制单元801的电压反馈端连接光隔离器803的第一输出端,光隔离器803的第二输出端与地连接,光隔离器803的第一输入端连接反馈模块804的输出端,反馈模块804的输入端连接第二电解电容C2的阳极和变压器次级线圈的异名端,变压器次级线圈的同名端连接第一二极管D1的阴极,第一二极管D1的阳极和第二电解电容C2的阴极共地连接,第二电解电容C2的阳极为直流变换器104的输出端;
吸收单元802用于吸收变压器初级线圈的谐波分量,反馈模块804用于采集直流变换器104的输出电压并将输出电压的采样信号发送给光隔离器803,光隔离器803用于将输出电压的采样信号隔离反馈给控制单元801,控制单元801用于采集流经第六场效应管Q6的电流值,并根据电流值和输出电压的采样信号控制第六场效应管Q6的占空比以调节直流转换器的输出电压。
直流变换器104优选为隔离式直流变换器104,其输入电压为电池组两端电压BT0与BTn之差,即整个串联电池组101的总电压,隔离式直流变换器104的输出电压VCC送至充电电路103,此处选择隔离式DC/DC变换器是为了防止变换器的另一输出端接到公共地端,而造成电池组的短路,隔离式DC/DC变换器的设置使得其输出地端和公共地端分开。
对于充电电路103,微控制器105控制充电电路103对串联电池组中的单体电池进行恒流充电或恒压充电。
其中,微控制器105的输出端连接充电电路103的恒压控制端、恒流控制端以及使能端,微控制器105通过恒流控制端和使能端控制充电电路103对串联电池组中的单体电池进行恒流充电,并在对单体电池进行恒流充电完毕后,通过恒压控制端和使能端控制充电电路103对单体电池进行恒压充电。
具体的,充电电路包括:充电控制器701、第二输入单元702、第二开关器件703、第三开关器件705、储能单元704以及第二反馈单元706;
第二开关器件703的输入端与第二输入单元702的输入端的共接点为充电电路103的输入端,第二开关器件703的输出端连接储能单元704的输入端、第三开关器件705的输出端以及充电控制器701的输入端,第二开关器件703的控制端连接充电控制器701的第一输出端,第三开关器件705的输入端与输入单元702的输出端共接于地,第三开关器件705的控制端连接充电控制器701的第二输出端,储存单元704的输出端连接第二反馈单元706的输入端,第二反馈单元706的反馈端连接充电控制器701的第二输入端,第二反馈单元706的输出端为充电电路的输出端,充电控制器701的控制端连接微控制器105的输出端。
充电控制器701根据采集的第二反馈单元706输出的反馈电压和微控制器105的控制信号控制第二开关器件703和第三开关器件705的占空比以调节充电电路的输出电压。
具体的,作为一种实施例,如图8所示,第二输入单元702包括第三电解电容C3,储能单元704为电感L1,第二反馈单元706为电阻R7,第二开关器件703为第七场效应管Q7,第三开关器件705为第八场效应管Q8,还包括第四电解电容C4;第七场效应管Q7的漏极与第三电解电容C3的阳极的共接点为充电电路103的输入端,第七场效应管Q7的源极连接电感的第一端、第八场效应管Q8的漏极以及充电控制器701的输入端,第七场效应管Q7的栅极连接充电控制器701的第一输出端,第八场效应管Q8的源极与第三电解电容C3的阴极共接于地,第八场效应管Q8的栅极连接充电控制器701的第二输出端,电感的第二端连接第七电阻R7的第一端和充电控制器701的第一电压采样端,第一电阻R1的第二端、充电控制器701的第二电压采样端以及第四电解电容C4的阳极的共接点为充电电路103的输出端,第四电解电容C4的阴极与地连接,充电控制器701的使能端、充电恒压控制端以及充电恒流控制端连接微控制器105的输出端。
充电控制器701根据采集的输出电压和微控制器105的控制信号控制第七场效应管Q7和第八场效应管Q8的占空比以调节充电电路103的输出电压。
充电电路103是将隔离式DC-DC变换器的输出电压VCC转换为待均衡电池的所需电压,即均衡电压,均衡电压是所有电芯电压相加后的平均值,同时给需要待均衡的电池充电和微控制器105提供供电电压。
由于给电池充电的充电电路103中会涉及到恒压、恒流充电,所以此BUCK变换器(降压变换器)中加入了电流、电压控制模式,功率部分(即:此充电电路103中进行能量传输的部分)主要由第三电解电容C3、第八场效应管Q8、第八场效应管Q8、电感、第七电阻R7、第四电解电容C4构成。充电电路103中的充电控制器701通过对输出电压VO-ADJ进行采样来实现对第八场效应管Q8、第八场效应管Q8的导通与关断控制从而实现对输出电压VO-ADJ的控制,通过对第七电阻R7两端的电压进行采样并进一步换算成电流来实现对第八场效应管Q8、第八场效应管Q8的控制从而实现对输出电流的控制。为了便于与处理器建立接口,充电电路103中的充电控制器701提供了使能端EN、充电恒流控制端C-I、充电恒压控制端C-V。充电恒流控制端C-I可以控制充电电路103在处于恒流充电模式下的电流值,充电恒压控制端C-V可以控制充电电路103在处于恒压充电模式下的电压值。在本实施例中,充电恒流控制端C-I、充电恒压控制端C-V会根据电池状态的不同和电路需求的不同,灵活设置充电电流和充电电压,满足本均衡电路的要求。
对于微控制器105,微控制器包括:第一降压模块901、控制器903、译码器904以及第二反馈单元905;第一降压模块901的输入端为微控制器105的电压输入端,第一降压模块901的输出端连接控制器903的电压输入端和译码器904的电压输入端,第二反馈单元905的输入端为微控制器105的输入端,第二反馈单元905的反馈端连接控制器905的输入端,控制器903的输出端连接译码器904的控制端,译码器904的输出端分别连接每一个隔离开关的控制端;
微控制器105判定电压差值是否大于预设值时,控制译码器904使最小电压值的单体电池所对应的隔离开关导通,使最小电压值的单体电池的电压值达到均衡电压值。
具体的,如图9所示,微控制器105包括:第一降压模块901、第二降压模块902、控制器903、译码器904、第五电容C5、第六电容C6、第七电容C7、第八电阻R8和第九电阻R9;第五电容C5的第一端和第一降压模块901的输入端的共接点连接充电电路103的输出端,第五电容C5的第二端与地连接,第一降压模块901的输出端连接第六电容C6的第一端、控制器903的电压输入端以及译码器904的电压输入端,第二降压模块902的输出端连接第七电容C7的第一端,第七电容C7的第二端与地连接,控制器903的电压采集端连接第八电阻R8的第一端和第九电阻R9的第一端,第八电阻R8的第二端为微控制器105的输入端,第九电阻R9的第二端与地连接,控制器903的输出端连接译码器904的控制端,译码器904的输出端分别连接每一个隔离开关的控制端。
微控制器105主要的功能是对串联电芯的电压进行采集并进行相关计算从而判定对每个电芯实现何种均衡模式,通过控制充电电路103来实现恒流、恒压模式充电从而实现均衡,同时向相关模块提供相应电源。主要由如下几个部分构成:将电压VCC降压成电压VCC-R的LDO模块(第一降压模块901),电压VCC-R主要用于向控制器903和译码器904提供电源,还包括将电压VCC降压成电压VCC-C的LDO模块(第二降压模块902),电压VCC-C主要用于向隔离开关提供电源(使用双刀双掷电磁继电器时)。控制器903主要用于对ADC电阻分压网络905的电压VO-ADJ进行采样,并通过控制信号EN、C-V、C-I控制充电电路103,并通过控制信号ctrl1至ctrln来控制译码器904从而控制C1至Cn。译码器904主要用于对控制信号C1至Cn进行硬件保护,根据输入信号ctrl1至ctrln让输出信号C1至Cn任何时刻仅有一个信号为高电平。因为隔离开关部分的设计要求任何时刻控制信号C1至Cn仅能有一个信号是高电平,如果存在多个高电平会导致电池组通过隔离开关短路。译码器904的选择能够保证任何时刻只有一个高电平,其他为低电平。此处译码器904也可采用模拟开关代替,但是译码器904的稳定性比模拟开关高,模拟开关不能够保证处于低电平的输出端一定为0,有可能引入其他干扰而导致电池间短路,并且译码器904的成本比模拟开关低。
微控制器105控制隔离开关依次对BT1~BTN的电压进行采集,微控制器105中根据当前采集的电压值中最大、最小值之间的差值大小来判定是否需要均衡,当采集的电压值V1~Vn中最大值与最小值之间的差值大于预设的电压阈值时Va,微控制器105会控制充电电路103对最小电压值的电池进行充电,此处预设的电压阈值Va根据电池电芯的实际电压的不同而设置,是电压最大值与最小值之间的电压偏差值,即:当V1~Vn中最大值与最小值之间的差值小于预设的电压阈值时Va时,是不需要对电芯电压进行均衡的,其中充电的均衡电压为采集到的电压值V1~Vn所有电芯电压相加后的平均值,微控制器105通过获得的各个电池的电压数据来控制充电电路103的使能EN、充电电压、充电电流以及控制隔离开关来实现充电电路103的输出连接到哪一个电池上,微控制器105会实时采集此待均衡电池的电压,对采集到的电压值V1~Vn进行排序,若需要均衡,首先对V1~Vn中最小的电压值进行均衡,并按照从小到大的顺序依次对需要均衡的电池进行充电,对需要进行均衡的电池进行均衡(即进行充电),均衡同时对该电池两端电压进行采样以判定其是否完成均衡。此处,在对待均衡电池进行充电的能量来自整个串联电池组101的能量,即:采用其他高于均衡电压的电池的电压去给待均衡电池进行充电,依次循环,直到所有电池的电压均达到均衡电压值。待一个电池完成均衡后再进行剩下需要均衡电池的均衡。待所有电池均衡完成后,再扫描所有电池以查看是否有需要均衡的电池。此种扫描方式可以实现电池充电、放电、动态的均衡。
本发明还提供一种串联电池组均衡电路的均衡方法,均衡方法包括以下步骤:
步骤S101.直流变换器104将串联电池组的电压进行直流变换后输出给充电电路103和微控制器105。
步骤S102.微控制器105控制开关模块102导通以采集串联电池组中每一个单体电池的电压值。
步骤S103.微控制器105根据每一个单体电池的电压值获得最大电压值、最小电压值以及所有单体电池的电压均值,并计算最大电压值与最小电压值之间的电压差值。
步骤S104.微控制器105判断电压差值是否大于预设值,是,则控制开关模块102导通使充电电路103逐个向电压值小于电压均值的单体电池充电,完成充电后返回执行步骤S101,直至所有单体电池的电压值达到电压均值;否,则返回执行所述步骤S101。
在步骤S104中,微控制器控制开关模块导通使充电电路逐个向电压值小于电压均值的单体电池充电步骤具体为:
微控制器按照电压值从小到大的顺序使充电电路依次向电压值小于所述电压均值的单体电池充电。
本发明提供串联电池组均衡电路及均衡方法,相对于现有技术可以达到如下技术效果:实现串联电池组之间电压的平衡,解决了串联电池组中的“木桶效应”,使得整个电池串联系统能实现正常的满充电、满放电,在均衡过程中具有较高的转换效率,通过优异的算法,使N个串联电池组最多仅需要N-1次均衡就可完成整个电池组的平衡,采用了独特的采样设计,即使再多的串联电池单体也仅需要一路ADC采样通道,同时ADC采样精度仅与单体电池电压有关,与整个串联电池组之间的电压无关,实现在充电、放电以及动态时均可实现均衡,使用较小的功率即可完成对电池的均衡,降低了功率器件的成本。
以上内容是结合具体的应用实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (10)

1.一种串联电池组均衡电路,其特征在于,所述串联电池组均衡电路包括开关模块、微控制器、充电电路以及直流变换器;
所述直流变换器的第一电压输入端和第二电压输入端连接所述串联电池组的正极和负极,所述直流变换器的电压输出端连接所述充电电路的电压输入端和所述微控制器的电压输入端,所述充电电路的电压输出端连接所述开关模块的电压输入端,所述充电电路和所述开关模块的控制端连接所述微控制器的输出端,所述开关模块的电压采集输出端连接所述微控制器的输入端;
所述直流变换器将所述串联电池组的电压进行直流变换后输出给所述充电电路和所述微控制器;
所述微控制器控制所述开关模块导通以采集所述串联电池组中每一个单体电池的电压值,并根据所述每一个单体电池的电压值获得最大电压值、最小电压值以及所有单体电池的电压均值,并计算所述最大电压值与所述最小电压值之间的电压差值,判断所述电压差值是否大于预设值,当判断结果为是时,控制所述开关模块导通使所述充电电路逐个向电压值小于所述电压均值的单体电池充电,完成充电后再驱动所述开关模块导通以采集所述串联电池组中每一个单体电池的电压值,直至所有单体电池的电压值达到电压均值;当判断结果为否时,驱动所述开关模块导通以采集所述串联电池组中每一个单体电池的电压值。
2.如权利要求1所述的串联电池组均衡电路,其特征在于,所述开关模块包括多个隔离开关,每一个隔离开关的第一电压输入端和第二电压输入端连接串联电池组中每一个单体电池的正极和负极,所述每一个隔离开关的控制端连接所述微控制器的一个输出端,所述每一个隔离开关的电压采集输出端连接所述微控制器的输入端和所述充电电路的输出端。
3.如权利要求2所述的串联电池组均衡电路,其特征在于,所述串联电池组均衡电路还包括译码器,所述译码器的控制端连接所述微控制器的输出端,所述译码器的输出端分别连接所述每一个隔离开关的控制端;
所述微控制器判定所述电压差值是否大于预设值时,控制译码器逐个导通电压值小于所述电压均值的单体电池所对应的隔离开关,使所述充电电路逐个向电压值小于所述电压均值的单体电池充电。
4.如权利要求2所述的串联电池组均衡电路,其特征在于,所述每一个隔离开关为电磁继电器或者场效应管式继电器。
5.如权利要求1所述的串联电池组均衡电路,其特征在于,所述直流变换器为隔离式直流变换器,所述隔离式直流变换器用于将所述串联电池组的负极与所述隔离式直流变换器的接地端隔离。
6.如权利要求1所述的串联电池组均衡电路,其特征在于,所述微控制器控制所述充电电路对所述串联电池组中的单体电池进行恒流充电或恒压充电。
7.如权利要求6所述的串联电池组均衡电路,其特征在于,所述微控制器包括:
第一降压模块、控制器、译码器以及第二反馈单元;
所述第一降压模块的输入端为所述微控制器的电压输入端,所述第一降压模块的输出端连接所述控制器的电压输入端和所述译码器的电压输入端,所述第二反馈单元的输入端为所述微控制器的输入端,所述第二反馈单元的反馈端连接所述控制器的输入端,所述控制器的输出端连接所述译码器的控制端,所述译码器的输出端分别连接所述每一个隔离开关的控制端;
所述微控制器判定所述电压差值是否大于预设值时,控制译码器使最小电压值的单体电池所对应的隔离开关导通,使所述最小电压值的单体电池的电压值达到均衡电压值。
8.如权利要求6所述的串联电池组均衡电路,其特征在于,所述微控制器的输出端连接所述充电电路的恒压控制端、恒流控制端以及使能端;
所述微控制器通过所述恒流控制端和所述使能端控制所述充电电路对所述串联电池组中的单体电池进行恒流充电,并在对所述单体电池进行恒流充电完毕后,通过所述恒压控制端和所述使能端控制所述充电电路对所述单体电池进行恒压充电。
9.一种基于权利要求1所述的串联电池组均衡电路的均衡方法,其特征在于,所述均衡方法包括以下步骤:
A.所述直流变换器将所述串联电池组的电压进行直流变换后输出给所述充电电路和所述微控制器;
B.所述微控制器控制所述开关模块导通以采集所述串联电池组中每一个单体电池的电压值;
C.所述微控制器根据所述每一个单体电池的电压值获得最大电压值、最小电压值以及所有单体电池的电压均值,并计算所述最大电压值与所述最小电压值之间的电压差值;
D.所述微控制器判断所述电压差值是否大于预设值,是,则控制所述开关模块导通使所述充电电路逐个向电压值小于所述电压均值的单体电池充电,完成充电后返回执行所述步骤A,直至所有单体电池的电压值达到电压均值;否,则返回执行所述步骤A。
10.如权利要求9所述的均衡方法,其特征在于,所述步骤D中,所述控制器控制所述开关模块导通使所述充电电路逐个向电压值小于所述电压均值的单体电池充电步骤具体为:
所述控制器按照电压值从小到大的顺序使所述充电电路依次向电压值小于所述电压均值的单体电池充电。
CN201510013377.5A 2015-01-09 2015-01-09 一种串联电池组均衡电路及均衡方法 Active CN104600799B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510013377.5A CN104600799B (zh) 2015-01-09 2015-01-09 一种串联电池组均衡电路及均衡方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510013377.5A CN104600799B (zh) 2015-01-09 2015-01-09 一种串联电池组均衡电路及均衡方法

Publications (2)

Publication Number Publication Date
CN104600799A true CN104600799A (zh) 2015-05-06
CN104600799B CN104600799B (zh) 2017-12-19

Family

ID=53126403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510013377.5A Active CN104600799B (zh) 2015-01-09 2015-01-09 一种串联电池组均衡电路及均衡方法

Country Status (1)

Country Link
CN (1) CN104600799B (zh)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935051A (zh) * 2015-06-30 2015-09-23 深圳市理邦精密仪器股份有限公司 一种串联电池组均衡电路
CN106611984A (zh) * 2016-03-15 2017-05-03 西安华泰半导体科技有限公司 一种电池管理方法及系统
CN106655307A (zh) * 2015-11-03 2017-05-10 北京普莱德新能源电池科技有限公司 一种电池组均衡电路
CN106785123A (zh) * 2017-01-10 2017-05-31 上海空间电源研究所 一种低轨道卫星用高压氢镍蓄电池组在轨维护方法
CN106849262A (zh) * 2017-03-20 2017-06-13 巢湖学院 电池组充放电均衡设备
CN106998089A (zh) * 2017-05-18 2017-08-01 四川长虹电器股份有限公司 一种动力电池主动均衡控制电路及系统
CN107634273A (zh) * 2016-12-26 2018-01-26 普天新能源车辆技术有限公司 动力电池的均衡系统及方法
CN107749500A (zh) * 2017-10-13 2018-03-02 合肥澎湃能源技术有限公司 用于电池均衡的方法及装置
CN107968458A (zh) * 2017-12-14 2018-04-27 成都隆航科技有限公司 一种双向充电的均衡电路
CN108110345A (zh) * 2018-01-29 2018-06-01 吉林龙璟科技有限公司 可任意配置串联蓄电池组蓄电池单体个数的装置及方法
CN108202606A (zh) * 2016-12-20 2018-06-26 深圳市雄韬电源科技股份有限公司 一种电池管理系统及其电压采集装置
CN108923088A (zh) * 2018-08-10 2018-11-30 必利恩(北京)新能源技术研究有限责任公司 蓄电池放电能力提升装置及方法
CN109450027A (zh) * 2018-11-23 2019-03-08 安徽江淮汽车集团股份有限公司 锂离子电池均衡方法
CN109936189A (zh) * 2016-07-08 2019-06-25 卓尔悦欧洲控股有限公司 串联电池的均衡充电电路、装置及其方法
CN110301054A (zh) * 2017-08-25 2019-10-01 苏州宝时得电动工具有限公司 电动工具及电动工具供电方法
CN110323801A (zh) * 2019-05-29 2019-10-11 南京理工大学 一种储能系统电池模块均衡结构及控制方法
CN110323794A (zh) * 2019-02-01 2019-10-11 成都汇云创科技有限公司 一种主动均衡的控制方法和电路
CN110785909A (zh) * 2018-08-01 2020-02-11 深圳市大疆创新科技有限公司 智能电池的控制方法、智能电池及无人机
CN110915093A (zh) * 2017-01-25 2020-03-24 麦斯韦尔技术股份有限公司 用于电容器模块平衡和保持的系统和方法
CN111129630A (zh) * 2019-12-30 2020-05-08 深圳市科陆电子科技股份有限公司 储能系统的能效优化方法
CN111758200A (zh) * 2017-11-14 2020-10-09 尼亚布科知识产权控股有限责任公司 具有局部感测和切换的单体平衡
CN111942220A (zh) * 2020-08-06 2020-11-17 广州小鹏汽车科技有限公司 电池电压分布的预警方法、预警装置和车辆
CN112202221A (zh) * 2020-09-28 2021-01-08 天津津航计算技术研究所 基于无桥隔离型电流校正技术的电池均衡电路及方法
CN112271791A (zh) * 2020-11-09 2021-01-26 西南交通大学 一种基于Buck变换器的电池组均衡控制电路及方法
CN112701735A (zh) * 2019-10-22 2021-04-23 华为技术有限公司 一种电子设备、充电方法及充电系统
CN112751393A (zh) * 2021-02-01 2021-05-04 珠海迈巨微电子有限责任公司 串联电池组的均衡芯片及电池管理系统
CN112874384A (zh) * 2021-02-26 2021-06-01 重庆星座汽车科技有限公司 一种并行充电电路
CN113054705A (zh) * 2021-03-11 2021-06-29 美钻能源科技(上海)有限公司 一种电池均衡装置及方法
CN113060019A (zh) * 2021-03-17 2021-07-02 蜂巢能源科技有限公司 动力电池包及其控制方法
CN113629822A (zh) * 2021-09-02 2021-11-09 阳光电源股份有限公司 一种储能系统及其控制方法
CN113707956A (zh) * 2021-07-17 2021-11-26 杭州中赣电子科技有限公司 一种适用于电池组的主动均衡方法、电路及存储介质
CN114188625A (zh) * 2021-12-07 2022-03-15 北京国电通网络技术有限公司 电池单体管控方法及装置
CN115622200A (zh) * 2022-12-13 2023-01-17 麦田能源有限公司 电池包的电压均衡方法、电池储能供电系统及电子装置
CN115663979A (zh) * 2022-12-13 2023-01-31 麦田能源有限公司 电池包的电压均衡方法、电池储能供电系统以及电子装置
CN115800471A (zh) * 2022-12-29 2023-03-14 无锡钊源电力电子有限公司 一种蓄电池组管理电路及控制方法
CN116345646A (zh) * 2023-05-30 2023-06-27 江苏正力新能电池技术有限公司 电池均衡方法、系统及存储介质
CN117526513A (zh) * 2023-11-13 2024-02-06 无锡市晶源微电子股份有限公司 一种电池均衡电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976866A (zh) * 2010-10-17 2011-02-16 中国船舶重工集团公司第七一二研究所 一种能量转移式电池组均衡判断及补充装置及其方法
CN102301560A (zh) * 2009-01-30 2011-12-28 Sk新技术 用于串联连接的电池组的均衡充电设备及方法
CN102447288A (zh) * 2011-12-05 2012-05-09 三门峡速达交通节能科技有限公司 一种电动汽车专用的动力锂电池组智能管理系统
JP2014121134A (ja) * 2012-12-14 2014-06-30 Mitsubishi Motors Corp 電圧バランス制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301560A (zh) * 2009-01-30 2011-12-28 Sk新技术 用于串联连接的电池组的均衡充电设备及方法
CN101976866A (zh) * 2010-10-17 2011-02-16 中国船舶重工集团公司第七一二研究所 一种能量转移式电池组均衡判断及补充装置及其方法
CN102447288A (zh) * 2011-12-05 2012-05-09 三门峡速达交通节能科技有限公司 一种电动汽车专用的动力锂电池组智能管理系统
JP2014121134A (ja) * 2012-12-14 2014-06-30 Mitsubishi Motors Corp 電圧バランス制御装置

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935051A (zh) * 2015-06-30 2015-09-23 深圳市理邦精密仪器股份有限公司 一种串联电池组均衡电路
CN106655307A (zh) * 2015-11-03 2017-05-10 北京普莱德新能源电池科技有限公司 一种电池组均衡电路
CN106611984B (zh) * 2016-03-15 2020-12-11 深圳芯典半导体科技有限公司 一种电池管理方法及系统
CN106611984A (zh) * 2016-03-15 2017-05-03 西安华泰半导体科技有限公司 一种电池管理方法及系统
CN109936189A (zh) * 2016-07-08 2019-06-25 卓尔悦欧洲控股有限公司 串联电池的均衡充电电路、装置及其方法
CN109936189B (zh) * 2016-07-08 2023-07-28 卓尔悦欧洲控股有限公司 串联电池的均衡充电电路、装置及其方法
CN108202606A (zh) * 2016-12-20 2018-06-26 深圳市雄韬电源科技股份有限公司 一种电池管理系统及其电压采集装置
CN107634273A (zh) * 2016-12-26 2018-01-26 普天新能源车辆技术有限公司 动力电池的均衡系统及方法
CN107634273B (zh) * 2016-12-26 2020-02-21 普天新能源车辆技术有限公司 动力电池的均衡系统及方法
CN106785123A (zh) * 2017-01-10 2017-05-31 上海空间电源研究所 一种低轨道卫星用高压氢镍蓄电池组在轨维护方法
CN110915093B (zh) * 2017-01-25 2024-05-24 麦斯韦尔技术股份有限公司 用于电容器模块平衡和保持的系统和方法
CN110915093A (zh) * 2017-01-25 2020-03-24 麦斯韦尔技术股份有限公司 用于电容器模块平衡和保持的系统和方法
CN106849262A (zh) * 2017-03-20 2017-06-13 巢湖学院 电池组充放电均衡设备
CN106998089A (zh) * 2017-05-18 2017-08-01 四川长虹电器股份有限公司 一种动力电池主动均衡控制电路及系统
CN110301054A (zh) * 2017-08-25 2019-10-01 苏州宝时得电动工具有限公司 电动工具及电动工具供电方法
CN107749500B (zh) * 2017-10-13 2018-08-24 合肥澎湃能源技术有限公司 用于电池均衡的方法及装置
CN107749500A (zh) * 2017-10-13 2018-03-02 合肥澎湃能源技术有限公司 用于电池均衡的方法及装置
CN111758200A (zh) * 2017-11-14 2020-10-09 尼亚布科知识产权控股有限责任公司 具有局部感测和切换的单体平衡
CN107968458A (zh) * 2017-12-14 2018-04-27 成都隆航科技有限公司 一种双向充电的均衡电路
CN108110345A (zh) * 2018-01-29 2018-06-01 吉林龙璟科技有限公司 可任意配置串联蓄电池组蓄电池单体个数的装置及方法
CN110785909A (zh) * 2018-08-01 2020-02-11 深圳市大疆创新科技有限公司 智能电池的控制方法、智能电池及无人机
CN108923088A (zh) * 2018-08-10 2018-11-30 必利恩(北京)新能源技术研究有限责任公司 蓄电池放电能力提升装置及方法
CN109450027A (zh) * 2018-11-23 2019-03-08 安徽江淮汽车集团股份有限公司 锂离子电池均衡方法
CN110323794B (zh) * 2019-02-01 2021-07-06 成都汇云创科技有限公司 一种主动均衡的控制方法和电路
CN110323794A (zh) * 2019-02-01 2019-10-11 成都汇云创科技有限公司 一种主动均衡的控制方法和电路
CN110323801A (zh) * 2019-05-29 2019-10-11 南京理工大学 一种储能系统电池模块均衡结构及控制方法
CN112701735A (zh) * 2019-10-22 2021-04-23 华为技术有限公司 一种电子设备、充电方法及充电系统
CN111129630A (zh) * 2019-12-30 2020-05-08 深圳市科陆电子科技股份有限公司 储能系统的能效优化方法
CN111942220A (zh) * 2020-08-06 2020-11-17 广州小鹏汽车科技有限公司 电池电压分布的预警方法、预警装置和车辆
CN112202221A (zh) * 2020-09-28 2021-01-08 天津津航计算技术研究所 基于无桥隔离型电流校正技术的电池均衡电路及方法
CN112202221B (zh) * 2020-09-28 2024-06-07 天津津航计算技术研究所 基于无桥隔离型电流校正技术的电池均衡电路及方法
CN112271791A (zh) * 2020-11-09 2021-01-26 西南交通大学 一种基于Buck变换器的电池组均衡控制电路及方法
CN112751393B (zh) * 2021-02-01 2024-05-31 珠海迈巨微电子有限责任公司 串联电池组的均衡芯片及电池管理系统
CN112751393A (zh) * 2021-02-01 2021-05-04 珠海迈巨微电子有限责任公司 串联电池组的均衡芯片及电池管理系统
CN112874384A (zh) * 2021-02-26 2021-06-01 重庆星座汽车科技有限公司 一种并行充电电路
CN112874384B (zh) * 2021-02-26 2022-09-02 苏州清研精准汽车科技有限公司 一种并行充电电路
CN113054705A (zh) * 2021-03-11 2021-06-29 美钻能源科技(上海)有限公司 一种电池均衡装置及方法
CN113060019A (zh) * 2021-03-17 2021-07-02 蜂巢能源科技有限公司 动力电池包及其控制方法
CN113707956A (zh) * 2021-07-17 2021-11-26 杭州中赣电子科技有限公司 一种适用于电池组的主动均衡方法、电路及存储介质
CN113707956B (zh) * 2021-07-17 2022-11-22 杭州中赣电子科技有限公司 一种适用于电池组的主动均衡方法、电路及存储介质
CN113629822A (zh) * 2021-09-02 2021-11-09 阳光电源股份有限公司 一种储能系统及其控制方法
CN114188625B (zh) * 2021-12-07 2022-09-27 北京国电通网络技术有限公司 电池单体管控方法及装置
CN114188625A (zh) * 2021-12-07 2022-03-15 北京国电通网络技术有限公司 电池单体管控方法及装置
CN115622200A (zh) * 2022-12-13 2023-01-17 麦田能源有限公司 电池包的电压均衡方法、电池储能供电系统及电子装置
CN115663979A (zh) * 2022-12-13 2023-01-31 麦田能源有限公司 电池包的电压均衡方法、电池储能供电系统以及电子装置
CN115622200B (zh) * 2022-12-13 2023-04-07 麦田能源有限公司 电池包的电压均衡方法、电池储能供电系统及电子装置
CN115800471A (zh) * 2022-12-29 2023-03-14 无锡钊源电力电子有限公司 一种蓄电池组管理电路及控制方法
CN116345646A (zh) * 2023-05-30 2023-06-27 江苏正力新能电池技术有限公司 电池均衡方法、系统及存储介质
CN117526513A (zh) * 2023-11-13 2024-02-06 无锡市晶源微电子股份有限公司 一种电池均衡电路

Also Published As

Publication number Publication date
CN104600799B (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
CN104600799A (zh) 一种串联电池组均衡电路及均衡方法
CN201360156Y (zh) 一种提高串联电池组安全性和寿命的充放电管理装置
CN101752624B (zh) 一种电池均衡充电方法及装置
CN103236732B (zh) 动力锂离子电池组的主动均衡系统及均衡方法
CN101986508B (zh) 电池均衡装置
CN201478865U (zh) 一种改进的充电均衡电路
CN101740827A (zh) 一种锂离子动力电池的主动均衡系统及其均衡方法
CN102185354A (zh) 一种用于电动自行车的锂电池组智能充放电管理控制系统
CN102005794B (zh) 一种电池组充电管理系统的管理方法
CN107147197B (zh) 一种柔性跟随式智能充电方法及充电装置
CN104935051A (zh) 一种串联电池组均衡电路
CN102593893A (zh) 一种实现电池组均衡放电的系统
CN107658936A (zh) 一种电池监测及均衡系统及其控制方法
CN101741124A (zh) 一种电池充电电路及供电装置
CN108847696A (zh) 一种电池充电均衡装置及均衡方法
CN105140998A (zh) 基于电感储能的串联电池组双向无损均衡电路
CN202111486U (zh) 用于电动自行车的锂电池组智能充放电管理控制系统
CN104953659A (zh) 一种电池组充放电均衡电路和充放电方法
CN201629586U (zh) 一种电池均衡充电装置
CN205829227U (zh) 一种锂充电电池转换电路
CN104734260A (zh) 一种动力电池均衡充电方法及系统
CN103812153A (zh) 新能源汽车用主动平衡式bms控制模块及其控制方法
CN202076812U (zh) 串放并充的二次动力电池组
CN204947672U (zh) 基于电感储能的串联电池组双向无损均衡电路
CN204732926U (zh) 一种电池组充放电均衡电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant