CN104597802B - A kind of reproducible data collecting system of superelevation sample rate - Google Patents
A kind of reproducible data collecting system of superelevation sample rate Download PDFInfo
- Publication number
- CN104597802B CN104597802B CN201410701064.4A CN201410701064A CN104597802B CN 104597802 B CN104597802 B CN 104597802B CN 201410701064 A CN201410701064 A CN 201410701064A CN 104597802 B CN104597802 B CN 104597802B
- Authority
- CN
- China
- Prior art keywords
- data
- phase
- clock
- memory
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005070 sampling Methods 0.000 claims abstract description 53
- 238000012545 processing Methods 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- 238000001914 filtration Methods 0.000 claims abstract description 7
- 238000013500 data storage Methods 0.000 claims description 14
- 238000007726 management method Methods 0.000 claims description 6
- 230000003139 buffering effect Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000013480 data collection Methods 0.000 description 4
- 101000798707 Homo sapiens Transmembrane protease serine 13 Proteins 0.000 description 2
- 102100032467 Transmembrane protease serine 13 Human genes 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Analogue/Digital Conversion (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
本发明提供了一种超高采样率可重现数据采集系统,该系统包括ADC模数转换芯片、嵌入式CPU、FPGA处理单元以及数据存储器,通过FPGA的DCM单元产生n个相位相差2π/n的时钟信号,每一次数据采集时给ADC不同相位的时钟信号,实现不同相位的数据采集,最后在FPGA中将不同相位的数据采集结果组合起来,共同组成ADC采样率n倍的高采样率数据采集结果。其中,对每一个相位的数据采集进行多次重复采集以进行滤波处理,可以消除噪声,进一步提高数据采集系统的性能。该系统实现了一个低速率的模数转换芯片进行高采样率数据采集的工作,系统控制简单,对FPGA的运算能力要求较低,易于实现,且采集的数据精度较高。
The invention provides a reproducible data acquisition system with an ultra-high sampling rate. The system includes an ADC analog-to-digital conversion chip, an embedded CPU, an FPGA processing unit, and a data memory. The DCM unit of the FPGA generates n phases with a difference of 2π/n The clock signal of different phases is given to the ADC for each data acquisition to realize data acquisition of different phases. Finally, the data acquisition results of different phases are combined in the FPGA to form a high sampling rate data of n times the ADC sampling rate. Collect results. Among them, the data acquisition of each phase is collected repeatedly for filtering processing, which can eliminate noise and further improve the performance of the data acquisition system. The system implements a low-rate analog-to-digital conversion chip for high-sampling-rate data acquisition. The control of the system is simple, and the computing power of the FPGA is low. It is easy to implement, and the accuracy of the collected data is high.
Description
技术领域technical field
本发明涉及一种数据采集系统,特别涉及一种超高采样率可重现数据采集系统。The invention relates to a data acquisition system, in particular to an ultra-high sampling rate reproducible data acquisition system.
背景技术Background technique
现代电子技术的飞速发展,使得嵌入式处理器性能不断提升,例如当前的ARM系列嵌入式处理器,其性能已经不亚于两三年前的PC处理器。这些高速的嵌入式处理器衍生了越来越多的嵌入式高速数据处理系统。然而,对数据进行采样量化的模数转换芯片的性能提升却远远落后于处理器性能提升的速度。因此如何实现高速,精确,大数据量的数据采集数据成为现代嵌入式数据处理系统的关键和瓶颈所在。The rapid development of modern electronic technology has continuously improved the performance of embedded processors. For example, the performance of the current ARM series embedded processors is no less than that of PC processors two or three years ago. These high-speed embedded processors have derived more and more embedded high-speed data processing systems. However, the performance improvement of analog-to-digital conversion chips that sample and quantize data lags far behind the speed of processor performance improvement. Therefore, how to achieve high-speed, accurate, and large-scale data acquisition has become the key and bottleneck of modern embedded data processing systems.
数据采集单元通常采用模数转换芯片(ADC) 对模拟信号进行采样量化转换为数字型号之后进行采集,而其采样的速度,即采样率就受限于模数转换芯片的采样率参数。为了实现超高速的数据采集,通常的做法是采用多块模数转换芯片组成AD转换阵列,每块转换芯片接不同相位的采样时钟,然后再采用FPGA将不同的相位的采样结果组合起来,合成一个高采样率的采样结果,如专利号为CN202033737U的中国实用新型专利中方法,即为利用两个采样速率为125MSPS的A/D转换器并行交替采样一路信号,实现了250MSPS的采样速率。但是,这种多块AD转换芯片分相位采集的办法需要多块AD芯片和较多的FPGA管脚,成本较高并且容易造成FPGA资源不足。另外从性能上来看,多块AD芯片数据采集系统还会因为各个AD芯片的一些参数差异而造成不同相位之间有一定的幅度和直流偏置的差异,从而造成最终合成的信号失真较大。The data acquisition unit usually uses an analog-to-digital conversion chip (ADC) to sample and quantify the analog signal and convert it into a digital model for collection, and its sampling speed, that is, the sampling rate, is limited by the sampling rate parameter of the analog-to-digital conversion chip. In order to achieve ultra-high-speed data acquisition, the usual practice is to use multiple analog-to-digital conversion chips to form an AD conversion array, each conversion chip is connected to a sampling clock of different phases, and then FPGA is used to combine the sampling results of different phases to synthesize A high sampling rate sampling result, such as the method in the Chinese utility model patent with the patent number CN202033737U, is to use two A/D converters with a sampling rate of 125MSPS to alternately sample one signal in parallel to achieve a sampling rate of 250MSPS. However, this method of phase-separated acquisition with multiple AD conversion chips requires multiple AD chips and more FPGA pins, which is costly and likely to cause insufficient FPGA resources. In addition, from the performance point of view, the multi-block AD chip data acquisition system will also cause certain amplitude and DC bias differences between different phases due to some parameter differences of each AD chip, resulting in large distortion of the final synthesized signal.
可重现数据采集,是指待采集的数据可以重复出现,即可以重复采集,很多嵌入式测量应用中的数据都具有这一特性,例如激光测距仪。本发明针对这种数据采集应用场合,提出了一种采用低采样率模数转换芯片通过多次重复采集实现高采样率数据采集的方法。Reproducible data collection means that the data to be collected can appear repeatedly, that is, it can be collected repeatedly. Many data in embedded measurement applications have this characteristic, such as laser range finders. Aiming at such data acquisition application occasions, the present invention proposes a method for realizing high sampling rate data acquisition by using a low sampling rate analog-to-digital conversion chip through multiple repeated acquisitions.
发明内容Contents of the invention
本发明的目的在于提供一种超高采样率可重现数据采集系统,以解决现有的采用多个低采样率的模数转换芯片进行数据采样所存在的信号失真较大,易于造成FPGA资源不足的问题。The purpose of the present invention is to provide a reproducible data acquisition system with an ultra-high sampling rate, so as to solve the problem that existing signal distortions caused by multiple low-sampling-rate analog-to-digital conversion chips for data sampling are relatively large, which easily causes FPGA resources to Insufficient problem.
本发明的第二目的在于,提供一种超高采样率可重现数据采集系统,以实现通过一个低采样率的模数转换芯片通过多次重复采集数据实现超高采样率的数据采集。The second object of the present invention is to provide a reproducible data acquisition system with an ultra-high sampling rate, so as to realize data acquisition at an ultra-high sampling rate by repeatedly collecting data through an analog-to-digital conversion chip with a low sampling rate.
为实现上述目的,本发明提供了一种超高采样率可重现数据采集系统,包括一模数转换芯片、嵌入式CPU、FPGA处理单元以及数据存储器,所述FPGA处理单元包括ADC接口模块、多相位时钟产生模块、数据处理模块、MIG内存接口模块、CPU数据读写模块以及CPU控制寄存器;To achieve the above object, the invention provides a reproducible data acquisition system with an ultra-high sampling rate, comprising an analog-to-digital conversion chip, an embedded CPU, an FPGA processing unit and a data memory, and the FPGA processing unit includes an ADC interface module, Multi-phase clock generation module, data processing module, MIG memory interface module, CPU data reading and writing module and CPU control register;
所述嵌入式CPU用于向所述CPU控制寄存器中写入采集相位信号和采集开始信号;The embedded CPU is used to write the acquisition phase signal and the acquisition start signal into the CPU control register;
CPU控制寄存器用于将所述采集相位信号和采集开始信号传送给所述多相位时钟产生模块;所述多相位时钟产生模块用于根据接收的采集开始信号产生n个相位相差为2π/n的时钟信号,并根据接收的采集相位信号选取该n个时钟信号中的第i路信号输入所述模数转换芯片,i、n为正整数,且1≤i≤n;The CPU control register is used to transmit the acquisition phase signal and the acquisition start signal to the multi-phase clock generation module; the multi-phase clock generation module is used to generate n phase differences according to the received acquisition start signal and be 2π/n clock signal, and select the i-th road signal in the n clock signals according to the received acquisition phase signal to input the analog-to-digital conversion chip, where i and n are positive integers, and 1≤i≤n;
所述模数转换芯片用于根据收到的第i路时钟信号进行数据采集并将采集的第i路数据输入所述ADC接口模块;The analog-to-digital conversion chip is used to collect data according to the received i-th clock signal and input the collected i-th data into the ADC interface module;
所述ADC接口模块用于对采集的第i路数据进行数据缓存和时钟同步处理,并将处理后的第i路数据输入所述数据处理模块;The ADC interface module is used to perform data buffering and clock synchronization processing on the collected i-th data, and input the processed i-th data into the data processing module;
所述MIG内存接口模块用于对所述数据存储器中的第i路数据进行读写操作;The MIG memory interface module is used to read and write the i-th data in the data memory;
所述数据存储器用于存储所述MIG内存接口模块写入的第i路数据;The data memory is used to store the i-th data written by the MIG memory interface module;
所述数据处理模块用于对输入的处理后的第i路数据进行滤波降噪处理得到滤波降噪的第i路数据,同时所述数据处理模块将滤波降噪的第i路数据与所述MIG内存接口模块读取的来自数据存储器的第i路数据进行加权平均运算,得到加权平均后的第i路数据,并通过所述MIG内存接口模块将加权平均后的第i路数据写入数据存储器;The data processing module is used to perform filtering and noise reduction processing on the input processed i-th data to obtain filtered and noise-reduced i-th data, and at the same time, the data processing module combines the filtered and noise-reduced i-th data with the The i-th data from the data memory read by the MIG memory interface module is subjected to a weighted average operation to obtain the i-th data after the weighted average, and the i-th data after the weighted average is written into the data through the MIG memory interface module memory;
其中,所述模数转换芯片为低速率ADC模数转换芯片,每次数据采集时,所述嵌入式CPU通过所述FPGA处理单元控制所述模数转换芯片完成n个时钟信号的n路数据采集并将得到的n路数据分别写入数据存储器;Wherein, the analog-to-digital conversion chip is a low-rate ADC analog-to-digital conversion chip, and each time data is collected, the embedded CPU controls the analog-to-digital conversion chip through the FPGA processing unit to complete the n-way data of n clock signals Collect and write the obtained n-way data into the data memory respectively;
所述CPU数据读写模块用于将所述数据存储器中的n路数据按相位组合,得到最终的高分辨率采样数据,并通过CPU控制寄存器将最终的高分辨率采样数据数据输入嵌入式CPU。The CPU data read-write module is used to combine the n-way data in the data memory by phase to obtain the final high-resolution sampling data, and input the final high-resolution sampling data into the embedded CPU through the CPU control register .
较佳地,所述多相位时钟产生模块包括一相位选择寄存器及一DCM时钟管理单元,所述DCM时钟管理单元用于根据接收的采集开始信号产生n个相位相差为2π/n的时钟信号,并将该n路时钟信号输入所述相位选择寄存器;所述相位选择寄存器根据接收的采集相位信号将该n个时钟信号中的第i路时钟信号输入所述模数转换芯片。Preferably, the multi-phase clock generation module includes a phase selection register and a DCM clock management unit, the DCM clock management unit is used to generate n clock signals with a phase difference of 2π/n according to the received acquisition start signal, and inputting the n clock signals into the phase selection register; the phase selection register inputs the i-th clock signal among the n clock signals into the analog-to-digital conversion chip according to the received acquisition phase signal.
较佳地,数据存储器包括n个数据存储区,分别为相位0数据存储区至相位n数据存储区;其中,相位i数据存储区用于存储第i路时钟信号作用下写入的数据。Preferably, the data memory includes n data storage areas, which are phase 0 data storage area to phase n data storage area; wherein, the phase i data storage area is used to store data written under the action of the i-th clock signal.
较佳地,所述数据处理模块进行的加权平均运算具体为:将相位i新采集的数据与系数w0相乘,将所述数据存储器存储的相位i的数据与w1相乘,再将两路相乘后的数据相加,即得到加权平均后的相位i的新数据。Preferably, the weighted average operation performed by the data processing module is specifically: multiplying the newly acquired data of phase i by coefficient w0, multiplying the data of phase i stored in the data memory by w1, and then multiplying the two channels The multiplied data are added together to obtain new data of phase i after weighted average.
本发明的系统设计方案原理是通过FPGA的DCM单元产生n个相位相差2π/n的时钟信号,每一次数据采集时给ADC不同相位的时钟信号,实现不同相位的数据采集,最后在FPGA中将不同相位的数据采集结果组合起来,共同组成ADC采样率n倍的高采样率数据采集结果。其中,对每一个相位的数据采集进行多次重复采集以进行滤波处理,可以消除噪声,进一步提高数据采集系统的性能。The principle of the system design scheme of the present invention is to generate n clock signals with a phase difference of 2π/n through the DCM unit of the FPGA, and give the clock signals of different phases to the ADC during each data acquisition to realize data acquisition of different phases, and finally in the FPGA. The data acquisition results of different phases are combined to form a high sampling rate data acquisition result of n times the ADC sampling rate. Among them, the data acquisition of each phase is collected repeatedly for filtering processing, which can eliminate noise and further improve the performance of the data acquisition system.
本方案主要由一个低速率的模数转换芯片,FPGA,数据存储器和嵌入式CPU共同组成,其中ADC完成数据的采样量化,FPGA负责完成主要的控制和数据处理操作,数据存储器负责存储采集的数据。该系统实现了一个低速率的模数转换芯片进行高采样率数据采集的工作,系统控制简单,对FPGA的运算能力要求较低,易于实现,且采集的数据精度较高。This solution is mainly composed of a low-rate analog-to-digital conversion chip, FPGA, data memory and embedded CPU. The ADC completes the sampling and quantification of data, FPGA is responsible for the main control and data processing operations, and the data memory is responsible for storing the collected data. . The system implements a low-rate analog-to-digital conversion chip for high-sampling-rate data acquisition. The system is simple to control, requires less computing power of the FPGA, is easy to implement, and collects data with higher precision.
附图说明Description of drawings
图1为本发明的基本原理示意图;Fig. 1 is a schematic diagram of the basic principles of the present invention;
图2为本发明优选实施例的超高采样率可重现数据采集系统组成示意图;Fig. 2 is a schematic composition diagram of the ultra-high sampling rate reproducible data acquisition system of the preferred embodiment of the present invention;
图3A为本发明优选实施例的多相位时钟模块组成结构示意图;FIG. 3A is a schematic diagram of the composition and structure of a multi-phase clock module in a preferred embodiment of the present invention;
图3B为与图3A中的多相位时钟模块组成结构对应的时钟信号关系图;FIG. 3B is a clock signal relationship diagram corresponding to the composition structure of the multi-phase clock module in FIG. 3A;
图4为数据处理模块的加权平均处理过程示意图。Fig. 4 is a schematic diagram of the weighted average processing process of the data processing module.
具体实施方式detailed description
为更好地说明本发明,兹以一优选实施例,并配合附图对本发明作详细说明,具体如下:In order to better illustrate the present invention, the present invention will be described in detail with a preferred embodiment and with accompanying drawings, specifically as follows:
参见图1所示,每次数据采集中进行4次采样。当采用低采样率的模数转换芯片ADC对数据进行采集时,第一次采集图1中标号为1的箭头对应的采样点,即A、E和I点;第二次采样采集标号2对应箭头的采样点,即B、F、J点;第三次采样采集标号3对应箭头的采样点,即C、G点,第四次采样采集标号4对应箭头的采样点,即D、H点。通过FPGA将这四次采样的结果组合起来,就得到上图中A、B、C、D、E、F、G、H、I及J的一个四倍采样率的采样信号。本实施例以4个时钟信号进行采样,通过4组相位相差90度的时钟分为4次采样,分别采集到对应于图1中标号为1,2,3,4的箭头对应的采样点,再在FPGA中进行组合,就可以实现4倍采样率的高速采集。As shown in Figure 1, 4 samples are taken in each data acquisition. When the data is collected by the analog-to-digital conversion chip ADC with a low sampling rate, the sampling points corresponding to the arrows marked 1 in Figure 1 are collected for the first time, that is, points A, E and I; The sampling points of the arrows, that is, points B, F, and J; the sampling points of the arrows corresponding to the number 3 of the third sampling, that is, points C and G, and the sampling points of the arrows corresponding to the number 4 of the fourth sampling, that is, points D and H . Combining the results of these four samplings through the FPGA, a sampling signal of four times the sampling rate of A, B, C, D, E, F, G, H, I, and J in the above figure is obtained. In this embodiment, 4 clock signals are used for sampling, and 4 sets of clocks with a phase difference of 90 degrees are divided into 4 samples, and the sampling points corresponding to the arrows labeled 1, 2, 3, and 4 in FIG. 1 are respectively collected. Then combined in FPGA, high-speed acquisition of 4 times the sampling rate can be realized.
本实施例所提供的超高采样率可重现数据采集系统如图2所示,该系统包括一模数转换芯片10、嵌入式CPU20、FPGA处理单元30以及数据存储器40, FPGA处理单元30包括ADC接口模块31、多相位时钟产生模块32、数据处理模块33、MIG内存接口模块34、CPU数据读写模块35以及CPU控制寄存器36;其中,多相位时钟产生模块32包括一相位选择寄存器321及一DCM时钟管理单元322。The ultra-high sampling rate provided by the present embodiment can reproduce the data acquisition system as shown in Figure 2, and this system comprises an analog-to-digital conversion chip 10, embedded CPU20, FPGA processing unit 30 and data memory 40, and FPGA processing unit 30 comprises ADC interface module 31, multi-phase clock generation module 32, data processing module 33, MIG memory interface module 34, CPU data read-write module 35 and CPU control register 36; Wherein, multi-phase clock generation module 32 comprises a phase selection register 321 and A DCM clock management unit 322 .
该系统工作时,由CPU控制寄存器36传送采集相位信号和采集开始信号至多相位时钟产生模块32。如图3A所示,多相位时钟产生模块32中的DCM时钟管理单元322根据接收的采集开始信号(clk_in)产生4个相位相差为π/2的时钟信号,并将该4路时钟信号输入相位选择寄存器321。这四路信号如图3B所示,分别为相位0(clk 0),相位90度(clk 90),相位180度(clk 180)及相位270度(clk 270)四路时钟信号。相位选择寄存器321根据接收的采集相位信号选择该4个时钟信号中的第i路时钟信号(相位为πi/2)作为ADC采样时钟输入模数转换芯片10以及ADC接口模块31。本实施例中,i为正整数,且1≤i≤4。When the system is working, the CPU control register 36 transmits the acquisition phase signal and the acquisition start signal to the multi-phase clock generation module 32 . As shown in Figure 3A, the DCM clock management unit 322 in the multi-phase clock generation module 32 generates four clock signals with a phase difference of π/2 according to the received acquisition start signal (clk_in), and inputs the four clock signals into the phase Select register 321 . These four signals are shown in FIG. 3B , which are four clock signals of phase 0 (clk 0), phase 90 degrees (clk 90), phase 180 degrees (clk 180) and phase 270 degrees (clk 270). The phase selection register 321 selects the i-th clock signal (with a phase of πi/2) among the four clock signals according to the received acquisition phase signal as the ADC sampling clock to input to the analog-to-digital conversion chip 10 and the ADC interface module 31 . In this embodiment, i is a positive integer, and 1≤i≤4.
模数转换芯片10根据收到的第i路时钟信号以该时钟信号为时钟基准进行数据采集并将采集的第i路数据输入ADC接口模块31;The analog-to-digital conversion chip 10 performs data acquisition according to the received i-th clock signal with the clock signal as a clock reference and inputs the collected i-th road data into the ADC interface module 31;
ADC接口模块31对采集的第i路数据进行数据缓存,并根据所接收的来自多相位时钟产生模块32的第i路时钟信号相结合做时钟同步处理,并将时钟同步处理后的数据输入数据处理模块33。The ADC interface module 31 performs data buffering on the collected i-th road data, and performs clock synchronization processing according to the received i-th road clock signal from the multi-phase clock generation module 32, and inputs the clock synchronously processed data into the data processing module 33.
MIG内存接口模块34对数据存储器40中的第i路数据执行读写操作。The MIG memory interface module 34 performs read and write operations on the i-th path of data in the data memory 40 .
数据存储器40用于存储MIG内存接口模块34写入的第i路数据。The data memory 40 is used to store the i-th way of data written by the MIG memory interface module 34 .
数据处理模块33对输入的时钟同步处理后的第i路数据进行滤波降噪处理得到滤波降噪的第i路数据,同时数据处理模块33将滤波降噪的第i路数据与通过MIG内存接口模块34读取的来自数据存储器40的第i路数据进行加权平均运算,得到加权平均后的第i路数据,并将加权平均后的第i路数据通过MIG内存接口模块34写入数据存储器40。The data processing module 33 performs filtering and noise reduction processing on the i-th data after input clock synchronization processing to obtain the i-th data with filtering and noise reduction, and at the same time, the data processing module 33 combines the i-th data with filtering and noise reduction through the MIG memory interface The i-th road data read by the module 34 from the data memory 40 performs a weighted average calculation to obtain the i-th road data after the weighted average, and write the i-th road data after the weighted average into the data memory 40 through the MIG memory interface module 34 .
其中,模数转换芯片10为低速率的ADC模数转换芯片,本实施例中的ADC模数转换芯片的数据采样速率为125MSPS。采用本系统进行数据采集的过程中,每次数据采集时,嵌入式CPU20通过FPGA处理单元30控制模数转换芯片10完成4个时钟信号的数据采集,并将得到的4种不同相位的数据分别写入数据存储器40。Wherein, the analog-to-digital conversion chip 10 is a low-rate ADC analog-to-digital conversion chip, and the data sampling rate of the ADC analog-to-digital conversion chip in this embodiment is 125 MSPS. In the process of using this system to collect data, each time data is collected, the embedded CPU 20 controls the analog-to-digital conversion chip 10 through the FPGA processing unit 30 to complete the data collection of 4 clock signals, and the data of 4 different phases obtained are respectively Write data memory 40.
嵌入式CPU20发送获取数据指令给CPU控制寄存器36,CPU控制寄存器36发送控制指令给CPU数据读写模块,由CPU数据读写模块35将数据存储器中所存储的数据按相位组合,得到最终的高分辨率采样数据,该采样数据的采样速率为4×125MSPS=500 MSPS,并再次通过CPU控制寄存器36将最终的高分辨率采样数据数据输入嵌入式CPU20,即完成一次的数据采集工作。Embedded CPU 20 sends acquisition data instruction to CPU control register 36, and CPU control register 36 sends control instruction to CPU data read-write module, and the data stored in the data memory is combined by phase by CPU data read-write module 35, obtains final high resolution sampling data, the sampling rate of the sampling data is 4×125MSPS=500 MSPS, and the final high-resolution sampling data is input into the embedded CPU20 through the CPU control register 36 again, that is, one data acquisition work is completed.
如图4所示,数据存储器40包括4个数据存储区,分别为相位0数据存储区、相位1数据存储区、相位3数据存储区及相位4数据存储区。其中,相位i数据存储区用于存储第i路时钟信号作用下写入的数据。数据处理模块33的加权平均运算具体为将相位i新采集的数据与系数w0相乘,将数据存储器40存储的相位n的数据与w1相乘,再将两路相乘后的数据相加,即得到处理过的相位i(第i路)的新数据(即加权平均后的第i路数据)。其中,加权值w0和w1可以根据不同的需求通过嵌入式CPU设置,实现灵活的降噪处理。As shown in FIG. 4 , the data memory 40 includes four data storage areas, which are phase 0 data storage area, phase 1 data storage area, phase 3 data storage area and phase 4 data storage area. Wherein, the phase i data storage area is used to store the data written under the action of the i-th clock signal. The weighted average calculation of the data processing module 33 is specifically to multiply the newly collected data of the phase i with the coefficient w0, multiply the data of the phase n stored in the data memory 40 with w1, and then add the two-way multiplied data, That is, the new data of the processed phase i (i-th road) (that is, the i-th road data after weighted average) is obtained. Among them, the weighted values w0 and w1 can be set through the embedded CPU according to different requirements, so as to realize flexible noise reduction processing.
当然,本发明不以上述实施例为限,具体实施时,每次数据采集可以进行n个相位差为2π/n的时钟信号的低采样率的数据采集,n为大于1的整数。相应地,其余器件性能参数也不受上述实施例限制。Certainly, the present invention is not limited to the above-mentioned embodiments. During specific implementation, each data collection can carry out data collection at a low sampling rate of n clock signals with a phase difference of 2π/n, where n is an integer greater than 1. Correspondingly, other device performance parameters are not limited by the above-mentioned embodiments.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何本领域的技术人员在本发明揭露的技术范围内,对本发明所做的变形或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述的权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any deformation or replacement made by those skilled in the art within the technical scope disclosed in the present invention shall be Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410701064.4A CN104597802B (en) | 2014-11-28 | 2014-11-28 | A kind of reproducible data collecting system of superelevation sample rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410701064.4A CN104597802B (en) | 2014-11-28 | 2014-11-28 | A kind of reproducible data collecting system of superelevation sample rate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104597802A CN104597802A (en) | 2015-05-06 |
CN104597802B true CN104597802B (en) | 2017-10-03 |
Family
ID=53123665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410701064.4A Active CN104597802B (en) | 2014-11-28 | 2014-11-28 | A kind of reproducible data collecting system of superelevation sample rate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104597802B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105847714B (en) * | 2016-05-24 | 2018-10-09 | 中国科学院长春光学精密机械与物理研究所 | The delay of CMOS input image datas corrects system |
CN106444352B (en) * | 2016-11-08 | 2019-05-03 | 青岛大豪信息技术有限公司 | A kind of clock method for synchronously measuring and system based on double buffering |
CN107374621B (en) * | 2017-08-31 | 2020-12-22 | 华南理工大学 | A channel sampling rate allocation method for EEG signal acquisition |
CN109738907A (en) * | 2019-03-13 | 2019-05-10 | 武汉海达数云技术有限公司 | Laser waveform data acquisition device and method |
CN112462192A (en) * | 2020-11-04 | 2021-03-09 | 南京航空航天大学 | ADC frequency increasing system and method for aviation cable fault detection based on TDR technology |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101834715A (en) * | 2010-04-26 | 2010-09-15 | 华为技术有限公司 | A data processing method, a data processing system, and a data processing device |
EP2092681B1 (en) * | 2006-11-29 | 2011-04-13 | Nxp B.V. | Method and circuit for receiving data |
-
2014
- 2014-11-28 CN CN201410701064.4A patent/CN104597802B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2092681B1 (en) * | 2006-11-29 | 2011-04-13 | Nxp B.V. | Method and circuit for receiving data |
CN101834715A (en) * | 2010-04-26 | 2010-09-15 | 华为技术有限公司 | A data processing method, a data processing system, and a data processing device |
Non-Patent Citations (6)
Title |
---|
基于FPGA的高速数据采集系统的研究;郝亮;《中国优秀硕士学位论文全文数据库信息科技辑》;20110715(第07期);I140-444 * |
基于FPGA高速数据采集的解决方案;于晅;《现代电子技术》;20070531(第5期);第145-151页 * |
基于等效时间采样的高速数据采集技术;陈小桥;《电测与仪表》;20020830;第39卷(第440期);第23-25页 * |
基于等效采样的高速数据采集系统的设计与实现;王丹;《中国优秀硕士学位论文全文数据库信息科技辑》;20120215(第02期);I140-563 * |
超高速数据采集系统研究;黄颋挺;《中国优秀硕士学位论文全文数据库信息科技辑》;20090515(第05期);I140-427 * |
高速数据采集系统中时钟模块的设计与实现;王红林;《自动化技术与应用》;20070625;第26卷(第6期);第102-103页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104597802A (en) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104597802B (en) | A kind of reproducible data collecting system of superelevation sample rate | |
JP6716603B2 (en) | Method and apparatus for increasing the resolution of time-of-flight pixel arrays | |
CN104753502B (en) | A kind of DDS signal generator and its implementation based on FPGA | |
CN101247137B (en) | A Parallel Sampling System for UWB Analog Signals Based on Random Projection | |
CN101867371B (en) | Realization Method of Linear Frequency Modulation Signal Based on FPGA | |
CN102339324A (en) | High-speed data acquisition card implemented on basis of hardware | |
CN101577025B (en) | A New Data Acquisition Accumulator and Its Implementation Method | |
CN101097129A (en) | CCD data acquisition and processing device for high-speed displacement measurement | |
CN104102690B (en) | Storage structure based telemetry data processing method | |
CN202306538U (en) | High-speed data acquisition card realized based on hardware | |
CN103776907B (en) | Ultrasonic phase array based on sinc interpolation receives signal essence time-delay method | |
CN103389413B (en) | A kind of real-time statistical method of spectral histogram | |
Walczak et al. | Optimization of real-time ultrasound PCIe data streaming and OpenCL processing for SAFT imaging | |
CN110535551A (en) | The synchronous method and system of failure wave-recording sampled data in a kind of electric system | |
CN106093884A (en) | A kind of manifold relevant treatment implementation method of based on FPGA of improvement | |
CN204143431U (en) | The low delayed data of a kind of high speed gathers totalizer | |
CN101236488B (en) | Synergic distribution type processing method and device | |
CN102937657A (en) | Real-time correction method and system for high-speed atomic force microscopic imaging | |
CN103152383B (en) | Large-Scale Digital Correlator and Correlation Operation Processing Method Based on GPU Architecture | |
CN103178783A (en) | Summation modulation signal generator and summation modulation signal generation method | |
CN117150310A (en) | An FPGA-based fast Fourier transform spectrum extraction optimization method | |
CN101515156B (en) | Precise time measuring method | |
CN204440089U (en) | A kind of grating scale data acquisition system (DAS) | |
CN109116353B (en) | Using FPGA to realize the method of stolt interpolation and FPGA system | |
CN101915864B (en) | Vector oscilloscope device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |