CN104584626B - 低速无线网络中用于长分组的改进分段 - Google Patents

低速无线网络中用于长分组的改进分段 Download PDF

Info

Publication number
CN104584626B
CN104584626B CN201380044729.2A CN201380044729A CN104584626B CN 104584626 B CN104584626 B CN 104584626B CN 201380044729 A CN201380044729 A CN 201380044729A CN 104584626 B CN104584626 B CN 104584626B
Authority
CN
China
Prior art keywords
data
acknowledgement
data slot
mfa
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380044729.2A
Other languages
English (en)
Other versions
CN104584626A (zh
Inventor
Z·全
S·莫林
S·P·阿伯拉翰
A·阿斯特加迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/597,758 external-priority patent/US20130230059A1/en
Priority claimed from US14/011,680 external-priority patent/US20140056223A1/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN104584626A publication Critical patent/CN104584626A/zh
Application granted granted Critical
Publication of CN104584626B publication Critical patent/CN104584626B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种方法包括在发射机处基于该发射机的参数来确定该发射机是否支持多片段确收(MFA)。该方法还包括向接收机传送第一帧。响应于确定该发射机支持MFA,第一帧的亚1千兆赫(S1G)能力元素的S1G能力信息字段的片段块确收(BA)支持子字段具有第一值。响应于确定该发射机不支持MFA,片段BA支持子字段具有第二值。

Description

低速无线网络中用于长分组的改进分段
相关申请的交叉引用
本申请是于2012年8月29日提交的共同拥有的美国专利申请No.13/597,758的部分继续申请,该美国专利申请No.13/597,758要求共同拥有的于2011年9月2日提交的美国临时专利申请61/530,753、以及于2012年7月9日提交的美国临时专利申请61/669,608的优先权,这些申请中每一者的内容通过援引全部明确纳入于此。
领域
本申请一般涉及无线通信,尤其涉及用于低速无线网络中的分组分段的系统、方法和设备。
背景技术
在许多通信系统中,通信网络被用于在若干个空间上分开的交互设备之间交换消息。网络可根据地理范围来分类,该地理范围可以例如是城市区域、局部区域或者个人区域。此类网络会分别被命名为广域网(WAN)、城域网(MAN)、局域网(LAN)、或个域网(PAN)。网络还根据用于互连各种网络节点和设备的交换/路由技术(例如,电路交换-分组交换)、传输所采用的物理介质的类型(例如,有线-无线)、和所使用的通信协议集(例如,网际协议套集、SONET(同步光学联网)、以太网等)而有所不同。
当网络元件是移动的并具有动态连通性时,或者在网络架构以自组织(ad hoc)拓扑而非固定拓扑形成的情况下,无线网络往往被使用。无线网络可使用无线电、微波、红外、光等频带中的电磁波。与固定的有线网络相比较,无线网络可促成改进的用户移动性和快速的现场部署。
无线网络中的设备可传送和/或接收信息。该信息可包括分组,其可被称为数据单元(例如,MAC服务数据单元(MSDU))。分组可包括帮助通过网络路由分组、标识分组中的数据、和处理分组的开销信息(例如,报头信息、分组性质等)。分组还可包括有效载荷,有效载荷包括诸如用户数据、多媒体内容等数据。
某些无线网络具有相对较低的数据传输速率并且可被描述为“低速”网络。参与那些网络的设备可被限制为仅在给定传输机会窗口(TXOP)内传送小分组。然而,诸如用于以太网的那些数据分组大于低速网络中可在单个TXOP中传送的那些数据分组,并且因此这类分组可被分段并且逐段地发送。每一个数据片段可在分组或数据帧(例如,MAC协议数据单元(MPDU))中发送。可使用固定大小的位映射(即,64×16位或128字节)来发送块确收(ACK)以确收多达64个数据单元中的每一个数据单元的多达16个片段。存在与使用块确收相关联的建立和拆卸阶段。在建立阶段期间,在发射机与接收机之间协商能力信息(诸如缓冲器大小和块确收策略)。一旦完成了建立阶段,发射机就可发送片段而无需等待确收(ACK)帧。在确收几个数据单元的片段时使用块ACK可能是较低效的,这是因为块ACK的位映射的尺寸较大。与块ACK的建立和拆卸阶段相关联的开销也可能降低效率。低速(及其他)网络中的当前分段方案可使接收机在接收到每个片段之后传送确收(ACK)。由于低速网络中增大的分组分段率,此类网络中传送的ACK的数目成比例地增大。ACK数目的增大降低了网络上数据话务的效率,这是因为每个TXOP的较大部分被专用于开销(例如,ACK传送和各种帧空间)。
概述
本公开的一个方面提供了一种方法,其包括在发射机处基于该发射机的参数来确定该发射机是否支持多片段确收(MFA)。该方法还包括向接收机传送第一帧。响应于确定发射机支持MFA,第一帧的亚1千兆赫(S1G)能力元素的S1G能力信息字段的片段块确收(BA)支持子字段具有第一值。响应于确定发射机不支持MFA,片段BA支持子字段具有第二值。
另一方面是一种包括在发射机处基于该发射机的参数来确定该发射机是否支持多片段确收(MFA)的方法。该方法还包括在发射机处基于从接收机接收到的帧的片段块确收(BA)支持字段的值来确定接收机是否支持MFA。该方法进一步包括响应于确定发射机和接收机支持MFA,从单个数据单元创建多个数据片段,以及向接收机传送这多个数据片段。这多个数据片段中的特定数据片段指示隐式块确收请求。这多个数据片段中的第一多个数据片段中的每一个数据片段指示块确收策略。第一多个数据片段中的每一个数据片段在将该特定数据片段传送给接收机之前被传送给接收机。
另一方面是一种包括从单个数据单元创建多个数据片段以及向接收机传送这多个数据片段的方法。这多个数据片段中的特定数据片段指示隐式块确收请求。这多个数据片段中的第一多个数据片段中的每一个数据片段指示块确收策略。第一多个数据片段中的每一个数据片段在将该特定数据片段传送给接收机之前被传送给接收机。
另一方面是一种包括从单个数据单元创建多个数据片段以及向接收机传送这多个数据片段的方法。该方法还包括在向接收机传送这多个数据片段中的特定数据片段之后,接收来自接收机的多片段确收(MFA)。该MFA指示第一多个数据片段中的每一个数据片段和该特定数据片段被接收机收到或未收到。第一多个数据片段中的每一个数据片段在将该特定数据片段传送给接收机之前被传送给接收机。该MFA包括空数据分组(NDP)媒体接入控制(MAC)帧类型字段、块确收标识符字段、起始序列控制字段、以及块确收位映射。
另一方面是一种包括从单个数据单元创建多个数据片段以及向接收机传送这多个数据片段的方法。这多个数据片段中的特定数据片段(例如,最后一个数据片段)指示隐式块确收请求。这多个数据片段中的第一多个数据片段中的每一个数据片段指示块确收策略。第一多个数据片段中的每一个数据片段在将该特定数据片段传送给接收机之前被传送给接收机。该方法还包括请求这多个数据片段中的剩余数据片段中的每一个数据片段的单独确收。
另一方面是一种存储指令的非瞬态计算器可读介质,这些指令在由处理器执行时使该处理器执行操作。这些操作包括从单个数据单元创建多个数据片段以及向接收机传送这多个数据片段。这些操作还包括在向接收机传送这多个数据片段中的特定数据片段之后,接收来自接收机的多片段确收(MFA)。该MFA指示这多个数据片段中的第一多个数据片段中的每一个数据片段和该特定数据片段被接收机收到或未收到。第一多个数据片段中的每一个数据片段在将该特定数据片段传送给接收机之前被传送给接收机。该MFA包括空数据分组(NDP)媒体接入控制(MAC)帧类型字段、块确收标识符字段、起始序列控制字段、以及块确收位映射。
另一方面是一种包括处理器和存储器的装置。该存储器存储可由该处理器执行以执行操作的指令。这些操作包括接收来自无线设备的单个数据单元的特定数据片段。这些操作还包括响应于确定该特定数据片段指示隐式块确收请求,发起向无线设备传送确收。该确收指示已从无线设备接收到该特定数据片段。该确收指示已从无线设备接收到单个数据单元的第一多个数据片段中的每一个数据片段。该第一多个数据片段中的每一个数据片段包括在该特定数据片段的片段序列号(FGSN)前面的特定FGSN。这些操作进一步包括响应于确定该数据片段不指示隐式块确收请求,抑制发起向无线设备传送确收。
附图简述
图1解说了其中可采用本公开的各方面的无线通信系统的示例。
图2解说了可在图1的无线通信系统内可采用的无线设备中利用的包括接收机在内的各种组件。
图3解说了可在图2的无线设备中用于传送无线通信的各种组件。
图4解说了可在图2的无线设备中用于接收无线通信的各种组件。
图5a解说了用于低速网络中的数据分段的方法。
图5b解说了使用多片段确收的分段方法的各方面。
图6解说了用于区分使用MFA的连续片段块的方法的各方面。
图7a解说了用于使用片段序列的最后一个片段来引发多片段确收(MFA)的方法的各方面。
图7b解说了用于使用片段序列的特定片段来引发多片段确收(MFA)的方法的各方面。
图8a解说了如可由图5a中的方法使用的片段ACK。
图8b解说了如可由图5b和7中的方法使用的多片段确收(MFA)的各方面。
图8c解说了如可由图5b和7中的方法使用的另一多片段确收(MFA)的各方面。
图9解说了如可由图5b和7中的方法使用的另一多片段确收(MFA)的各方面。
图10解说了如可由图5b和7中的方法使用的亚1千兆赫(S1G)能力信息字段的各方面。
图11解说了传送多个数据片段和接收多片段确收(MFA)的方法的各方面。
图12解说了接收多个数据片段和传送多片段确收(MFA)的方法的各方面。
图13解说了传送多个数据片段的方法的各方面。
图14解说了传送多个数据片段的方法的各方面。
图15解说了接收多片段确收(MFA)的方法的各方面。
图16解说了接收数据片段和确定是否要发起对确收的传送的方法的各方面。
图17是根据本公开的某些方面的示例无线设备的框图。
详细描述
以下参照附图来描述本新颖系统、装置和方法的各种方面。然而,本公开的教导可用许多不同的形式实施并且不应解释为被限定于本公开通篇所给出的任何特定结构或功能。基于本文中的教导,本领域技术人员应领会到,本公开的范围旨在覆盖本文所公开的这些新颖系统、装置和方法的任何方面,不论其是独立实现的还是与本公开的任何其他方面组合实现的。例如,可以使用本文所阐述的任何数目的方面来实现装置或实践方法。
尽管本文描述了特定方面,但这些方面的众多变体和置换落在本公开的范围之内。尽管提到了一些益处和优点,但本公开的范围并非旨在被限定于特定益处、用途或目标。确切而言,本公开的各方面旨在宽泛地应用于不同的无线技术、系统配置、网络和传输协议,其中一些作为示例在附图和以下描述中解说。该详细描述和附图仅仅解说本公开而非限定本公开,本公开的范围由所附权利要求及其等效技术方案来定义。
流行的无线网络技术可包括各种类型的无线局域网(WLAN)。WLAN可被用于采用广泛使用的联网协议来将近旁设备互连在一起。本文描述的各个方面可应用于任何通信标准,诸如WiFi、或者更一般地IEEE 802.11无线协议族中的任何成员。例如,本文所描述的各个方面可被用作使用亚1GHz频带的IEEE802.11ah协议的一部分。
亚千兆赫频带中的无线信号可根据802.11ah协议使用正交频分复用(OFDM)、直接序列扩频(DSSS)通信、OFDM和DSSS通信的组合、或其他方案来传送。802.11ah协议的实现可被用于传感器、计量设备、和智能网格网络。有利地,实现802.11ah协议的某些设备的诸方面可以比实现其他无线协议的设备消耗更少的功率,和/或可被用于跨相对较长的距离(例如,约1公里或更长)传送无线信号。
在一些实现中,WLAN包括接入无线网络的各种设备。例如,两种类型的设备是接入点(“AP”)和客户端(也称为站,或“STA”)。一般而言,AP用作WLAN的中枢或基站,而STA用作WLAN的用户。例如,STA可以是膝上型计算机、个人数字助理(PDA)、移动电话等。在一示例中,STA经由遵循WiFi(例如,IEEE 802.11协议)的无线链路连接到AP以获得到因特网或到其它广域网的一般连通性。在一些实现中,STA也可被用作AP。
接入点(“AP”)还可包括、被实现为、或被称为B节点、无线电网络控制器(“RNC”)、演进型B节点、基站控制器(“BSC”)、基收发机站(“BTS”)、基站(“BS”)、收发机功能(“TF”)、无线电路由器、无线电收发机、或其他某个术语。
站(“STA”)还可包括、被实现为、或被称为接入终端(“AT”)、订户站、订户单元、移动站、远程站、远程终端、用户终端、用户代理、用户设备、用户装备、或其他某个术语。在一些实现中,接入终端可包括蜂窝电话、无绳电话、会话发起协议(“SIP”)话机、无线本地环路(“WLL”)站、个人数字助理(“PDA”)、具有无线连接能力的手持式设备、或连接到无线调制解调器的其他某种合适的处理设备。相应地,本文中所教导的一个或多个方面可被纳入到电话(例如,蜂窝电话或智能电话)、计算机(例如,膝上型设备)、便携式通信设备、手持机、便携式计算设备(例如,个人数据助理)、娱乐设备(例如,音乐或视频设备、或卫星无线电)、游戏设备或系统、全球定位系统设备、或被配置为经由无线介质通信的任何其他合适的设备中。AP和站可一般地被称为无线通信网络中的传送节点或接收节点。
如上所述,本文所描述的某些设备可实现802.11标准族中的一个或多个标准,包括诸如802.11g之类的现有标准和诸如802.11ah之类的正在开发的标准。此类设备(无论是用作STA还是AP还是其他设备)可被用于智能计量或者用在智能网格网络中。此类设备可提供传感器应用或者用在家庭自动化中。这些设备可取代或者附加地用在医疗保健环境中,例如用于个人医疗保健。这些设备也可被用于监督以使得能够实现范围扩展的因特网连通性(例如,以供与热点联用)、或者实现机器对机器通信。
图1解说了其中可采用本公开的各方面的无线通信系统100的示例。无线通信系统100可按照无线标准(例如802.11ah标准)来操作。无线通信系统100可包括与STA 106通信的AP 104。
可以将各种过程和方法用于无线通信系统100中在AP 104与STA 106之间的传输。例如,可以根据正交频分复用(OFDM)或正交频分多址(OFDMA)技术在AP 104与STA 106之间发送和接收信号。如果是这种情形,则无线通信系统100可以被称为OFDM/OFDMA系统。替换地,可以根据码分多址(CDMA)技术在AP 104与STA 106之间发送和接收信号。如果是这种情形,则无线通信系统100可被称为CDMA系统。
促成从AP 104至一个或多个STA 106的传输的通信链路可以被称为下行链路(DL)108,而促成从一个或多个STA 106至AP 104的传输的通信链路可以被称为上行链路(UL)110。替换地,下行链路108可以被称为前向链路或前向信道,而上行链路110可以被称为反向链路或反向信道。
如本文所使用的,“数据单元”可以是MAC服务数据单元(MSDU)。“数据帧”(替换地被称为片段或数据片段)可以是MAC协议数据单元(MPDU),其包括MSDU的一部分或全部。因此,单个数据单元可被划分成一个或多个数据帧或片段,并且这一个或多个数据帧或片段可共同地表示单个数据单元。
AP 104可向一个或多个STA 106传送单个数据单元的片段(例如,数据片段112)并从一个或多个STA 106接收多片段确收(例如,MFA 114),多片段确收在每帧传达一个帧时也可被称为多帧确收,如参照图5b、6和7b-7c所描述的。
AP 104可充当基站并提供基本服务区域(BSA)102中的无线通信覆盖。AP 104连同与该AP 104相关联并使用该AP 104来通信的诸STA 106一起可被称为基本服务集(BSS)。应注意,无线通信系统100可以不具有中央AP 104,而是可以作为各STA 106之间的对等或自组织网络起作用。相应地,本文描述的AP 104的功能可替换地由一个或多个STA 106来执行。
图2解说了可在无线通信系统100内可采用的无线设备202中利用的各种组件。无线设备202是可被配置成实现本文所描述的各种方法的设备的示例。例如,无线设备202可以是AP 104或者诸STA 106中的一个。无线设备202可接收/传送数据单元的片段(例如,图1的数据片段112)并传送/接收MFA(例如,图1的MFA 114),如参照图5b、6和7b-7c所描述的。
无线设备202可包括控制无线设备202的操作的处理器204。处理器204也可被称为中央处理单元(CPU)。可包括只读存储器(ROM)和随机存取存储器(RAM)两者的存储器206向处理器204提供指令和数据。存储器206的一部分还可包括非易失性随机存取存储器(NVRAM)。处理器204通常基于存储器206内存储的程序指令来执行逻辑和算术运算。存储器206中的指令可以是可执行的以实现本文描述的方法。
处理器204可包括或者是用一个或多个处理器实现的处理系统的组件。这一个或多个处理器可以用通用微处理器、微控制器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、控制器、状态机、选通逻辑、分立硬件组件、专用硬件有限状态机、或能够对信息执行演算或其他操纵的任何其他合适实体的任何组合来实现。
处理系统还可包括用于存储软件的机器可读介质。软件应当被宽泛地解释成意指任何类型的指令,无论其被称作软件、固件、中间件、微代码、硬件描述语言、或是其他。指令可包括代码(例如,呈源代码格式、二进制代码格式、可执行代码格式、或任何其他合适的代码格式)。这些指令在由该一个或多个处理器执行时使处理系统执行本文描述的各种功能。
无线设备202还可包括外壳208,该外壳208可包括发射机210和接收机212以使得能够在无线设备202和远程设备之间进行数据的传送和接收。发射机210和接收机212可被组合成收发机214。天线216可被附连至外壳208且电耦合至收发机214。无线设备202还可包括(未示出)多个发射机、多个接收机、多个收发机、和/或多个天线。
无线设备202还可包括可用于力图检测和量化由收发机214收到的信号的电平的信号检测器218。信号检测器218可检测诸如总能量、每副载波每码元能量、功率谱密度之类的信号以及其它信号。无线设备202还可包括供处理信号时使用的数字信号处理器(DSP)220。DSP 220可被配置成生成数据帧以供传送。在一些方面,数据帧可包括物理层数据单元(PPDU)。在一些方面,PPDU被称为分组。
在一些方面,无线设备202可进一步包括用户接口222。用户接口222可包括按键板、话筒、扬声器、和/或显示器。用户接口222可包括向无线设备202的用户传达信息和/或从该用户接收输入的任何元件或组件。
无线设备202的各种组件可由总线系统226耦合在一起。总线系统226可包括例如数据总线,以及除了数据总线之外还有电源总线、控制信号总线、和状态信号总线。本领域技术人员将领会,无线设备202的各组件可耦合在一起或者使用某种其他机制来接受或提供彼此的输入。
尽管图2中解说了数个分开的组件,但本领域技术人员将认识到,这些组件中的一个或多个组件可被组合或者共同地实现。例如,处理器204可被用于不仅实现以上关于处理器204描述的功能性,而且还实现以上关于信号检测器218和/或DSP 220描述的功能性。另外,图2中解说的每个组件可使用多个分开的元件来实现。
如以上所描述的,无线设备202可包括AP 104或STA 106,并且可被用于传送和/或接收通信。图3解说了可在无线设备202中用于传送无线通信的各种组件。图3中所解说的组件可以例如被用于传送OFDM通信。为了便于引用,配置有图3中所解说的组件的无线设备202在下文中被称为无线设备202a。
无线设备202a可包括调制器302,该调制器302被配置成调制各个位以供传送。例如,调制器302可例如通过根据星座将各个位映射至多个码元来从接收自处理器204或用户接口222的位确定多个码元。这些位可对应于用户数据或者控制信息。在一些方面,这些位是在码字中接收的。在一个方面,调制器302包括QAM(正交振幅调制)调制器,例如,16-QAM调制器或者64-QAM调制器。在其他方面,调制器302包括二进制相移键控(BPSK)调制器或者正交相移键控(QPSK)调制器。
无线设备202a可进一步包括变换模块304,该变换模块304被配置成将来自调制器302的码元或以其他方式调制的位转换到时域。在图3中,变换模块304被解说为是通过快速傅里叶逆变换(IFFT)模块来实现的。
在图3中,调制器302和变换模块304被解说为在DSP 220中实现。然而,在一些方面,调制器302和变换模块304中的一者或两者是在处理器204中或者是在无线设备202的另一元件中实现的。
DSP 220可被配置成生成数据帧以供传送。例如,DSP 220可被配置成生成数据单元的片段(例如,图1的数据片段112)和/或生成MFA(例如,图1的MFA 114),如进一步参照图5b、6和7b-7c所描述的。在一些方面,调制器302和变换模块304可被配置成生成包括多个字段的数据帧,该多个字段包括控制信息和多个数据码元。包括控制信息的字段可包括例如一个或多个训练字段以及一个或多个信号(SIG)字段。这些训练字段中的每一个训练字段可包括已知的位序列或码元序列。这些SIG字段中的每一个SIG字段可包括关于数据帧的信息,例如对数据帧的长度或数据率的描述。
在一些方面,DSP 220被配置成在多个数据码元之间插入一个或多个训练字段。DSP 220可基于从处理器204接收到的和/或存储在存储器206中或DSP220的一部分中的信息来确定这一个或多个训练字段在数据帧中的定位或位置。
无线设备202a可进一步包括数模转换器306,该数模转换器306配置成将变换模块304的输出转换成模拟信号。例如,变换模块304的时域输出可由数模转换器306转换成基带OFDM信号。数模转换器306可在处理器204中或者在无线设备202的另一元件中实现。在一些方面,数模转换器306是在收发机214中或者在数据发射处理器中实现的。
模拟信号可由发射机210来无线地传送。模拟信号可在由发射机210传送之前被进一步处理,例如被滤波或者被上变频至中频或载波频率。在图3中所解说的方面,发射机210包括发射放大器308。在被传送之前,模拟信号可由发射放大器308放大。在一些方面,放大器308可以是低噪声放大器(LNA)。
发射机210被配置成经由基于该模拟信号的无线信号来传送一个或多个分组或数据帧。可使用处理器204和/或DSP 220来生成这些数据帧,例如使用调制器302和变换模块304来生成。
在一些方面,发射机210被配置成在大约2.5MHz或1.25MHz或更低的带宽上传送数据帧。在使用这样的带宽时,数据帧的传输可以在相对较长的时间段内执行。例如,包括500字节的数据帧可以在大约11毫秒的时段内传送。此种传输与根据802.11ac标准在大约20MHz的带宽上实现的相当的传输相比慢大约十六倍。
图4解说可被用在无线设备202中以接收无线通信的各种组件。图4中所解说的组件可以例如被用于接收OFDM通信。例如,图4中所解说的各组件可被用于接收由以上参照图3描述的组件传送的数据帧,诸如数据帧的片段(例如,图1的数据片段112)和/或MFA(例如,图1的MFA 114)。为了便于引用,配置有图4中所解说的组件的无线设备202在下文中被称为无线设备202b。
接收机212被配置成经由无线信号接收一个或多个分组或数据帧。关于图5-10来更详细地描述可被接收和解码或以其他方式处理的数据帧。
在一些方面,接收机212被配置成在大约2.5MHz或1.25MHz或更低的带宽上接收数据帧。在使用此类带宽时,数据帧可以在相对较长的时间段中接收,例如当数据帧包括500字节时可在大约11毫秒内接收该数据帧。在此时间期间,在其上接收数据帧的信道可能变化。例如,信道条件可能由于无线设备202b或传送数据帧的设备的移动、或者由于天气或其它环境条件(诸如各种障碍物的引入)而变化。在此类情况下,如果无线设备202b使用在开始接收数据帧时确定的设置,则在末尾附近接收到的信息可能无法被正确地解码。然而,如下文更详细地描述的,无线设备202b可使用插在多个数据码元之间的训练字段来形成对信道的经更新的估计,以便适当地解码数据码元中的一个或多个。
在图4中所解说的方面,接收机212包括接收放大器401。接收放大器401可被配置成放大由接收机212接收的无线信号。在一些方面,接收机212被配置成使用自动增益控制(AGC)规程来调整接收放大器401的增益。在一些方面,自动增益控制使用一个或多个接收到的训练字段(诸如举例而言接收到的短训练字段(STF))中的信息来调整增益。在一些方面,放大器401可以是LNA。
无线设备202b可包括模数转换器402,该模数转换器402被配置成将来自接收机212的经放大的无线信号转换成其数字表示。继被放大之后,无线信号可在由数模转换器402转换之前被处理,例如被滤波或者被下变频至中频或基带频率。模数转换器402可在处理器204中或者在无线设备202的另一元件中实现。在一些方面,模数转换器402是在收发机214中或者在数据接收处理器中实现的。
无线设备202b可进一步包括变换模块404,该变换模块404被配置成将无线信号的表示转换到频谱。在图4中,变换模块404被解说为是由快速傅里叶变换(FFT)模块来实现的。在一些方面,变换模块可针对其使用的每个点标识一码元。
无线设备202b可进一步包括信道估计器与均衡器405,该信道估计器与均衡器405被配置成形成对在其上接收到数据帧的信道的估计,并且基于该信道估计来去除该信道的某些效应。例如,信道估计器可被配置成逼近信道函数,并且信道均衡器可被配置成在频谱中对数据应用该函数的逆函数。
在一些方面,信道估计器与均衡器405使用一个或多个接收到的训练字段(诸如举例而言长训练字段(LTF))中的信息来估计信道。信道估计可基于在数据帧开始处接收到的一个或多个LTF来形成。此信道估计可随后被用于均衡跟随于该一个或多个LTF后面的数据码元。在某个时间段之后或者在某个数目的数据码元之后,可在数据帧中接收一个或多个附加LTF。可使用这些附加LTF来更新信道估计或者形成新的估计。该新的或更新的信道估计可被用于均衡跟随于这些附加LTF后面的数据码元。在一些方面,该新的或经更新的信道估计被用于重新均衡居于这些附加的LTF前面的数据码元。本领域普通技术人员将理解用于形成信道估计的方法。
无线设备202b可进一步包括解调器406,该解调器406被配置成解调经均衡的数据。例如,解调器406可以例如通过在星座中倒转位至码元的映射来从变换模块404和信道估计器与均衡器405输出的码元确定多个位。这些位可被处理器204处理或评估,或者被用于向用户接口222显示或以其他方式输出信息。以此方式,数据和/或信息可被解码。在一些方面,这些位对应于码字。在一个方面,解调器406包括QAM(正交振幅调制)解调器,例如,16-QAM解调器或者64-QAM解调器。在其他方面,解调器406可以是二进制相移键控(BPSK)解调器或者正交相移键控(QPSK)解调器。
在图4中,变换模块404、信道估计器与均衡器405以及解调器406被解说为是在DSP220中实现的。然而,在一些方面,变换模块404、信道估计器与均衡器405、和解调器406中的一者或多者实现在处理器204中或者在无线设备202的另一元件中。
在接收机212处接收的无线信号包括一个或多个数据帧。通过使用上述功能或组件,数据帧或其中的数据码元可被解码、评估、或以其他方式评估或处理。例如,处理器204和/或DSP 220可被用于使用变换模块404、信道估计器与均衡器405和解调器406来解码数据帧中的数据码元。
由AP 104和STA 106交换的数据帧可包括控制信息或数据,如上所述。在物理(PHY)层,这些数据帧可被称为物理层协议数据单元(PPDU)。在一些方面,PPDU可被称为分组或物理层分组。每个PPDU可包括前置码和有效载荷。前置码可包括训练字段和SIG字段。有效载荷可包括例如媒体接入控制(MAC)报头或其他层的数据、和/或用户数据。有效载荷可使用一个或多个数据码元来传送。本文的系统、方法和设备可利用具有也插在有效载荷中各数据码元之间的训练字段的数据帧。
图5a解说了用于低速网络中的数据分段的方法。在图5a中,无线设备(未示出)准备要在网络上发送的数据单元。由于网络传输速度受限,因此无线设备将数据单元分成三个数据片段:501、509和513。每个数据片段可以是具有报头数据以及内容数据的分组或数据帧。这些片段共同表示单个数据单元。从左开始,首先传送数据片段501。在数据片段501被传送之后,接收机在等待了时间段503后传送确收(假定该数据片段被接收到)。该时间段被称为短帧间间隔(SIFS)。
一般而言,SIFS是数据帧与其确收之间的短时间间隔。SIFS被例如用于遵循802.11的网络中。SIFS的值(通常以微秒测量)可以每物理层(PHY)是固定的并且可被计算成使得传送节点将能够切换回接收模式并且能够对传入分组进行解码。例如,SIFS可被设置为10μs。
在SIFS 503之后,ACK 505被无线设备接收。ACK确认接收机接收到了数据片段501。值得注意的是,传送数据片段501所花的时间加上SIFS 503和接收ACK 505的时间占据整个传输机会窗口(TXOP)517。TXOP可根据标准(诸如802.11)来设置,并且可以例如以毫秒来测量。例如,特定网络的TXOP可以是10ms。因此,可使用数据片段来发送的总数据量受限于将SIFS 503和ACK 505包括在单个TXOP窗口517中的需要。
在ACK 505被接收到之后,无线设备等待由分布式协调功能帧间间隔(DIFS)加上随机化的退避时段所界定的时间段。分布式协调功能(DCF)要求参与载波侦听多址(CSMA)网络的节点首先侦听介质,并且在介质繁忙的情况下就推迟传送达一时间段。推迟的时段(DIFS)后跟有随机化的退避时段,即,希望进行传送的节点将不尝试接入介质的附加时间段。
退避时段被用于解决尝试同时接入介质(例如,无线电网络)的不同节点(例如,无线设备)之间的争用。退避时段也可被称为争用窗。退避要求尝试接入介质的每个节点选取一范围中的随机数目并在尝试接入介质前等待所选取数目的时隙,并且检查是否有不同节点之前已接入该介质。时隙时间按使得节点将总是能够确定是否有另一节点已在前一时隙的开始处接入该介质的方式来定义。具体而言,802.11标准使用指数退避算法,其中每次节点选取时隙并与另一节点冲突时,它将呈指数地增大该范围的最大数目。另一方面,如果希望传送的节点侦听到介质为空闲达整个DIFS时段,则该节点可在该介质上进行传送。在一些网络中,DIFS可例如被计算为SIFS加上某一数目的附加时隙。
在DIFS加上退避时段507之后,无线设备传送数据片段509并随后在SIFS时段(未示出)之后接收ACK 511。最后,在另一DIFS和随机退避时段(未示出)之后,无线设备传送数据片段513并随后在SIFS时段(未示出)之后接收ACK 515。在此时,整个数据单元已被发送。值得注意的是,在用来发送单个数据单元的三个TXOP期间,存在三个SIFS时段、两个DIFS时段加上随机退避以及三个ACK,并且在所有这些时段期间,无线设备不能够传送内容数据(即,非开销数据)。
图5b解说了使用多片段确收(MFA)的分段方法的各方面。在一个方面,图5b的方法将每个片段被传送之后单独的ACK代替为MFA,MFA在两个或更多个连续片段的传送之后一次确收多个片段。值得注意的是,TXOP 517和DIFS加上退避时段507的长度与图5a的相同。然而,如图可见,从左开始,无线设备(未示出)能够传送数据片段519、521和523而不没有居间ACK或SIFS时段。作为结果,数据片段519、521和523的长度分别比图5a的数据片段501、509和513长(即,它们携带更多数据)。因此,在图5b的实现中,需要较少的片段来传送相同量的数据,因为数据片段在每个片段包括更多数据。这提高了介质使用的效率。另外,使用此方法减少了开销(例如,SIFS、DIFS和ACK)。如图5b中可见的,与图5a相比,消除了两个SIFS时段和两个ACK。此开销减小可缩短介质使用的总历时,这可相应地提高介质使用的效率,因为对于给定数据量,专用于一无线设备的时隙更少。MFA 527跟随在数据片段523的传送和SIFS时段525之后。MFA 527确认对片段519、521和523的接收,由此消除了对单独片段ACK的需要。MFA 527的实现在以下参照图8b更详细地描述。
在图5b的实现中,多个数据片段被顺序地发送而没有居间ACK。相应地,数据片段可被修改为使得接收机可确定哪些片段已被接收到并请求任何缺失或损坏的数据。在一个方面,每个数据片段的MAC报头的序列控制字段可被修改,使得例如现有帧序列号(FSN)字段的4位被分配给片段序列号(FGSN)并且剩余的12位被保留用于FSN。使用分配给FGSN的4位,可标识多达16个不同的片段(即,片段0到片段15)。有可能例如通过增加序列控制字段中分配给FGSN的位数(以FSN为代价)或者通过向每个片段报头添加附加位(以开销为代价)来标识更多片段。例如,6位可被分配给FGSN,这将使得接收机能够唯一性地标识多达64个不同的片段。一般而言,在n为专用于FGSN的位数的情况下,可标识2n个唯一性的片段。
通过在帧控制(FC)字段中设置“更多片段”位以指示存在或不存在更多片段,接收机可确定数据单元的最后片段(例如,图5b的片段523)已被发送。例如,“更多片段”位可被设为“0”以指示没有更多片段或被设为“1”以指示有更多片段,反之亦然。
图6解说了用于区分使用MFA的连续片段块的方法600的各方面。可以是如下情形:数据单元具有比能通过FGSN唯一性地标识的数据片段更多的数据片段。例如,数据帧可能需要被拆分成38个片段(即,片段0到片段37),但FGSN可以能够区分16个唯一性的片段(即,片段0到片段15),如在以上示例中描述的。可以使用模函数针对表示单个数据单元的一群片段来计算FGSN,从而FGSN不超过如由专用于FGSN的位数规定的最大FGSN。也就是说,对于超出可通过FGSN唯一性地标识的最大片断数目的片段(例如,在此示例中为片段16-37)而言,模函数将把FGSN映射到在给定专用于FGSN的位数的情况下可用的范围内的数字。例如,38个片段的序列中的第一个片段(即,片段0)的FGSN将被设为mod(0,16)=0。类似地,38个片段的序列中的第17个片段(即,片段16)将被设为mod(16,16)=0。因此,如图6中所示,这38个片段将由无线设备在三个块中传送以传送整个数据单元。前两个片段块(601和607)将各自包括具有FGSN 0-15的16个片段。最后一个片段块(609)将包括具有FGSN 0-5的6个片段。数据单元的前37个片段(即,片段0到片段36)中的每一个片段将使得“更多片段”位设为1。数据单元的最后一个片段(即,片段37)将使得“更多片段”位设为0。如进一步参照图8c描述的,片段15和31将分别作为块601和607的最后一个片段来触发MFA。片段37将作为数据单元的最后一个片段来触发MFA。属于同一数据单元的连续片段块(例如,601、607和609)共享同一FSN(如图所示,对于每个块,FSN=1)。然而,如上所述,每个片段的FGSN(例如,0-15)在各块之间共享,其中FGSN可用的位数不准许数据帧中的每个片段被唯一性地标识。如果在每个数据片段块(例如,片段块601、607和609)的传送中不存在差错,则可能不需要在连续块之间进行区分,因为每个MFA(分别为611、613和615)将确认所有数据片段都被成功接收。然而,如果在一个或多个数据片段的传送期间存在差错,则可能不得不区分连续块,因为接收机必须例如标识任何重传的片段属于哪个块(例如,块601、607或609)。由于FGSN在每个连续块中被重用(例如,块601的第一个片段以及块607的第一个片段都具有FGSN=0),因此单单FGSN不能用于此目的。这是因为接收机在没有更多信息的情况下无法分辨具有相同FGSN的两个数据片段之间的差异。
为了在FGSN在连续块之间重复的情况下区分连续片段块,可向片段报头添加连续片段块的次序指示(例如,序列次序的指示)。例如,可向片段报头添加附加位以将连续片段块区分为“奇数”块或“偶数”块。替换地,现有片段报头中的位可被改作他用。例如,“功率管理”或“更多数据”字段中的位可被用于(例如,改用于)将每个连续片段指示为或者“奇数”片段或者“偶数”片段。如图6中所示,块601中的每个片段的“更多数据”字段被设为“1”,块607中的每个片段的“更多数据”字段被设为“0”,并且块609中的每个片段的“更多数据”字段被设为“1”。“1”指代“奇数”还是“偶数”还是其他是无关紧要的,只要该位可被设为在连续块之间进行区分即可。以此方式,如果MFA 611指示块601中的片段没有被成功接收,则缺失或损坏的片段可作为块607的一部分被重新发送,因为重新发送的片段将具有指示它来自先前块601而非当前块607的一部分的指示(例如,“更多数据”字段被设为“1”)。也就是说,接收机将能够将重传的数据片段与新传送的数据片段区分开,从而数据单元可被成功地重构。通过将现有报头中的字段改作他用,通过使用此方法不会添加新的开销。
值得注意的是,在图6中解说的示例中,没有必要使用多于一位作为片段块次序的指示,因为设备将不会在第一个块(例如,601)已全部被成功接收之前开始传送第三个片段块(例如,609),其中MFA位映射标识与存在的唯一性FGSN相同数目的片段(例如,这里为16个)。
图7a解说了用于使用“最后一个”片段来引发多片段确收(MFA)的方法700的各方面。例如,无线设备可传送数据帧的多个数据片段。这多个数据片段中除了最后一个数据片段(例如,最后一个数据片段703)以外的每一个可指示“块确收”的确收策略。最后一个数据片段703可指示“隐式块确收请求”的确收策略。例如,数据帧可被拆分成10个数据片段。前9个数据片段(例如,数据片段701)可指示“块确收”的确收策略,而最后一个数据片段703可指示“隐式块确收请求”的确收策略。例如,无线设备可将这多个数据片段中每一个数据片段的片段报头的一个或多个位设为指示特定确收策略的特定值。在特定实施例中,无线设备可将数据片段的服务质量(QoS)字段的一个或多个位(例如,2位,诸如位5和位6)设为表示指示特定确收策略(例如,隐式块确收请求)的特定值(例如,“00”)。在此实施例中,该数据片段可包括QoS数据帧。在特定实施例中,无线设备可将数据片段的确收策略字段的一个或多个位设为表示指示特定确收策略(例如,隐式块确收请求)的特定值(例如,“0”)。在此实施例中,该数据片段可包括“短”帧,例如,使帧控制字段中的协议版本字段设为1的帧。短帧可在帧控制字段中包括确收策略字段。
数据片段701中的‘更多片段’字段可被设为指示更多片段的第一值。最后一个数据片段703中的‘更多片段’字段可被设为指示无更多片段的第二值。例如,特定数据片段的“更多片段”位可被设为“1”以指示更多片段,或者可被设为“0”以指示这多个数据片段不包括在该特定数据片段之后的更多片段。
数据片段701可包括表示值“0”到“8”的FGSN。最后一个数据片段703可包括表示值“9”的FGSN。数据片段701和最后一个数据片段703可指示单个数据单元的FSN(例如,“1”)。
响应于最后一个数据片段703,接收机可传送多片段确收(MFA)705。在特定实施例中,该MFA帧可以是空数据分组(NDP)块确收。例如,接收机可响应于指示隐式块确收请求的最后一个数据片段703、最后一个数据片段703包括指示特定值的‘更多片段’字段、或这两者而传送MFA 705。接收机可在接收到最后一个数据片段703之后的SIFS时间后传送MFA705,而不论无线介质的空闲/繁忙状态。MFA 705可(例如经由位映射)指示其FGSN小于最后一个数据片段703的FGSN的每一个数据片段701被接收机收到还是未收到、以及接收机是否接收到了发射机通过将其确收策略设为隐式块确收请求来恳请响应的最后一个数据片段703。
因此,最后一个数据片段可被发射机用于通过设置最后一个数据片段的一个或多个字段的值来引发多片段确收(MFA)。在特定实施例中,并非“最后一个”数据片段的片段也可被用来引发MFA。
例如,图7b解说了用于使用并非“最后一个”数据片段的特定片段来引发多片段确收(MFA)的方法710的各方面。例如,无线设备可传送数据帧的多个数据片段711、713、717和721。这多个数据片段中的第一多个数据片段或第一组数据片段(例如,数据片段711)可指示块确收的确收策略。这多个数据片段中的特定(例如,并非最后一个)数据片段(例如,数据片段713)可指示隐式块确收请求的确收策略。数据片段711可在第一个数据片段713被传送给接收机之前传送给接收机,如图所示。
数据片段711可包括表示值“0”到“6”的FGSN。数据片段713可包括表示“7”的FGSN,数据片段717可包括表示“8”的FGSN,并且数据片段721可包括表示“9”的FGSN。数据片段711、713、717和721可指示单个数据单元的FSN(例如,“1”)。数据片段的FGSN可指示传输次序。例如,数据片段可按对应FGSN的次序来传送给接收机。
数据片段713可引发来自接收机的多片段确收(MFA)715。例如,接收机可响应于确定数据片段713指示隐式块确收请求策略而发送MFA 715。MFA715可指示接收机是否接收到了其FGSN小于数据片段713的FGSN的每一个数据片段711以及接收机是否接收到了第一数据片段713。
在特定实施例中,接收机可传送指示多达特定片段数目(例如7或15)个数据片段是否被接收机接收到的MFA。在特定实施例中,剩余数据片段中的每一个可指示单独确收被请求。在特定实施例中,接收机可基于数据片段的FGSN指示该数据片段未包括在初始特定数目(例如8或16)个数据片段中来确定要发送单独确收。接收机可基于数据片段的FGSN的序列来确定数据片段的传送次序。例如,数据片段717和数据片段721可指示单独确收策略。接收机可传送指示数据片段717被接收到的第一单独确收719。接收机可传送指示数据片段721被接收到的第二单独确收723。
在特定实施例中,发射机可基于阈值数据片段数目来确定要包括在第一多个数据片段中的数据片段的数目。例如,阈值数据片段数目可指示可使用MFA来确收的数据片段的最大数目。在特定实施例中,阈值数据片段数目可以为8。例如,当MFA在约1千兆赫(MHz)的带宽上传送时,阈值数据片段数目可以为8。在另一实施例中,阈值数据片段数目可以为16。例如,当MFA在约2MHz或更大的带宽上传送时,阈值数据片段数目可以为16。与在约2MHz或更大的带宽上传送的MFA的位映射相比,在约1MHz的带宽上传送的MFA可具有较小的位映射(例如,块确收位映射)。第一多个数据片段可包括多达阈值数据片段数目减去1。例如,当MFA在约1MHz的带宽上传送时,第一多个数据片段可包括7个数据片段。作为另一示例,当MFA在约2MHz或更大的带宽上传送时,第一多个数据片段可包括15个数据片段。MFA可被用来确收第一多个数据片段以及引发该MFA的特定数据片段。这多个数据片段的任何剩余数据片段中的每一个可指示单独确收被请求。
因此,一数据片段可被发射机用来引发多片段确收(MFA),该MFA指示接收机是否接收到了在该数据片段之前传送的且包括该数据片段的诸数据片段。当块确收位映射过小以至于不能容纳所有片段的一部分的接收状态时,可使用单独确收来确收后续的数据片段。
图8a解说了如可由图5a中的方法使用的片段ACK 800。片段ACK 800包括长度为2个字节的帧控制字段(FC)801、长度为6个字节的接收机地址(RA)字段803、以及长度为4个字节的帧校验序列(FCS)字段805,总计为12个字节。作为比较,802.11ACK(例如,802.11nACK)为14个字节长。片段ACK 800可被包括在MAC帧中并且可具有PHY前置码(未示出)。
图8b解说了如可由图5b和7中的方法使用的多片段确收(MFA)810的各方面。MFA810可以是经修改的ACK,其具有与片段ACK 800相同的FC 801、RA 803和FCS 805,但还包括MFA位映射字段807。在图8b的实现中,MFA位映射字段807的长度为2个字节(16位)并且可相应地确收多达16个不同的片段。这可以是优选的实现,其中每个数据片段可具有长度为4位的FGSN,从而FGSN可指示16个不同的片段。MFA位映射字段807中的每一位可例如在对应片段被成功接收到的情况下被设为“1”或者在未被成功接收到的情况下被设为“0”,反之亦然。MFA位映射字段807的长度可增加,从而可使用单个MFA来确收更多片段。例如,MFA位映射字段可替换为8个字节长(64位),从而64个唯一性的片段可被确收。一般而言,专用于MFA位映射字段807的每一位将能够确收单个片段。值得注意的是,增加MFA长度的确以更多开销为代价;然而,增大的开销可在稳健的网络中由可被连贯地发送的附加数据片段来抵消。MFA 810可被包括在MAC帧中并且可具有PHY前置码(未示出)。
对MFA的附加修改可例如通过将RA 803移到FCS字段805中来进行。这将节省6字节的开销,给出了8字节的总MFA长度。
图8c解说了如可由图5b和7中的方法使用的另一多片段确收(MFA)820的各方面。与图8b的MFA 810形成对比,MFA 820可被完全包括在物理层(PHY)前置码中。如图所示,PHY前置码包括STF 812、LTF 814和SIG字段822。SIG字段822可包括与MFA 810中相同的MFA位映射字段807。在另一实施例中,MFA位映射字段807可取决于SIG字段822中的位可用性而具有较小尺寸。SIG字段822还可包括MFA标识符(ID)字段816,其指示与MFA 810相关联的序列号。SIG字段822可包括起始序列控制(SSC)字段818,其指示其片段正被确收的数据单元的序列号。SIG字段822可包含一个或多个附加字段,例如调制和编码方案(MCS)、循环冗余校验(CRC)和尾部。在特定实现中,SIG字段822可包含比所述字段少的字段。在特定实施例中,MFA820不包括MAC层数据并且由此可比MFA 810小。
在特定实施例中,MFA(例如,MFA 810、MFA 820)可包括用以将MFA与确收多个数据帧的“常规”块确收(ACK)进行区分的ACK模式指示位(未示出)。例如,MFA可包括ACK模式字段。ACK模式字段可具有用以指示分组为MFA的第一值(例如,0)以及用以指示分组为块ACK的第二值(例如,1)。作为另一示例,对MFA与块ACK进行区分可以是两步骤过程。在第一步骤,ACK模式字段可在“常规”ACK(即,其中响应于每一个MPDU在下一个MPDU的传送之前接收ACK的会话的一部分)与“块类型”ACK之间进行区分。ACK模式字段可具有用以指示分组为ACK的第一值(例如,第一保留MCS值)以及用以指示分组为“块类型”ACK的第二值(例如,第二保留MCS值)。“块类型”ACK可以是块ACK(即,其中包括来自多个数据单元的数据的多个MPDU将使用单个块ACK来确收的会话的一部分)或MFA(即,确收单个数据单元的在多个MPDU中发送的多个片段的MFA)。
在第二步骤,可基于分组所响应于的数据片段来将MFA与块ACK进行区分。如果数据片段指示该数据片段请求块ACK作为响应,并且与该数据片段相关联的片段号(例如,FGSN)大于0,则该分组将被解读为MFA。另一方面,如果片段号为0(或不具有片段号),则该分组将被解读为块ACK。
可基于不同条件来恳请MFA(例如,可发信令通知接收机发送MFA)。例如,如果数据单元的最后一个片段被接收到,如以上关于图5b所描述的,则片段报头的帧控制部分中的“更多片段”位可被设为指示它是数据单元的最后一个片段并且MFA应当被发送。例如,如图6的框609中所解说的,最后一个数据片段的“更多片段”位可被设为“0”以指示应当发送MFA。替换地,如果片段块(例如,图6中的块601)中的收到片段的FGSN被设为可被最后一个数据片段的FGSN字段容适的最高可用FGSN(例如15),则它可向接收机指示应当发送MFA。例如,如果最后一个数据片段的FGSN字段为4位,则可被4位字段容适的最大FGSN值可以为“1111”或即15。由于在此情景中FGSN可被重置为最低FGSN值(例如,在达到了最高值之后)以指示下一个块的片段序列的开始,因此MFA应当被发送,从而连续片段块可开始传送。
从传送数据的无线设备的角度来看,如果在块或数据单元的最后一个片段被传送之后的一时间段期间未接收到MFA,则该无线设备可例如重传最后一个片段以重新恳请接收机发送MFA。
在接收到指示一个或多个片段的传送中的差错的MFA(例如,MFA位映射指示差错)之际,所指示的片段可被无线设备重传。接收机可例如通过针对每个重传的片段使用ACK(而非MFA)作出响应来确认对重传的片段的接收,或者可代替地使用MFA来确收多个重传的片段,或者可使用MFA来确收一个或多个重传的片段以及新的片段。如以上参照图6描述的,来自连续块的片段可通过使用它们的发送次序的指示(例如,“奇数”或“偶数”)来进行区分。在MFA的位映射具有足够的(例如,32个)位来确收与两个片段块相关联的片段(例如,每个块中有16个片段或总共32个片段)的情形中,两个连续片段块可在接收确认对第一个块的片段的接收的MFA之前传送。一旦确认了对数据单元的所有片段的接收(例如,通过一个或多个MFA和/或通过针对重传的片段的ACK),无线设备就可发起下一数据单元的传送。使用MFA而非片段ACK可提高总体传输效率。例如,使用5ms(毫秒)TXOP在约1MHz的带宽上以150Kbps(每秒千比特)传输速率,传输效率增长可约为18%。使用16个片段在约2MHz的带宽上以16Mbps(每秒兆比特)传输速率,传输效率增长可约为55%。
图9解说了如可由图7a和7b中的方法使用的另一多片段确收(MFA)900的各方面。
MFA 900可被完全包括在分组的物理层(PHY)前置码中。在特定实施例中,MFA 900可被包括在(PHY)前置码的信号(SIG)字段中。如图所示,MFA 900包括空数据分组(NDP)媒体接入控制(MAC)帧类型字段912、块确收(ack)标识符(ID)字段914、如在MFA 820中的SSC字段818、以及块确收位映射字段918。MFA 900可包含一个或多个附加字段。
块确收ID字段914可包括MFA 900的标识符。在特定实施例中,块确收ID字段914可表示引发MFA 900的数据片段(例如,图7a的最后一个数据片段703或图7b的数据片段713)的服务字段的加扰器初始化值。在特定实施例中,SSC字段818可表示单个数据单元的数据帧的序列号。例如,SSC字段818可表示单个数据单元的帧序列号(FSN)。块确收位映射字段918的每一位可指示对应数据片段是否被成功接收到。块确收位映射918可对应于如在MFA820中的MFA位映射字段807。
在特定实施例中,NDP MAC帧类型字段912可具有为4的值并且可具有3位的长度。在特定实施例中,SSC字段818可具有12位的长度。
在特定实施例中,块确收ID字段914可具有2位的长度,块确收位映射字段918可具有8位的长度,并且MFA 900可在约1兆赫(MHz)的带宽上传送。在另一特定实施例中,块确收ID字段914可具有6位的长度,块确收位映射字段918可具有16位的长度,并且MFA 900可在约2兆赫(MHz)或更大的带宽上传送。
图10解说了如可由图7a和7b中的方法使用的亚1千兆赫(S1G)能力信息字段1000的各方面。无线设备可传送包括S1G能力元素的帧。S1G能力元素可包括S1G能力信息字段1000。如图所示,S1G能力信息字段1000包括片段BA支持字段1012。例如,无线设备可基于无线设备的参数(例如,dot11FragmentBAOptionImplemented(dot11片段BA选项实现))的特定值(例如,“1”或真)来确定多片段确收(MFA)是否被无线设备支持。无线设备可传送具有指示MFA是否被无线设备支持的片段BA支持字段1012的帧。例如,片段BA支持字段1012可指示第一值(例如,“1”或真)以指示MFA被支持。作为另一示例,片段BA支持字段1012可指示第二值(例如,“0”或假)以指示MFA不被支持。在特定实施例中,S1G能力信息字段1000可包括一个或多个其他字段。
因此,从无线设备接收包括片段BA支持字段1012的设备可在向该无线设备传送数据片段之前确定该无线设备是否支持MFA。在使用MFA之前,每个设备可验证另一设备是否支持MFA。例如,一个设备可以是接入点(AP)并且该另一设备可以是站(“STA”)。S1G能力元素可作为信标、探测请求、探测响应、关联请求、关联响应、管理帧等的一部分来传送。
图11解说了传送多个数据片段和接收多片段确收(MFA)的方法的各方面。过程流1100包括步骤1103,其中设备从单个数据单元生成多个数据片段。过程流1100随后移至步骤1105,其中设备向接收机传送数据片段。过程流1100随后移至步骤1107,其中设备确定最后传送的片段是否为该数据单元的最后一个片段或者该数据单元的数据片段块的最后一个片段。如以上参照图5b描述的,设备可将帧控制(FC)字段中的“更多片段”位设为指示是否有更多片段即将到来。如以上参照图6描述的,设备可将FGSN设为最大可用FGSN以指示数据片段块的最后一个数据片段。
如果在步骤1105发送的片段不是最后一个片段,则过程流1100返回步骤1105并发送该数据单元的下一个片段。另一方面,如果在步骤1107,在步骤1105发送的片段是最后一个片段,则过程流1100移至步骤1109。在步骤1109,设备接收确收,并且过程流1100移至1111。在步骤1111,设备确定该数据单元的最后一个片段的片段序列号(FGSN)是否等于零(或者指示分段未在使用中的另一值)。如果最后一个数据片段的FGSN等于零,则过程流1100移至步骤1115,并且设备将该确收解读为块ACK(例如,具有指示多达64个数据单元中每一个数据单元的多达16个片段的收到/未收到的128个字节的位映射的未经压缩块ACK)。过程流1100随后移至步骤1119。在步骤1119,设备基于该块ACK来确定多个数据单元的多个数据片段中的每一个数据片段是否被接收机接收到(例如,多达64个数据单元中的每一个数据单元的多达16个片段中的每个片段是否被接收到)。
另一方面,如果在步骤1111,最后一个数据片段的FGSN不等于零,则过程流1100移至步骤1113,并且设备将确收解读为指示每个传送的片段的状态的多片段确收(MFA)。如上所述,参照图8b,MFA包括指示单个数据单元的数据片段块中每一个传送的片段的收到或未收到的位映射。过程流1100随后移至步骤1117。在步骤1117,设备基于该MFA来确定该单个数据单元的多个数据片段中的每一个数据片段是否被接收机接收到。如上所述,参照图8b,MFA中所包括的位映射可被用来确定单个数据单元的数据片段块中每一个传送的片段是否被接收到。
图12解说了接收多个数据片段和传送多片段确收(MFA)的方法的各方面。过程流1200包括步骤1203,其中设备从无线设备接收单个数据单元的数据片段块的数据片段。过程流1200随后移至步骤1205,其中设备确定该数据片段是否为单个数据单元的数据片段块的最后一个数据片段。如以上参照图8c所述,数据片段的FGSN可具有指示数据片段为块的最后一个数据片段的最高可用FGSN值。如果该数据片段是块的最后一个数据片段,则过程流1200移至步骤1209。
另一方面,如果设备确定该数据片段不是块的最后一个数据片段,则过程流1200移至步骤1207。在步骤1207,设备确定该数据片段是否为单个数据单元的最后一个数据片段。如以上参照图5b描述的,数据片段的“更多片段”位可指示该数据片段是否为单个数据单元的最后一个数据片段。如果该数据片段不是单个数据单元的最后一个数据片段,则过程流1200移至步骤1211,并且设备抑制向无线设备传送确收。过程流1200随后返回步骤1203,并且设备接收单个数据单元的下一个数据片段。另一方面,如果设备在步骤1207确定该数据片段是单个数据单元的最后一个数据片段,则过程流1200移至步骤1209。在步骤1209,设备向无线设备传送多片段确收(MFA)。如上所述,参照图8b,MFA包括指示数据单元的数据片段块中每一个传送的片段的收到或未收到的位映射。
图13解说了传送多个数据片段的方法的各方面。过程流1300包括步骤1302,其中发射机基于该发射机的参数来确定该发射机是否支持多片段确收(MFA),如参照图10进一步描述的。
过程流1300随后移至步骤1304,其中发射机向接收机传送第一帧。响应于发射机确定该发射机支持MFA,第一帧的亚1千兆赫(S1G)能力元素的S1G能力信息字段的片段块确收(BA)支持子字段具有第一值,如参照图10进一步描述的。响应于发射机确定该发射机不支持MFA,该片段BA支持子字段具有第二值。响应于接收到第一帧,接收机可基于第一帧的片段BA支持子字段的值来确定发射机是否支持MFA。发射机可包括S1G站。
过程流1300随后移至步骤1306,其中发射机基于从接收机接收到的第二帧的片段BA支持字段的值来确定接收机是否支持MFA。例如,接收机可能先前已传送了包括指示接收机是否支持MFA的片段BA支持子字段的第二帧。
过程流1300随后移至步骤1308,其中发射机从单个数据单元创建多个数据片段。例如,响应于确定接收机和发射机支持MFA,发射机可将单个数据单元拆分成多个数据片段。
过程流1300随后移至步骤1310,其中发射机为这多个数据片段中的每一个生成片段序列号(FGSN),如参照图6进一步描述的。在特定实施例中,片段序列号可被称为片段号。
图14解说了传送多个数据片段的方法的各方面。在特定实施例中,过程流1400可从过程流1300继续。过程流1400包括步骤1402,其中发射机确定这多个数据片段中的一数据片段是否为要引发确收的特定数据片段。在特定实施例中,该特定数据片段对应于这多个数据片段中的最后一个数据片段(例如,最后一个数据片段703),如参照图7a描述的。在另一实施例中,该特定数据片段对应于不同于这多个数据片段中的最后一个数据片段的片段。例如,该特定数据片段可对应于数据片段713,如参照图7b进一步描述的。
响应于确定该数据片段不是该特定数据片段,过程流1400移至步骤1404,其中发射机确定该数据片段是否被包括在第一多个数据片段中。第一多个数据片段中的每一个数据片段在将该特定数据片段传送给接收机之前被传送给接收机。
响应于确定该数据片段被包括在第一多个数据片段中,过程流1400移至步骤1406,其中发射机将该数据片段的确收策略设为块确收。
替换地,响应于在步骤1404确定该数据片段未被包括在第一多个数据片段中,过程流1400移至步骤1410,其中发射机将该数据片段的确收策略设为单独确收。
响应于在步骤1402确定数据片段是特定数据片段,过程流1400移至步骤1412,其中发射机将该数据片段的确收策略设为隐式块确收请求,并且过程流1400移至1414,其中发射机将该数据片段的更多片段字段设为特定值(例如,零)。
过程流1400从1408、1410和1414移至步骤1408,其中发射机向接收机传送该数据片段。过程流1400移至步骤1416,其中发射机确定该数据片段是否为这多个数据片段中的最后一个数据片段。响应于确定该数据片段不是最后一个数据片段,过程流1400返回步骤1402以处理下一个数据片段。例如,该数据片段可被包括在第一多个数据片段中。作为另一示例,该数据片段可以是这多个数据片段中的非最后一个数据片段,并且可存在要处理的后续数据片段。
图15解说了接收多片段确收(MFA)的方法的各方面。在特定实施例中,过程流1500可从过程流1400继续。过程流1500包括步骤1502,其中发射机确定在传送特定数据片段的阈值时间段期间是否接收到多片段确收(MFA)。响应于发射机确定在阈值时间段内未接收到MFA,过程流1500移至步骤1504,其中发射机向接收机重传特定数据片段。例如,特定数据片段可能未被接收机成功接收,重新发送特定数据片段可引发来自接收机的MFA。过程流1500随后返回步骤1502。
响应于在步骤1502确定在阈值时间段期间已接收到MFA,过程流1500移至步骤1506,其中发射机接收来自接收机的确收。例如,发射机可响应于该特定数据片段为这多个数据片段中的最后一个数据片段而接收到MFA 705,如参照图7a描述的。作为另一示例,发射机可响应于该特定数据片段为这多个数据片段中的非最后一个数据片段而接收到MFA715,如参照图7b进一步描述的。过程流1500随后移至步骤1508,其中发射机确定该确收的块确收标识符字段的值对应于特定数据片段的服务字段的加扰器初始化值。
过程流1500随后移至步骤1510,其中发射机确定该确收的起始序列控制(SSC)字段的值对应于单个数据单元的序列号。该特定数据片段可能已包括了该单个数据单元的序列号。
过程流1500随后移至步骤1512,其中发射机将该确收解读为指示接收机是否接收到了第一多个数据片段和该特定数据片段中的每一个数据片段的多片段确收(MFA)。例如,发射机可响应于确定该确收的块确收标识符字段对应于特定数据片段的服务字段的加扰器初始化值、该确收的SSC字段对应于单个数据单元的序列号、或这两者来确定MFA是响应于特定数据片段的。
过程流1500随后移至步骤1514,其中发射机基于MFA来确定第一多个数据片段和该特定数据片段中的每一个数据片段是否被接收机接收到。例如,MFA的位映射(例如,块确收位映射918)中的每一位可指示对应数据片段是否被接收到,如参照图8b进一步描述的。过程流1500随后移至步骤1516,其中发射机确定MFA是否指示第一多个数据片段和该特定数据片段已被接收到。
响应于确定第一多个数据片段中的至少一个数据片段未被接收到,过程流移至步骤1518,其中发射机基于MFA选择性地重传第一多个数据片段中的一个或多个数据片段。例如,如果在接收机接收这多个数据片段中的一个或多个数据片段时存在差错,则发射机可重传这一个或多个数据片段,从而单个数据单元可被接收机成功地重建。
响应于在步骤1516确定第一多个数据片段和该特定数据片段的全部已被接收到,过程流移至步骤1520,其中发射机发起下一个数据单元的传送。下一个数据单元的第一个数据片段的片段序列号(FGSN)可以是最低FGSN值(例如,“0”),其指示下一个数据片段序列的开始。
图16解说了接收数据片段和确定是否要发起对确收的传送的方法的各方面。
过程流1600包括步骤1602,其中接收机从无线设备接收单个数据单元的特定数据片段。过程流1600随后移至步骤1604,其中接收机确定该数据片段是否指示隐式块确收请求。
响应于确定该数据片段指示隐式块确收请求,过程流1600移至步骤1606,其中接收机发起向无线设备传送确收。该确收指示已从无线设备接收到该特定数据片段。该确收指示是否已从无线设备接收到单个数据单元的第一多个数据片段中的每一个数据片段。第一多个数据片段中的每一个数据片段包括在该特定数据片段的片段序列号(FGSN)前面的特定FGSN,如参照图7a和7b进一步描述的。
替换地,响应于在步骤1604确定该数据片段不指示隐式块确收请求,过程流1600移至步骤1608,其中接收机抑制发起向无线设备传送确收。例如,接收机可响应于数据片段指示除隐式块确收请求以外的确收策略而不发送多片段确收(MFA)。
过程流1600随后移至步骤1610,其中接收机确定该数据片段是否指示单独确收被请求(例如,指示单独确收策略)。响应于确定该数据片段指示单独确收被请求,过程流1600移至步骤1612,其中接收机发起向无线设备传送第二确收。第二确收指示已从无线设备接收到该特定数据片段。替换地,响应于确定该特定数据片段不指示单独确收被请求,过程流1600返回步骤1602。
图17是根据本公开的某些方面的示例无线设备1700的框图。本领域技术人员将领会,无线设备可具有比图17中所解说的简化无线设备1700更多的组件。无线设备1700仅包括对于描述权利要求的范围内的实现的一些突出特征而言有用的那些组件。无线设备1700包括接收机1701、处理器1703、发射机1705和天线1705。在一个实现中,无线设备1700被配置成在载波侦听多址网络中传送数据帧。
在一个实现中,用于从单个数据单元创建多个数据片段的装置包括处理器1703(例如,其被编程为确定MSDU的大小、通过将MSDU的大小除以分组有效载荷大小来确定数据片段的数目、和生成所确定数目的数据片段)。在一个实现中,用于发起向无线设备传送多个数据片段的装置包括处理器1703(例如,其被编程为确定多个数据片段准备好被传送并向发射机1705发送信号以请求传送多个数据片段)。在一个实现中,用于在向无线设备传送多个数据片段中的特定数据片段之后接收确收的装置包括处理器1703(例如,其被编程为作为来自接收机1701的信号来接收确收)。该特定数据片段可指示隐式块确收请求。在特定实施例中,任何片段的确收策略字段可被设为用以引发确收的隐式块确收请求。为了解说,确收策略字段被设为隐式块确收请求的数据片段可引发MFA。在特定实施例中,引发MFA的数据片段可以是这多个数据片段中的最后一个数据片段,其‘更多片段’字段被设为指示没有更多片段的第一值(例如,“0”或假),如参照图7a描述的。在另一实施例中,引发MFA的数据片段是并非最后一个数据片段的数据片段,其‘更多片段’字段被设为指示存在更多片段的第二值(例如,“1”或真),如参照图7b描述的。这多个数据片段中的第一多个数据片段中的每一个数据片段可指示块确收策略。第一多个数据片段中的每一个数据片段可在该特定数据片段的传送之前被传送给无线设备。该确收可指示第一多个数据片段中的每一个数据片段和该特定数据片段被无线设备收到或未收到。例如,该确收可以是多片段确收(MFA)。MFA可被包括在分组的物理层(PHY)前置码的信号(SIG)字段中。在特定实施例中,MFA可以是NDP块确收。
所公开的实施例中的一个或多个实施例可在一种系统或装置中实现,该系统或装置可包括通信设备、固定位置的数据单元、移动位置的数据单元、移动电话、蜂窝电话、计算机、平板设备、便携式计算机、或台式计算机。另外,该系统或装置可包括机顶盒、娱乐单元、导航设备、个人数字助理(PDA)、监视器、计算机监视器、电视机、调谐器、无线电、卫星无线电、音乐播放器、数字音乐播放器、便携式音乐播放器、视频播放器、数字视频播放器、数字视频盘(DVD)播放器、便携式数字视频播放器、存储或取得数据或计算机指令的任何其他设备、或其组合。作为另一解说性、非限制性示例,该系统或装置可包括远程单元(诸如移动电话、手持式个人通信系统(PCS)单元)、便携式数据单元(诸如个人数据助理、启用全球定位系统(GPS)的设备、导航设备)、固定位置的数据单元(诸如仪表读数装备)、或存储或检索数据或计算机指令的任何其他设备、或其组合。尽管图1-10中的一个或多个图可以解说根据本公开的教导的各系统、装置、和/或方法,但本公开不限于这些所解说的系统、装置、和/或方法。本公开的各实施例可适于用在任何包括集成电路系统(包括存储器、处理器和片上电路系统)的设备中。
应当理解,本文中使用诸如“第一”、“第二”之类的指定对元素的任何引述一般不限定这些元素数量或次序。相反,这些指定可在本文中用作区分两个或更多个元素或者元素实例的便捷方法。因此,对第一元素和第二元素的引述并不意味着仅可采用两个元素或者第一元素必须以某种方式位于第二元素之前。同样,除非另外声明,否则一组元素可包括一个或多个元素。
如本文所使用的,术语“确定”涵盖各种各样的动作。例如,“确定”可包括演算、计算、处理、推导、研究、查找(例如,在表、数据库或其他数据结构中查找)、探知及诸如此类。而且,“确定”可包括接收(例如,接收信息)、访问(例如,访问存储器中的数据)及诸如此类。而且,“确定”还可包括解析、选择、选取、确立及类似动作。另外,如本文中所使用的“信道宽度”可涵盖或者在某些方面还可称为带宽。
如本文中所使用的,引述一列项目中的“至少一个”的短语是指这些项目的任何组合,包括单个成员。作为示例,“a、b或c中的至少一个”旨在涵盖:a、b、c、a-b、a-c、b-c、和a-b-c。
各种解说性组件、框、配置、模块、电路、和步骤已经在上文以其功能性的形式作了一般化描述。此类功能性是被实现为硬件还是处理器可执行指令取决于具体应用和加诸于整体系统的设计约束。另外,上面描述的方法的各种操作可由能够执行这些操作的任何合适的装置来执行,诸如各种硬件和/或软件组件、电路、和/或模块。一般而言,图1-17中所解说的任何操作可由能够执行这些操作的相对应的功能装置来执行。技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本发明的范围。
本领域技术人员将进一步理解,结合本公开描述的各种解说性逻辑块、配置、模块、电路以及算法步骤可用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件(PLD)、分立的门或晶体管逻辑、分立的硬件组件(例如,电子硬件)、由处理器执行的计算机软件、或其设计成执行本文中描述的功能的任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何市售的处理器、控制器、微控制器或状态机。处理器还可以被实现为计算设备的组合,例如DSP与微处理器的组合、多个微处理器、与DSP核心协同的一个或多个微处理器或任何其它此类配置。
在一个或多个方面中,所描述的功能可在硬件、软件、固件或其任何组合中实现。如果在软件中实现,则各功能可以作为一条或更多条指令或代码存储在计算机可读介质上。计算机可读介质包括计算机可读存储介质和通信介质,包括促成计算机程序从一地到另一地的转移的任何介质。存储介质可以是能被计算机访问的任何可用介质。作为示例而非限定,此类计算机可读存储介质可包括随机存取存储器(RAM)、只读存储器(ROM)、可编程只读存储器(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、寄存器、硬盘、可移动盘、紧致盘只读存储器(CD-ROM)、其它光盘存储、磁盘存储、磁存储设备、或可被用来存储指令或数据结构形式的期望程序代码且能被计算机访问的任何其它介质。在替换方案中,计算机可读介质(例如,存储介质)可被整合到处理器。处理器和存储介质可驻留在专用集成电路(ASIC)中。ASIC可驻留在计算设备或用户终端中。在替换方案中,处理器和存储介质可作为分立组件驻留在计算设备或用户终端中。
任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波之类的无线技术从web网站、服务器、或其它远程源传送而来,则该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括压缩碟(CD)、激光碟、光碟、数字多用碟(DVD)、软盘和碟(蓝光是日本东京的索尼公司的注册商标),其中盘(disk)往往以磁的方式再现数据,而碟用激光以光学方式再现数据。因此,在一些方面,计算机可读介质可包括非暂态计算机可读介质(例如,有形介质)。另外,在一些方面,计算机可读介质可包括瞬态计算机可读介质(例如,信号)。上述的组合应当也被包括在计算机可读介质的范围内。
本文所公开的方法包括用于达成所描述的方法的一个或更多个步骤或动作。这些方法步骤和/或动作可以彼此互换而不会脱离权利要求的范围。换言之,除非指定了步骤或动作的特定次序,否则具体步骤和/或动作的次序和/或使用可以改动而不会脱离权利要求的范围。
因而,某些方面可包括用于执行本文中给出的操作的计算机程序产品。例如,此类计算机程序产品可包括其上存储(和/或编码)有指令的计算机可读存储介质,这些指令能由一个或多个处理器执行以执行本文中所描述的操作。对于某些方面,计算机程序产品可包括包装材料。
此外,应当领会,用于执行本文中所描述的方法和技术的模块和/或其它恰适装置能由用户终端和/或基站在适用的场合下载和/或以其他方式获得。替换地,本文中所描述的各种方法能经由存储装置(例如,RAM、ROM、诸如压缩碟(CD)或软盘之类的物理存储介质等)来提供。此外,可利用适于向设备提供本文中所描述的方法和技术的任何其他合适的技术。
将理解,权利要求并不被限定于以上所解说的精确配置和组件。提供前面对所公开的实施例的描述是为了使本领域技术人员皆能制作或使用所公开的实施例。尽管上述内容针对本公开的各方面,然而可设计出本公开的其他和进一步的方面而不会脱离其基本范围,且范围是由所附权利要求来确定的。可在本文描述的实施例的布局、操作及细节上作出各种改动、更换和变型而不会脱离本公开或权利要求的范围。因此,本公开并非旨在被限定于本文中的实施例,而是应被授予与如由所附权利要求及其等效技术方案定义的原理和新颖性特征一致的最广的可能范围。

Claims (44)

1.一种用于分组分段的方法,包括:
在发射机处基于所述发射机的参数来确定所述发射机是否支持多片段确收(MFA);以及
向接收机传送第一帧,
其中响应于确定所述发射机支持MFA,所述第一帧的亚1千兆赫(S1G)能力元素的S1G能力信息字段的片段块确收(BA)支持子字段具有第一值,以及
其中响应于确定所述发射机不支持MFA,所述片段BA支持子字段具有第二值。
2.如权利要求1所述的方法,其特征在于,进一步包括:在所述发射机处基于从接收机接收到的第二帧的片段块确收(BA)支持字段的值来确定所述接收机是否支持MFA。
3.如权利要求2所述的方法,其特征在于,进一步包括:响应于确定所述发射机和所述接收机支持MFA:
从单个数据单元创建多个数据片段;以及
向所述接收机传送所述多个数据片段,
其中所述多个数据片段中的特定数据片段指示隐式块确收请求,
其中所述多个数据片段中的第一多个数据片段中的每一个数据片段指示块确收策略,以及
其中所述第一多个数据片段中的每一个数据片段在将所述特定数据片段传送给所述接收机之前被传送给所述接收机。
4.如权利要求3所述的方法,其特征在于,所述特定数据片段是所述多个数据片段中的最后一个数据片段。
5.如权利要求3所述的方法,其特征在于,所述发射机包括S1G站或S1G接入点。
6.如权利要求3所述的方法,其特征在于,所述多个数据片段中的每一个数据片段指示所述单个数据单元的帧序列号(FSN)。
7.一种用于分组分段的方法,包括:
在发射机处基于所述发射机的参数来确定所述发射机是否支持多片段确收(MFA);
在所述发射机处基于从接收机接收到的帧的片段块确收(BA)支持字段的值来确定所述接收机是否支持MFA;
响应于确定所述发射机和所述接收机支持MFA:
从单个数据单元创建多个数据片段;以及
向所述接收机传送所述多个数据片段,
其中所述多个数据片段中的特定数据片段指示隐式块确收请求,
其中所述多个数据片段中的第一多个数据片段中的每一个数据片段指示块确收策略,以及
其中所述第一多个数据片段中的每一个数据片段在将所述特定数据片段传送给所述接收机之前被传送给所述接收机。
8.如权利要求7所述的方法,其特征在于,所述发射机包括S1G站或S1G接入点。
9.一种用于分组分段的方法,包括:
从单个数据单元创建多个数据片段;以及
向接收机传送所述多个数据片段,
其中所述多个数据片段中的特定数据片段指示隐式块确收请求,
其中所述多个数据片段中的第一多个数据片段中的每一个数据片段指示块确收策略,以及
其中所述第一多个数据片段中的每一个数据片段在将所述特定数据片段传送给所述接收机之前被传送给所述接收机。
10.如权利要求9所述的方法,其特征在于,进一步包括:为所述多个数据片段中的每一个数据片段生成片段序列号(FGSN)。
11.如权利要求10所述的方法,其特征在于,所述FGSN是使用模函数生成的。
12.如权利要求9所述的方法,进一步包括:
在向所述接收机传送所述特定数据片段之后,接收来自所述接收机的确收;
响应于以下操作而将所述确收解读为多片段确收(MFA):
确定所述确收的块确收标识符字段的值对应于所述特定数据片段的服务字段的加扰器初始化值;以及
确定所述确收的起始序列控制(SSC)字段的值对应于所述单个数据单元的序列号,其中所述MFA指示所述第一多个数据片段中的每一个数据片段和所述特定数据片段被所述接收机收到或未收到;以及
基于所述MFA来确定所述单个数据单元的所述第一多个数据片段和所述特定数据片段中的每一个数据片段是否被所述接收机接收到。
13.如权利要求12所述的方法,其特征在于,进一步包括:基于所述MFA选择性地重传所述第一多个数据片段中的一个或多个数据片段。
14.如权利要求12所述的方法,其特征在于,进一步包括:基于所述MFA来发起下一个数据单元的传送。
15.如权利要求14所述的方法,其特征在于,所述下一个数据单元的第一个数据片段的片段序列号(FGSN)具有指示序列开始的最低FGSN值。
16.如权利要求12所述的方法,其特征在于,所述MFA包括位映射,其中所述位映射的每一位指示所述第一多个数据片段和所述特定数据片段中的对应数据片段是否被所述接收机接收到。
17.如权利要求12所述的方法,其特征在于,进一步包括:在传送所述特定数据片段之后的阈值时间段期间未接收到所述MFA时向所述接收机重传所述特定数据片段。
18.如权利要求12所述的方法,其特征在于,所述MFA被包括在分组的物理层(PHY)前置码中。
19.如权利要求18所述的方法,其特征在于,所述MFA被包括在分组的所述PHY前置码的信号(SIG)字段中。
20.如权利要求12所述的方法,其特征在于,所述单个数据单元的所述序列号包括所述单个数据单元的帧序列号(FSN)。
21.一种用于分组分段的方法,包括:
从单个数据单元创建多个数据片段;
向接收机传送所述多个数据片段;以及
在向所述接收机传送所述多个数据片段中的特定数据片段之后,接收来自所述接收机的多片段确收(MFA),
其中所述MFA指示第一多个数据片段中的每一个数据片段和所述特定数据片段被所述接收机收到或未收到,
其中所述第一多个数据片段中的每一个数据片段指示块确收策略,所述特定数据片段指示隐式块确收策略,并且所述第一多个数据片段中的每一个数据片段在将所述特定数据片段传送给所述接收机之前被传送给所述接收机,以及
其中所述MFA包括空数据分组(NDP)媒体接入控制(MAC)帧类型字段、块确收标识符字段、起始序列控制字段、以及块确收位映射。
22.如权利要求21所述的方法,其特征在于,所述NDP MAC帧类型字段具有3位的长度,并且其中所述起始序列控制字段具有12位的长度。
23.如权利要求21所述的方法,其特征在于,所述NDP MAC帧类型字段具有为4的值。
24.一种用于分组分段的方法,包括:
从单个数据单元创建多个数据片段;
向接收机传送所述多个数据片段,其中所述多个数据片段中的特定数据片段指示隐式块确收请求,其中所述多个数据片段中的第一多个数据片段中的每一个数据片段指示块确收策略,并且其中所述第一多个数据片段中的每一个数据片段在将所述特定数据片段传送给所述接收机之前被传送给所述接收机;以及
请求所述多个数据片段中的剩余数据片段中的每一个数据片段的单独确收。
25.如权利要求24所述的方法,其特征在于,所述第一多个数据片段包括多达7个数据片段,并且所述多个数据片段在约1兆赫(MHz)的带宽上传送。
26.如权利要求24所述的方法,其特征在于,所述第一多个数据片段包括多达15个数据片段,并且所述多个数据片段在约2兆赫(MHz)或更大的带宽上传送。
27.如权利要求24所述的方法,进一步包括:
在传送所述特定数据片段之后,接收来自所述接收机的确收;
响应于以下操作而将所述确收解读为多片段确收(MFA):
确定所述确收的块确收标识符字段的值对应于所述特定数据片段的服务字段的加扰器初始化值;以及
确定所述确收的起始序列控制(SSC)字段的值对应于所述单个数据单元的序列号,
其中所述MFA指示所述第一多个数据片段中的每一个数据片段和所述特定数据片段被所述接收机收到或未收到;以及
基于所述MFA来确定所述单个数据单元的所述第一多个数据片段和所述特定数据片段中的每一个数据片段是否被所述接收机接收到。
28.如权利要求27所述的方法,其特征在于,进一步包括:在传送所述特定数据片段之后的阈值时间段期间未接收到所述MFA时向所述接收机重传所述特定数据片段。
29.如权利要求27所述的方法,其特征在于,进一步包括:基于所述MFA选择性地重传所述第一多个数据片段中的一个或多个数据片段。
30.如权利要求27所述的方法,其特征在于,进一步包括:基于所述MFA来发起下一个数据单元的传送。
31.一种存储指令的用于分组分段的非瞬态计算机可读介质,所述指令在由处理器执行时使所述处理器执行包括以下的操作:
从单个数据单元创建多个数据片段;
向接收机传送所述多个数据片段;以及
在向所述接收机传送所述多个数据片段中的特定数据片段之后,接收来自所述接收机的多片段确收(MFA),
其中所述MFA指示所述多个数据片段中的第一多个数据片段中的每一个数据片段和所述特定数据片段被所述接收机收到或未收到,所述第一多个数据片段中的每一个数据片段指示块确收策略,所述特定数据片段指示隐式块确收策略,并且其中所述第一多个数据片段中的每一个数据片段在将所述特定数据片段传送给所述接收机之前被传送给所述接收机,以及
其中所述MFA包括空数据分组(NDP)媒体接入控制(MAC)帧类型字段、块确收标识符字段、起始序列控制字段、以及块确收位映射。
32.如权利要求31所述的非瞬态计算机可读介质,其特征在于,所述块确收标识符字段具有6位的长度,所述块确收位映射具有16位的长度,并且所述MFA是在约2兆赫(MHz)或更大的带宽上接收的。
33.如权利要求31所述的非瞬态计算机可读介质,其特征在于,所述块确收标识符字段具有2位的长度,所述块确收位映射具有8位的长度,并且所述MFA是在约1兆赫(MHz)的带宽上接收的。
34.一种用于分组分段的设备,包括:
用于从单个数据单元创建多个数据片段的装置;
用于向无线设备传送所述多个数据片段的装置;以及
用于在所述多个数据片段中的特定数据片段被传送给所述无线设备之后接收来自所述无线设备的确收的装置,
其中所述特定数据片段指示隐式块确收请求,
其中所述多个数据片段中的第一多个数据片段中的每一个数据片段指示块确收策略,
其中所述第一多个数据片段中的每一个数据片段在所述特定数据片段的传送之前被传送给所述无线设备,
其中所述确收指示所述第一多个数据片段中的每一个数据片段和所述特定数据片段被所述无线设备收到或未收到,以及
其中所述确收被包括在分组的物理层(PHY)前置码的信号(SIG)字段中。
35.如权利要求34所述的设备,其特征在于,所述确收是多片段确收(MFA),所述MFA包括位映射,并且所述位映射的每一位指示所述第一多个数据片段和所述特定数据片段中的对应数据片段是否被所述无线设备接收到。
36.如权利要求34所述的设备,其特征在于,所述特定数据片段的服务质量(QoS)字段的特定值指示所述隐式块确收请求,并且所述特定数据片段包括QoS数据帧。
37.如权利要求36所述的设备,其特征在于,所述QoS字段的所述特定值是0。
38.如权利要求34所述的设备,其特征在于,所述特定数据片段的确收策略字段的特定值指示所述隐式块确收请求,并且所述特定数据片段包括短帧。
39.如权利要求38所述的设备,其特征在于,所述确收策略字段的所述特定值是0。
40.一种用于分组分段的装置,包括:
处理器;以及
存储器,其存储能由所述处理器执行以执行包括以下的操作的指令:
接收来自无线设备的单个数据单元的特定数据片段;
响应于确定所述特定数据片段指示隐式块确收请求,发起向所述无线设备传送确收,
其中所述确收指示已从所述无线设备接收到所述特定数据片段,
其中所述确收指示是否已从所述无线设备接收到所述单个数据单元的第一多个数据片段中的每一个数据片段,以及
其中所述第一多个数据片段中的每一个数据片段包括在所述特定数据片段的片段序列号(FGSN)前面的特定FGSN;以及
响应于确定所述特定数据片段不指示隐式块确收请求,抑制发起向所述无线设备传送所述确收。
41.如权利要求40所述的装置,其特征在于,所述操作进一步包括:响应于确定所述特定数据片段指示单独确收被请求,发起向所述无线设备传送第二确收,其中所述第二确收指示已从所述无线设备接收到所述特定数据片段。
42.如权利要求40所述的装置,其特征在于,所述确收包括空数据分组(NDP)媒体接入控制(MAC)帧类型字段、块确收标识符字段、起始序列控制字段、以及块确收位映射。
43.如权利要求42所述的装置,其特征在于,所述NDP MAC帧类型字段具有为4的值,所述块确收标识符字段的值对应于所述特定数据片段的服务字段的加扰器初始化值,所述确收的所述起始序列控制字段的值对应于所述单个数据单元的序列号,以及所述块确收位映射中的每一位指示是否已从所述无线设备接收到所述第一多个数据片段和所述特定数据片段中的对应数据片段。
44.如权利要求40所述的装置,其特征在于,所述确收是在接收所述特定数据片段的短帧间间隔(SIFS)时间之后传送的。
CN201380044729.2A 2012-08-29 2013-08-28 低速无线网络中用于长分组的改进分段 Expired - Fee Related CN104584626B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13/597,758 2012-08-29
US13/597,758 US20130230059A1 (en) 2011-09-02 2012-08-29 Fragmentation for long packets in a low-speed wireless network
US14/011,680 2013-08-27
US14/011,680 US20140056223A1 (en) 2011-09-02 2013-08-27 Fragmentation for long packets in a low-speed wireless network
PCT/US2013/057129 WO2014036168A1 (en) 2012-08-29 2013-08-28 Improved fragmentation for long packets in a low-speed wireless network

Publications (2)

Publication Number Publication Date
CN104584626A CN104584626A (zh) 2015-04-29
CN104584626B true CN104584626B (zh) 2018-11-30

Family

ID=49170883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380044729.2A Expired - Fee Related CN104584626B (zh) 2012-08-29 2013-08-28 低速无线网络中用于长分组的改进分段

Country Status (6)

Country Link
EP (1) EP2891358A1 (zh)
JP (1) JP6356129B2 (zh)
KR (1) KR20150048830A (zh)
CN (1) CN104584626B (zh)
BR (1) BR112015003023A2 (zh)
WO (1) WO2014036168A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437653B2 (ja) 2014-12-01 2018-12-12 エルジー エレクトロニクス インコーポレイティド 無線lanにおけるデータフレームの再送信なしにエラーを回復する方法及び装置
US9929847B2 (en) * 2014-12-23 2018-03-27 Qualcomm Incorporated Shortened block acknowledgement with fragmentation acknowledgement signaling
KR102087781B1 (ko) * 2015-10-08 2020-03-11 한국전자통신연구원 매체 접근 제어 프레임의 단편화 기능을 지원하는 수동형 광 네트워크
CN106685618B (zh) * 2015-11-06 2020-02-21 华为技术有限公司 一种发送数据帧的方法及相关设备
CN111527766A (zh) * 2018-03-15 2020-08-11 英特尔Ip公司 在无线网络中执行多频带链路聚合的方法和装置
US11349609B2 (en) * 2018-11-05 2022-05-31 Qualcomm Incorporated Hybrid automatic repeat request acknowledgement feedback enhancement for new radio-unlicensed

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140935A (zh) * 1995-07-18 1997-01-22 三菱电机株式会社 数字接收机
CN1943157A (zh) * 2004-08-12 2007-04-04 三菱电机株式会社 在包括通过公共无线信道连接的多个站的网络中确认数据分组的方法
CN101310487A (zh) * 2005-11-16 2008-11-19 恩梯梯Pc通信设备有限公司 通信方法、移动代理装置以及本地代理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140935A (zh) * 1995-07-18 1997-01-22 三菱电机株式会社 数字接收机
CN1943157A (zh) * 2004-08-12 2007-04-04 三菱电机株式会社 在包括通过公共无线信道连接的多个站的网络中确认数据分组的方法
CN101310487A (zh) * 2005-11-16 2008-11-19 恩梯梯Pc通信设备有限公司 通信方法、移动代理装置以及本地代理装置

Also Published As

Publication number Publication date
JP2015530827A (ja) 2015-10-15
EP2891358A1 (en) 2015-07-08
CN104584626A (zh) 2015-04-29
JP6356129B2 (ja) 2018-07-11
WO2014036168A1 (en) 2014-03-06
BR112015003023A2 (pt) 2017-07-04
KR20150048830A (ko) 2015-05-07

Similar Documents

Publication Publication Date Title
US10425209B2 (en) Method and apparatus for processing ACK signal in a wireless local area network system
CN103858373A (zh) 用于低速无线网络中的长分组的改进的分段
CN104854913B (zh) 用于无线网络上的改进的通信的系统和方法
CN104471891B (zh) 用于块确收压缩的装置和方法
CN104938019B (zh) 用于修改密集网络的载波侦听多址(csma)的系统和方法
CN104025488B (zh) 无线通信中用于生成和解码短控制帧的系统和方法
KR101890758B1 (ko) 무선 통신들에서 ndp cf_end 제어 프레임을 생성 및 송신하기 위한 방법 및 디바이스
CN104380683B (zh) 用于标识增强型帧以用于无线通信的系统和方法
CN104584626B (zh) 低速无线网络中用于长分组的改进分段
CN107592960A (zh) Wlan系统中的短分组优化
CN110071787A (zh) 无线传输的群调度和确收
CN104919884A (zh) 用于为每个通信会话选择介质接入参数的系统和方法
US20140056223A1 (en) Fragmentation for long packets in a low-speed wireless network
CN105765893A (zh) 用于无线网络中的多播通信的系统和方法
CN106576268A (zh) 用于在无线网络中示意多目的地聚合的多用户介质访问控制协议数据单元的系统和方法
CN108781202A (zh) 长程低功率帧结构
KR101651760B1 (ko) 무선 근거리 네트워크에서 확인응답 프레임을 송신하기 위한 방법 및 장치
CN104904276B (zh) 用于使用受限接入窗口来节约功率的系统和方法
TWI261441B (en) Method and apparatus for packet aggregation in a wireless communication network
JP2017092686A (ja) 無線通信用集積回路、無線通信端末および無線通信方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181130

Termination date: 20200828

CF01 Termination of patent right due to non-payment of annual fee