CN104578806B - Soft switching cascaded bidirectional dc / dc circuit topology - Google Patents

Soft switching cascaded bidirectional dc / dc circuit topology Download PDF

Info

Publication number
CN104578806B
CN104578806B CN201410836076.8A CN201410836076A CN104578806B CN 104578806 B CN104578806 B CN 104578806B CN 201410836076 A CN201410836076 A CN 201410836076A CN 104578806 B CN104578806 B CN 104578806B
Authority
CN
China
Prior art keywords
connected
circuit
switch
dc
power switch
Prior art date
Application number
CN201410836076.8A
Other languages
Chinese (zh)
Other versions
CN104578806A (en
Inventor
万晓凤
谌新
余运俊
胡伟
康利平
郑博嘉
Original Assignee
南昌大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌大学 filed Critical 南昌大学
Priority to CN201410836076.8A priority Critical patent/CN104578806B/en
Publication of CN104578806A publication Critical patent/CN104578806A/en
Application granted granted Critical
Publication of CN104578806B publication Critical patent/CN104578806B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/14Reduction of losses in power supplies
    • Y02B70/1416Converters benefiting from a resonance, e.g. resonant or quasi-resonant converters
    • Y02B70/1433Converters benefiting from a resonance, e.g. resonant or quasi-resonant converters in galvanically isolated DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion
    • Y02B70/14Reduction of losses in power supplies
    • Y02B70/1491Other technologies for reduction of losses, e.g. non-dissipative snubbers, diode reverse recovery losses minimisation, zero voltage switching [ZVS], zero current switching [ZCS] or soft switching converters

Abstract

一种级联双向软开关DC/DC电路拓扑,包括前级升压电路、辅助电路、后级推挽变压器、全桥电路,它们之间依次串接,其中辅助电路包括谐振电感Lr,谐振电容Cr2,内含反并联体二极管VD2的辅助开关管VT2,快恢复二极管VD9、VD10,继电器K;其中,谐振电感Lr的一端连于快恢复二极管VD9的阴极,谐振电感Lr的另一端分别与谐振电容Cr2的正极、辅助开关管VT2的漏极相连,辅助开关管VT2的源极与快恢复二极管VD10的阳极相连,快恢复二极管VD10的阴极连于继电器K的一端,继电器K的另一端分别与谐振电容Cr2的负极、快恢复二极管VD9的阳极相连。 Cascaded bidirectional soft switching DC / DC circuit topology, including the pre-stage booster circuit, auxiliary circuit, the push-pull transformer stage, a full bridge circuit, sequentially connected therebetween, wherein the auxiliary circuit includes a resonant inductor Lr, resonant capacitor CR2, inclusion of the anti-parallel body diode VD2 auxiliary switch VT2, fast recovery diodes VD9, VD10, relay K; wherein one end of the resonant inductor Lr is connected to the cathode of the fast recovery diode VD9, the other end of the resonant inductor Lr and the resonant respectively the positive electrode capacitor Cr2, VT2 connected to the drain of the auxiliary switch, the auxiliary switch VT2 source is connected to the anode of the fast recovery diode VD10, VD10 fast recovery diode connected to the cathode K of the end of the relay, the other end of the relay K, respectively negative resonant capacitor Cr2, VD9 fast recovery diode is connected to the anode. 本发明控制简单可靠;电路结构简单,易于实现,器件成本低;开关损耗小,开关管的电压应力小,变换效率高;电路通态损耗小。 Simple and reliable control of the present invention; simple circuit structure, easy to implement, low cost devices; small switching loss, a small switch voltage stress, high conversion efficiency; small circuit conduction losses.

Description

级联双向软开关DC/DC电路拓扑 Cascaded bidirectional soft switching DC / DC circuit topology

技术领域 FIELD

[0001 ]本发明属于电动汽车技术领域,特别涉及电动汽车电路拓扑。 [0001] The present invention belongs to the technical field of electric vehicles, electric vehicles and more particularly to circuit topology. 技术背景 technical background

[0002] 目前双向DC/DC变换器的电路拓扑一般分为两类:一类是非隔离型,主要特点是变换器结构简单,体积小,重量轻,功率小,效率高,但是只适用于低功率无需电气隔离的场合;另一类则是隔离型,通过引入变压器不仅解决了低压侧与高压侧的电气隔离,而且使得变换器的功率大幅度提尚,但是大功率场合往往广生开关管应力大、开关损耗严重、电磁性能差等问题难以解决。 [0002] It's circuit topology bidirectional DC / DC converter is generally divided into two categories: a non-isolated, the main converter is characterized by simple structure, small size, light weight, low power, high efficiency, but only for low where no electrical isolation of power; the other is isolated, not only solved by the introduction of the transformer is electrically isolated from the low pressure side and the high-pressure side, so that the power converter and still provide a substantial, high power applications, but often switch Kwong Sang stress, severe switching loss, and poor electromagnetic properties difficult to solve.

发明内容 SUMMARY

[0003] 本发明目的是提供一种结构简单,易于实现,开关损耗少,器件成本低的适用于电动汽车的级联双向软开关DC/DC电路拓扑。 [0003] The object of the present invention is to provide a simple structure, easy to implement, low switching losses, low-cost device suitable for an electric vehicle cascaded bidirectional soft switching DC / DC circuit topology.

[0004] 本发明是通过以下技术方案实现的。 [0004] The present invention is achieved by the following technical solutions.

[0005] 本发明所述的级联双向软开关DC/DC电路拓扑,它包括前级升压电路、辅助电路、 后级推挽变压器、全桥电路,它们之间依次串接。 [0005] the soft switch cascaded bidirectional DC / DC circuit topology of the present invention, which includes a front-stage booster circuit, auxiliary circuit, the push-pull transformer stage, a full bridge circuit, in turn connected in series therebetween. 其特征是所述的辅助电路包括谐振电感Lr,谐振电容Cr2,内含反并联体二极管VD2的辅助开关管VT2,快恢复二极管VDg、VDlQ,继电器K;其中,谐振电感Lr的一端连于快恢复二极管VD9的阴极,谐振电感Lr的另一端分别与谐振电容Cr2的正极、辅助开关管VT2的漏极相连,辅助开关管VT2的源极与快恢复二极管VDlQ的阳极相连,快恢复二极管VD 1Q的阴极连于继电器K的一端,继电器K的另一端分别与谐振电容Cr2的负极、快恢复二极管VD9的阳极相连。 Wherein said auxiliary circuit includes a resonant inductor Lr, resonant capacitor Cr2 is, inclusion of the anti-parallel body diode VD2 auxiliary switch VT2, fast recovery diodes VDg, VDlQ, relay K; wherein one end of the resonant inductor Lr is connected in fast VD9 recovery diode cathode, the other end of the resonant inductor Lr of the positive electrode and the resonant capacitor Cr2, respectively, the drain of the auxiliary switching tube VT2 is connected to the source electrode of the auxiliary switch VT2 connected to the anode of the fast recovery diode VDlQ, fast recovery diode VD 1Q a cathode connected to one end of the relay K, the other end of the relay K are negative and the resonance capacitor Cr2, VD9 fast recovery diode is connected to the anode.

[0006] 所述的前级升压电路包括低压侧直流电源UL,滤波电容心,升压电感U,内含反并联体二极管VDi的主开关管VI\,钳位电容C rl; [0006] The front-stage booster circuit includes a low-side DC power supply UL, heart filter capacitor, the boost inductor U, inclusion of the anti-parallel body diode VDi main switch Vl \, the clamp capacitor C rl;

[0007] 其中,低压侧直流电源UL的正极与升压电感U的一端相连,升压电感U的另一端连于主开关管VTi的漏极,主开关管VTi的源极与低压侧直流电源UL的负极相连,滤波电容&正向并联于低压侧直流电源uL,钳位电容Crl正向并联于主开关管漏源极,主开关管漏极作为前级升压电路的正极输出端,主开关管源极作为前级升压电路的负极输出端。 [0007] wherein the low-side DC power supply UL positive boost inductor is connected to one end of U, U and the other end of the boost inductor connected to the drain of the main switch VTi, the source electrode of the main switch VTi and the low-side DC power supply UL is connected to the negative electrode, the positive filter capacitor connected in parallel to the low pressure side & DC power uL, Crl forward clamp capacitor connected in parallel to the drain-source of the main switch, main switch as the preceding stage drain the positive output terminal of the booster circuit, a main the source switch the output of the preceding stage as the negative booster circuit.

[0008] 所述的辅助电路包括谐振电感Lr,谐振电容Cr2,内含反并联体二极管VD2的辅助开关管ντ 2,快恢复二极管VD9、VD1Q,继电器K; Auxiliary circuit [0008] comprising the resonant inductor Lr, resonant capacitor Cr2, inclusion of the anti-parallel body diode VD2 auxiliary switch ντ 2, fast recovery diodes VD9, VD1Q, relay K;

[0009] 其中,谐振电感Lr的一端作为辅助电路的正极输入端,连于前级升压电路的正极输出端,谐振电感Lr的另一端分别与谐振电容C r2的正极、辅助开关管VT2的漏极相连,辅助开关管VT2的源极作为辅助电路的负极输入端,分别与前级升压电路的负极输出端、快恢复二极管VD 1Q的阳极相连,快恢复二极管VD1Q的阴极连于继电器K的一端,继电器K的另一端分别与谐振电容c r2的负极、快恢复二极管VD9的阳极相连,快恢复二极管VD9的阴极连于前级升压电路的正极输出端,并作为辅助电路的正极输出端,快恢复二极管VD 1Q的阳极作为辅助电路的负极输出端。 [0009] wherein, one end of the resonant inductor Lr of the positive electrode input terminal of an auxiliary circuit, connected to the pre-stage booster circuit positive output terminal, the other end of the resonant inductor Lr of each positive electrode of the resonant capacitor C r2, the auxiliary switch VT2 a drain connected to the source electrode of the auxiliary switch VT2 as the negative input terminal of the auxiliary circuit, respectively, and a negative output terminal of the preceding stage booster circuit VD 1Q fast recovery diode anode is connected to the cathode of the fast recovery diode VD1Q attached to the relay K one end, the other end of the relay K are negative resonant capacitor C R2 is connected the anode of the fast recovery diode VD9, VD9 fast recovery diode cathode connected to the positive output terminal of the preceding stage booster circuit, and the positive electrode of the output of the auxiliary circuit end, fast recovery diode VD 1Q anode auxiliary circuit as the negative output terminal.

[0010]所述的后级推挽变压器包括内含反并联体二级管vd3的功率开关管ντ3,内含反并联体二级管VD4的功率开关管VT4,原边三端口(两个同名端)、副边两端口(一个同名端)的变压器; [0010] The rear stage push-pull transformer comprising a diode anti-parallel vd3 inclusion body power switch ντ3, containing anti-parallel body diode of the power switch VT4 VD4, primary three-port (two with the same name end), two secondary ports (a dotted terminal) of the transformer;

[0011] 其中,变压器原边中间的同名端作为后级推挽变压器的正极输入端,与辅助电路的正极输出端相连,功率开关管VT3的漏极连于变压器原边的另一同名端,功率开关管VT3的源极作为后级推挽变压器的负极输入端,分别与辅助电路的负极输出端、功率开关管VT4的源极相连,功率开关管VT4的漏极连于变压器原边的非同名端,功率开关管VT 3、VT4组成一对推挽开关管,变压器副边的同名端作为后级推挽变压器的正极输出端,变压器副边的非同名端作为后级推挽变压器的负极输出端。 [0011] wherein the dot end of the transformer primary side as the positive input terminal of the intermediate-stage push-pull transformer is connected to the positive output terminal of the auxiliary circuit, the drain of the power switch VT3 connected to the other end of the transformer primary side of the same name, non power switch VT3 source electrode as a negative electrode input terminal of the rear stage of the push-pull transformer, respectively, and the negative terminal of the auxiliary output circuit, the power switching source electrode is connected to a tube VT4, VT4 drain of the power switch is connected to the primary side of the transformer dot end, the power switch VT 3, VT4 form a push-pull switch, the dot end of the secondary side of the transformer as a positive electrode output terminal of the rear stage push-pull transformer, the non-dotted terminal of the secondary side of the transformer as the negative electrode of the rear stage push-pull transformer an output terminal.

[0012] 所述的全桥电路包括饱和电感L2,继电器Κ,隔直电容C2,内含反并联体二极管VD5、 输出结电容C5的功率开关管VT5,内含反并联体二极管VD6、输出结电容C6的功率开关管VT6, 内含反并联体二极管VD7、输出结电容C7的功率开关管VT7,内含反并联体二极管VDs、输出结电容C 8的功率开关管VT8,滤波电容0),高压侧直流电源UH; A full bridge circuit [0012] comprises the saturable inductor L2, relay Κ, DC blocking capacitor C2, containing the anti-parallel body diode VD5, the output node of the power switch capacitor C5 VT5, containing the anti-parallel body diode VD6, output node power switch capacitor C6 VT6, containing anti-parallel body diode VD7, capacitor C7 the output node of the power switch VT7, containing VDs from anti-parallel body diodes, the output junction capacitance C of the power switch 8 VT8, filter capacitor 0), the UH high side DC power supply;

[0013] 其中,饱和电感L2的一端作为全桥电路的正极输入端,与后级推挽变压器的正极输出端相连,饱和电感L 2的另一端连于隔直电容&的正极,继电器K并联于饱和电感1^2,隔直电容C2的负极分别与功率开关管VT5的源极、功率开关管VT7的漏极相连,功率开关管VT5的漏极分别与功率开关管VT6的漏极、滤波电容Co的正极、高压侧直流电源UH的正极相连,功率开关管VT 7的源极分别与功率开关管VT8的源极、滤波电容Co的负极、高压侧直流电源UH的负极相连,功率开关管VT8的漏极作为全桥电路的负极输入端,分别与后级推挽变压器的负极输出端、功率开关管VT6的源极相连,功率开关管VT 5、VT7组成全桥电路的超前桥臂,功率开关管VT5、VT7组成全桥电路的滞后桥臂。 [0013] wherein, as a full bridge circuit, the positive input end of the saturable inductor L2, and the positive output terminal connected to the subsequent stage of the push-pull transformer, L 2 saturable inductor and the other end connected to the positive electrode of the blocking capacitor &, parallel relay K 2 ^ 1 in the saturable inductor, a DC blocking capacitor C2 and the negative electrode, respectively source VT5 the power switch, the power switch connected to the drain VT7, the drain of the power switch and the power switch are VT5 VT6 drain tube, filtering the positive electrode capacitance Co of the positive high voltage side of the DC power supply UH is connected to the power switch VT source 7 electrodes are electrode and the source power switch VT8 negative electrode, the high-side DC power supply UH negative smoothing capacitor Co is connected to the power switch VT8 drain as the negative input terminal of the full bridge circuit, respectively, and the negative output terminal of the rear stage push-pull transformer, the power switch is connected to the source electrode of VT6, power switch VT 5, VT7 composition lead leg full bridge circuit, power switch VT5, VT7 composition lagging leg full bridge circuit.

[0014] 本发明的特点和技术效果: [0014] The technical features and effects of the invention:

[0015] 1、电路中的所有开关管均为PWM控制方式,低压侧驱动电路无需电气隔离,控制简单可靠; [0015] 1, all tubes are switching circuit PWM control, low side driver circuit without electrical isolation, control is simple and reliable;

[0016] 2、辅助电路仅由一个开关管和简单的无源器件组成,复杂程度大大降低,整个电路结构简单,易于实现,器件成本低; [0016] 2, the auxiliary circuit switch only by a simple passive devices and compositions, greatly reduces the complexity, the overall circuit configuration is simple, easy to implement, low cost devices;

[0017] 3、电路中的所有开关管均能实现软开关,不仅降低了开关损耗,减小了开关管的电压应力,还有效提尚了变换效率; [0017] 3, all switching circuit tube can achieve soft switching, not only reduces the switching losses, reducing the switch voltage stress, further still effectively improve the conversion efficiency;

[0018] 4、升压变换时,主开关管VTi和推挽开关管VT3、VT4三者在任意时刻仅有一个导通, 且辅助开关管VT 2的工作时间极短,所以电路的通态损耗也较小。 [0018] 4, the step-up transformation, the main switch and push-pull switch VTi VT3, VT4 only one of the three conducting at any time, and the auxiliary switch VT 2 working time is extremely short, so the on-state of the circuit loss is also small.

附图说明 BRIEF DESCRIPTION

[0019] 图1为本发明级联双向软开关DC/DC电路拓扑。 [0019] FIG 1 cascaded bidirectional soft switching DC / DC circuit topology of the present invention.

[0020] 图2为升压变换时的电路拓扑。 [0020] FIG. 2 is a circuit topology when upconverting.

[0021] 图3为升压变换时的工作波形。 [0021] FIG. 3 is a waveform when the working upconverting.

[0022] 图4为降压压变换时的电路拓扑。 [0022] FIG. 4 is a circuit topology when the buck voltage conversion.

[0023]图5为降压变换时的工作波形。 [0023] FIG. 5 is an operation waveform when the step-down conversion.

具体实施方式 Detailed ways

[0024] 本发明所述的级联双向软开关DC/DC电路拓扑参见附图1,它在实际应用中分为升压变换时的正向工作状态和降压变换时的逆向工作状态,当升压变换时,高压侧直流电源uh须转换为负载形式,即电动机的阻抗;当降压变换时,低压侧直流电源α须转换为负载形式,即蓄电池的阻抗。 [0024] Soft cascaded bidirectional switch according to the present invention, DC / DC circuit topology Referring to Figure 1, in practical applications it is divided into the reverse operation state when a working condition when the down conversion and upconverting, when when boost conversion, uh high side DC power must be converted to supported form, i.e., the impedance of the motor; when the down conversion, low-side DC power supply must be converted to α supported form, i.e., the impedance of the battery. 为便于理解,在此统一将负载形式作空载处理。 For ease of understanding, this unified processing load will be supported form.

[0025] 下面结合附图和工作原理对本发明的具体实施方式进行详细说明。 [0025] The following specific embodiments of the present invention will be described in detail in conjunction with the accompanying drawings and works.

[0026]具体的升压变换原理如下所述。 [0026] Specifically upconverting the principle is as follows.

[0027] 当汽车在启动、加速或爬坡时,控制器关闭高压侧VT5~VT8的驱动信号,继电器K闭合,使饱和电感L 2被短路,低压侧的辅助电路被导通,参见附图2。 [0027] When the car start, acceleration or climbing, the controller closes the high side drive signals VT5 ~ VT8, the relay K is closed, so that the saturable inductor L 2 is turned on is short-circuited, a low pressure side of the auxiliary circuit, see FIG. 2. &作为隔直电容,抑制升压电路的偏磁效应。 As the magnetic bias effect & blocking capacitor suppression booster circuit. 低压侧电压先通过主开关管VI\和升压电感U构成的升压电路升压到一定值,然后推挽变压器再次升压,最后由VD 5~VD8全桥整流输出。 A low pressure side through the first main switch voltage Vl \ U boost inductor and boost circuit configured to boost a certain value, the push-pull transformer and then boosted again, and finally by VD 5 ~ VD8 full bridge rectifier output.

[0028] 为简化分析,做如下假设:所有元件均为理想状态;忽略变压器的漏感。 [0028] To simplify the analysis, the following assumptions: All components are ideal; ignore leakage inductance of the transformer. 变换器升压变换时的工作波形参见附图3,半个周期可分为8个模态,后半个周期的工作过程与前半个周期基本相同,只是换到另一个推挽管工作的区别而已,故只介绍前半个周期。 Work transition waveform converter boosting Referring to Figure 3, a half cycle can be divided into 8 modes, during operation of the front half cycle after half cycle is substantially the same, but another change to the difference of the push-pull pipe work only, it only describes the first half of the cycle.

[0029] 模态1(如~。):令偏寸刻之前,开关管¥1'1、¥1'2和¥14关断,¥1'3导通,系统处于稳定状态,且升压电路经推挽管ντ3将功率传送至全桥整流电路中。 [0029] Mode 1 (e.g., ~.): Partial Order Before inch moment, switch ¥ 1'1, ¥ 1'2 off and ¥ 14, ¥ 1'3 turned on, the system is stable, and the boost pull tube ντ3 circuitry transmits power to full bridge rectifier circuit. t〇时刻,辅助电路中流IVT2为零,在Lr的作用下VT 2实现ZCS开通。 t〇 time, the auxiliary circuit flows IVT2 zero, VT 2 to achieve ZCS turn under the action of Lr. 此阶段,流经Lr的电流ILr开始从零线性增大,而VT3的电流IVT3逐渐减小。 This stage, the current ILr flowing Lr is linearly increased from zero, and VT3 IVT3 current gradually decreases.

Figure CN104578806BD00051

[0032] 式中:UH为变换器高压侧两端电压,UL为变换器低压侧两端电压,η为变压器变比。 [0032] wherein: UH is the voltage across the high voltage side of the converter, UL is the voltage across the low pressure side of the converter, η is the transformer ratio.

[0033] 模态2(以~^):以时刻,Lr、Cr^间发生谐振,C rl放电,ILr继续增大。 [0033] Mode 2 (in ~ ^): In time, Lr, Cr ^ between resonate, C rl discharge, ILr continues to increase. 直到t2时刻, Crl放电为零,IVT3也下降为零。 Until time t2, Crl discharge zero, IVT3 also drops to zero. iLr达到最大值,并等于1^的电流Iu。 iLr reaches a maximum value, and is equal to 1 ^ current Iu.

Figure CN104578806BD00052

[0036] 模态3(t2~t3):t2时刻,谐振结束,I Lr经反并联二极管VDi、VD3和VD4导通续流,此阶段电流保持恒定。 [0036] Mode 3 (t2 ~ t3): t2 time, the resonance end, I Lr by the anti-parallel diode VDi, VD3 and VD4 turned freewheeling current remains constant at this stage. ¥1\因两端电压被钳位为零,故可实现ZVS开通;又VT 3的电流IVT3已为零,所以VT3能实现ZCS关断。 ¥. 1 \ zero voltage is clamped by both ends, it can realize ZVS turn; IVT3 3 and VT have zero current, it can be realized VT3 off ZCS.

[0037] 模态4(t3~t4):t3时刻,ILr因Lr的作用不能突变为零,但L r几乎分担了VT2全部电压,所以在这一瞬间VT^ZVS开通对VT2有零电压钳位的作用,VT 2能实现ZVS关断。 [0037] Mode 4 (t3 ~ t4): t3 time, by the action of ILr Lr is not mutated zero, L r almost all share the voltage VT2, so that the opening moment of VT2 VT ^ ZVS zero voltage clamp bits are, VT 2 can achieve ZVS turn-off. 此阶段, 由Lr、Cr2和VD9形成谐振回路,C r2开始充电。 At this stage, is formed by the resonant circuit Lr, Cr2 and VD9, C r2 starts charging. 经过四分之一的的谐振周期,即t4时刻,ILr为零, Cr2充满电。 After a quarter of the resonant period, ie time t4, ILr zero, Cr2 fully charged.

Figure CN104578806BD00053

[0039] 模态5(t4~t5):之后Cr2开始放电,并和LrJT^VDn)构成谐振回路,I Lr从零开始反方向增大。 [0039] Mode 5 (t4 ~ t5): Cr2 after the start of discharge, and and LrJT ^ VDn) to form a resonance circuit, increasing the scratch I Lr reverse direction. t5时刻,Cr2放电为零,Lr经VTi、VD 2导通续流,谐振结束,持续时间与t34相等。 time t5, Cr2 is discharged to zero, Lr of by VTi, VD 2 turned freewheeling, the resonance end, equal to the duration t34.

Figure CN104578806BD00061

[0041] 模态6(t5~t6):此阶段只有Vh-个开关管是导通状态,辅助电路停止工作,低压侧电池向1^充电。 [0041] Mode 6 (t5 ~ t6): This stage Vh- only one switch is conductive state, the auxiliary circuit is released to the low pressure side of the battery 1 ^ charge.

[0042] 模态7(t6~t7):t6时刻,由于缓冲电容Crl的电压不能突变,VT!实现了ZVS关断。 [0042] Mode 7 (t6 ~ t7): t6 time, since the voltage of the snubber capacitor Crl not mutated, VT achieve ZVS turn-off!. 且C rl被充电,在升压电感1^的作用下,充电电流Iu基本不变。 C rl and is charged, under the action of the boost inductor ^ 1, substantially constant charging current Iu. 又因为VT4的两端电压被VD4钳位为零,所以VT^ZVS关断时VT位即ZVS开通,为1^提供续流通路。 And because the voltage across VT4 VD4 is clamped to zero, so the ZVS turn-off ^ VT VT bits i.e. ZVS turn, ^ 1 provides the path.

[0043] 模态8(t7~t8):此阶段为普通升压变换器的工作过程,即电池和升压电感U共同向高压侧提供能量。 [0043] Mode 8 (t7 ~ t8): This stage is common during operation of the boost converter, i.e., the battery and the boost inductor to provide energy to the high pressure common U side.

[0044] 具体的降压变换原理如下所述。 [0044] Specifically the down conversion principle is as follows.

[0045]当汽车在减速、刹车或空转时,控制器关闭低压侧开关管Vh-VTa的驱动信号,继电器K断开,使饱和电感L2串入高压侧,辅助电路不工作,参见附图4Χ5~(:8为开关管的输出结电容,开关管VT 5~VT8以移相模式工作,L#PC2能有效扩大负载范围并减少副边占空比丢失,输出经二极管VD 3和VD4全波整流,滤波电感U实现能量的回收利用和对低压侧蓄电池的充电。 [0045] When the vehicle is decelerating or braking idle, the controller closes the switch drive signal Vh-VTa low-pressure side, the relay K are turned off, the saturable inductor L2. The high voltage side of the secondary circuit does not operate, see Fig 4Χ5 ~ (: 8 as the output junction capacitance of the switch, the switch operates in VT 5 ~ VT8 phase shift pattern, L # PC2 can effectively expand the range of load and to reduce secondary duty cycle loss, the output through a diode full-wave VD 3 and VD4 rectifier filter inductance to achieve recycling energy U and the charging of the low pressure side of the battery.

[0046]为简化分析,假设如下:所有元件均为理想状态,且LOUk/n2。 [0046] To simplify the analysis, it is assumed as follows: All components are ideal, and LOUk / n2. 变换器降压变换时的工作波形参见附图5,UP为变压器原边电压,IP为变压器原边电流,Ur为变压器副边电压, 半个周期可分为6个模态,后半个周期的工作过程与前半个周期完全对称,故只介绍前半个周期。 When the buck converter operation waveform converting Referring to the drawings 5, UP is the primary voltage of the transformer, the IP of the primary current of the transformer, to the secondary transformer voltage Ur, a half cycle can be divided into six modes, the latter half cycle the first half cycle working process completely symmetrical, so only the first half cycle described.

[0047]模态1 (如~。):令在to时刻之前,开关管VTdPVTs处于导通,^线性上升,副边二极管VD3和VD4均导通,处于换流过程。 [0047] Mode 1 (e.g., ~.): Order prior to the time, the switch is turned VTdPVTs, ^ rises linearly secondary diode VD3 and VD4 are turned on, in the commutation process. to时刻,换流结束,VD4关断,VTdPVTs继续导通,IP开始对电容C 2充电,其电压11。2呈线性变化。 to time, the end of the commutation, VD4 off, VTdPVTs continues to conduct, the IP starts charging the capacitor C 2, the voltage changes linearly 11.2. t时刻,关断VT5,IP达到最大值。 time t off VT5, IP maximum. 此阶段有: This phase are:

Figure CN104578806BD00062

[0050] 模态关断后,并联电容C5、C7与L^Lik、!^发生谐振,C7开始放电,C5充电,IP则从VT5转移到。 [0050] The shutdown mode shunt capacitance C5, C7 and L ^ Lik,! ^ Resonance occurs, C7 discharge starts, C5 charging, proceeds to the IP from VT5. 5、。 5 ,. 7中。 7.

Figure CN104578806BD00063

[0052]由于U相对足够大,可近似认为ΙΡ = Ι〇/η恒定不变,I。 [0052] Since the U phase is sufficiently large, can be approximated that ΙΡ = Ι〇 / η constant, I. 为二次侧输出电流。 Output current of the secondary side. 11。7在1[) 的作用下线性下降, 11.7 Linear decreased 1 [) action,

Figure CN104578806BD00064

[0054]由式(10)可知uP随着Uc7不断下降而减小,直到t2时刻Uc7 = 0,ΙΡ开始经反并联二极管VD7导通续流。 [0054] uP with declining UC7 and decreases until time t2 Uc7 = 0, ΙΡ started by conducting anti-parallel diode VD7 freewheeling understood from the formula (10).

Figure CN104578806BD00071

[0056] 模态3(t2~t3) :t2时刻,由于VD7导通,开关管VT7的电压钳位为零,实现了ZVS开通。 [0056] Mode 3 (t2 ~ t3): t2 time, since VD7 conducting, switch voltage clamping VT7 zero achieve ZVS turn. [0057]模态4(t3~t4):t3时刻,VT8在并联电容C 6、C8的缓冲作用下ZVS关断。 [0057] Mode 4 (t3 ~ t4): t3 time, VT8 parallel capacitance C in buffer 6, C8 the ZVS turn-off. 此后,原边电流IP和副边电流I。 Thereafter, the primary current and the secondary current IP I. 均开始下降。 They have begun to decline. 当I。 When I. 小于输出滤波电感电流Iu时,Iu中多余的电流向VD 4流动。 It is smaller than the output filter inductor currents Iu, VD 4 Iu flows to the excess current. 在换流过程中,整流二极管VD3和VD4同时导通,两侧电压都为零,变压器相当于短路,故一次侧的C6、C8与Llk、L2发生谐振,C8充电,C6放电。 In the commutation process, the rectifying diodes VD3 and VD4 are simultaneously turned on, both voltages are zero, corresponding to a short-circuit transformer, so the primary side of C6, C8 and Llk, L2 resonance occurs, C8 charging, discharging C6.

Figure CN104578806BD00072

[0059]由式(12)可知Ip不断减小的同时,11。8不断增大。 [0059] by formula (12) can be seen at the same time decreasing Ip, increasing 11.8. 直到t4时刻,Ip = 0,则 Until time t4, Ip = 0, then

Figure CN104578806BD00073

[00611模态5(t4~t5):t4时刻,二极管VD6导通续流。 [00611 Mode 5 (t4 ~ t5): t4 time, conducting the freewheeling diode VD6. C2的电压极性因与Ip相同而成为反向阻断电压源,L2退出饱和状态,阻碍^反向增大,使其维持在零状态。 C2 due to voltage polarity becomes the same as the Ip reverse blocking voltage source, L2 out of saturation, increased hinder reverse ^, maintain it at a zero state. 从而开关管VT6实现ZCS 开通。 VT6 thereby achieve ZCS switch opening. 直到t5时刻,二极管VD6和VD7自然关断,。 Until time t5, the diode VD6 and VD7 off naturally. 开始反向增大。 Reverse begin to increase.

[0062] 模态6(t5~t6):t6时刻,^达到反向最大值,二极管VD 3中的电流下降到零而关断, 电流Iu全部转移到VD4中,换流过程结束。 [0062] Mode 6 (t5 ~ t6): t6 time ^ reaches maximum reverse diode VD 3 drops to zero in the current is turned off, all current Iu transferred to VD4, the commutation process ends.

[0063] 为实现本发明的实施例,将通过以下的软开关条件分析和参数设计作进一步说明。 [0063] To achieve the embodiments of the present invention, the analysis and design parameters will be further illustrated by the following soft switching conditions.

[0064]升压变换的软开关条件如下。 [0064] upconverting soft switching conditions are as follows.

[0065] 为了实现VT^ZVS开通,Crl两端的电压不能上升过快,SPtSWf,一般取(2~3) trfKtrff为主开关管VTi的关断时间),(^需满足以下条件: [0065] In order to achieve VT ^ ZVS turn, the voltage across the Crl not rise too fast, SPtSWf, and generally (2 ~ 3) trfKtrff main switch off time of the VTi), (^ must meet the following conditions:

Figure CN104578806BD00074

[0067]式中:Imax为最大输入平均电流,由式(14)可得: [0067] wherein: the maximum Imax of the average input current by the formula (14) can be obtained:

Figure CN104578806BD00075

[0069]为了不影响升压电路PWM的工作方式和辅助开关管VT2的软开关,必须对VT2的工作时间进行限制,即to~t3时间段不宜过长,一般不超过10%的开关周期,故谐振电感Lr需满足: [0069] In order not to affect the booster circuit and the PWM work auxiliary soft switching of the switch VT2, VT2 working time must be limited to ~ t3 i.e. not too long period of time, generally not more than 10% of the switching period, it must satisfy the resonant inductor Lr:

Figure CN104578806BD00076

[0071] 式中:TAVT2的开关周期。 [0071] wherein: the switching cycle TAVT2. 此外,VTi要实现ZVS关断,那t3~t5时间段的谐振过程必须保证C r2放电为零,故谐振电容Cr2则需满足: Further, the VTi to achieve ZVS turn-off, and that t3 ~ t5 period resonance process must ensure discharge C r2 is zero, it is required to satisfy the resonant capacitor Cr2:

Figure CN104578806BD00077

[0073] 降压变换的软开关条件如下。 [0073] The soft switching buck conversion conditions are as follows.

[0074] 为了实现超前桥臂开关管的ZVS,变压器的初级电压应在死区时间内下降为零。 [0074] In order to achieve ZVS switching tubes leading leg, the transformer primary voltage should drop to zero during the dead time. 所以开关管VTdPVT7的ZVS只需开关管导通与关断的时间间隔大于t'12即可: Therefore, ZVS switching transistor VTdPVT7 simply turned on and switch off time interval is greater than t'12 to:

Figure CN104578806BD00081

[0076]对于滞后桥臂开关管的ZCS,则要求存储在饱和电感1^2和阻断电容C2中的能量足够使变压器原边电流复位为零。 [0076] For lagging arm ZCS switch tube, 1 ^ 2 requires storage of energy and blocking capacitor C2 is sufficient to saturation in the transformer primary side inductor current is reset to zero. 所以: and so:

Figure CN104578806BD00082

[0078]并且占空比丢失时间应满足下式: [0078] loss of time and the duty cycle should satisfy the following formula:

Figure CN104578806BD00083

[0080]电路拓扑的参数设计如下。 Design Parameters [0080] The circuit topology is as follows.

[0081 ] (1)变压器的匝数及变比:降压变换时取高压侧电压纹波在10%以内,则变压器原边的绕组匝数NP: [0081] (1) and the transformer turns ratio: taking down the high side voltage ripple within 10% conversion, the number of turns of the transformer primary winding NP:

Figure CN104578806BD00084

[0084]式中:Kf表示波形系数,一般取4.44(正弦波)或4(方波);fs为移相全桥开关管的开关频率;Bm为最大磁感应密度;Ae为磁芯中心柱截面积;q表示变换效率,取〇. 9 ; δ为导线电流密度系数,一般为2. OA/mm2;Km为磁芯窗口的铜填充系数,取0.5;Κ。 [0084] wherein: Kf represents a coefficient of a waveform, and generally 4.44 (sine wave) or 4 (square); FS phase-shifted full bridge switching frequency of the switch; Bm is the maximum flux density; Ae of core center leg is cut area; Q represents the conversion efficiency, taking square 9;. δ is the conductor current density factor, generally 2. OA / mm2; Km is the core window copper fill factor, taking 0.5; Κ. 为铁芯填充系数,取1; Ρτ 为额定功率。 Fill factor for the core, take 1; Ρτ rated power. 考虑到移相全桥变换器的占空比丢失问题,先假设副边最大占空比Dmax为0.9, 则副边要求输出的最小电压u smin为: Taking into account the duty cycle of the phase-shifted full bridge converter loss problem, assume that the maximum duty ratio Dmax of the secondary side 0.9, the minimum required secondary voltage output u smin is:

Figure CN104578806BD00085

[0086] 式中:uMax为副边最大输出电压;VD为整流管正向压降;VL1为滤波电感的直流压降。 [0086] wherein: uMax maximum output voltage of the secondary side; VD is the forward voltage drop rectifier; VL1 DC voltage drop for the filter inductor. 变压器的匝比η为: Transformer turns ratio η is:

Figure CN104578806BD00086

[0088] 式中:AV1*变压器原边的开关管、饱和电感和隔直电容等总的压降。 [0088] where: AV1 * total pressure drop in the primary side of the transformer switch saturated inductance blocking capacitor and the like. 故得出变压器副边的绕组匝数N s = NP/n。 Therefore, results of the transformer secondary winding turns N s = NP / n. 此外,变压器参数还必须符合升压变换,令升压电路完成一次升压的输入电压值为Uin,输出电压值为U。 Furthermore, parameters must also conform to the boosting transformer transformation, so that complete the booster circuit boosting a voltage value of the input Uin, output voltage is U. ,关系如下: The relationship is as follows:

[0089] u〇= 2nuinDT (25) [0089] u〇 = 2nuinDT (25)

[0090] 式中:DT为推挽管的占空比。 [0090] wherein: DT is the duty cycle of the push-pull tubes. 令升压变换时电路的管压降、电容压降、绕组压降等为Δν2,验证方法可认为是在u in最小时,得到所需的输出电压就能满足任一情况下的升压变比关系,由式(15)推知: When making the step converting the voltage drop circuit, the capacitance drop, the pressure drop as the winding Δν2, the authentication method may be considered to be the most u in hours, to obtain a desired output voltage can be boosted to meet any change in the case than the relationship by the formula (15) inferred:

Figure CN104578806BD00087

[0092] (2)升压电感L1:升压电路中升压电感直接决定了输入电流的纹波AU的大小。 [0092] (2) boost inductor L1: booster circuit directly determine the size of the boost inductor AU input ripple current. 当升压输出功率最大,输入电压最小时,△ II最大,Li的值也最大。 When the maximum, minimum input voltage, the maximum output power value of the boost △ II, Li is also the maximum.

Figure CN104578806BD00091

[0095]式中:Ts为主开关管VTi的开关周期。 [0095] where: Ts VTi main switch switching cycle. 由于1^在降压时要作滤波电感,所以还需考虑降压时的电感数值。 Since during depressurization to 1 ^ for filter inductor, the need to consider the value of the inductance at the step-down. 降压时输出电路为全波整流电路,故副边电流脉动频率为原边开关管的2倍。 The output circuit is a buck full-wave rectifying circuit, so the secondary current ripple frequency is twice the primary side switch. 关系如下: Relationship is as follows:

Figure CN104578806BD00092

[0097] 所以结合式(18)、(19)综合考虑可得1^1的值。 [0097] Therefore, binding of formula (18), (19) may be considered Found 1 ^ 1.

[0098] (3)滤波电容Co、C1:为了满足整流电压和高低频纹波的要求,一般取输出电压的交流纹波A vO = 50mv。 [0098] (3) a filter capacitor Co, C1: In order to meet the requirements of the rectified voltage and high frequency ripple, generally the ripple of the output voltage of the AC A vO = 50mv. 升压变换时,输出省去了滤波电感,仅通过Co滤除纹波。 When Boost conversion, eliminating the output filter inductor, only by Co filtered ripple. 设电容电流为输出电流的20%,则有: Provided capacitive current of the output current is 20%, then:

Figure CN104578806BD00093

[0102] (4)饱和电感L2:为了实现移相全桥的ZVZCS,L2的高频损耗和散热都会较大,所以1^的伏秒积无需设计过高,这样占空比丢失就很小。 [0102] (4) saturated inductance L2: To achieve the phase-shifted full bridge ZVZCS, L2 of the high-frequency loss and heat will be large, the volt-second product ^ 1 without high design, so that the duty ratio is very small loss . 求解公式如下: Solving formula is as follows:

Figure CN104578806BD00094

[0105] 式中:D、T分别为滞后桥臂开关管的占空比和开关周期,ΔΤ为滞后桥臂中两个开关管导通和关断的时间间隔。 [0105] wherein: D, T and the duty cycle of each switching cycle hysteresis switch bridge arm tube, ΔΤ two hysteresis switch is turned on and off time intervals bridge arm.

[0106] (5)隔直电容C2:由于变换器的输出脉宽不一致、反馈回路不对称等不可能完全消除,所以偏磁现象必然存在,并且升压变换时推挽结构的偏磁更为严重。 [0106] (5) blocking capacitor C2: inverter output pulse width because of an inconsistency, the feedback loop asymmetry can not be completely eliminated, there must biasing magnetic phenomena, and bias magnet when the push-pull configuration is more upconverting serious. 在此取升压变换时的电容值。 When this capacitance value for step-up transformation.

Figure CN104578806BD00095

[0108] 综上所述,实施例的电路参数确定如下。 [0108] In summary, embodiments of the circuit parameters are determined as follows.

[0109] UL = 24V,UH = 380V,PT = 3.5KW,fs = 50KHZ,n = 5,Li = 100uH,L2 = 560uH,Lr = 25uH, Lik = 1 luH,Co = 1 OOuF,Ci = 298uF,C2 = 0 · 47uF,Cri = 47nF,Cr2 = 220nF 〇 [0109] UL = 24V, UH = 380V, PT = 3.5KW, fs = 50KHZ, n = 5, Li = 100uH, L2 = 560uH, Lr = 25uH, Lik = 1 luH, Co = 1 OOuF, Ci = 298uF, C2 = 0 · 47uF, Cri = 47nF, Cr2 = 220nF billion

Claims (4)

1. 一种级联双向软开关DC/DC电路拓扑,包括前级升压电路、辅助电路、后级推挽变压器、全桥电路,它们之间依次串接,其特征是所述的辅助电路包括谐振电感L r,谐振电容Cr2, 内含反并联体二极管VD2的辅助开关管VT 2,快恢复二极管VD9、VD1(),第一继电器K;其中,谐振电感L r的一端作为辅助电路的正极输入端,连于前级升压电路的正极输出端,谐振电感Lr的另一端分别与谐振电容C r2的正极、辅助开关管VT2的漏极相连,辅助开关管VT2的源极作为辅助电路的负极输入端,分别与前级升压电路的负极输出端、快恢复二极管VD 1Q的阳极相连,快恢复二极管VDio的阴极连于第一继电器K的一端,第一继电器K的另一端分别与谐振电容C r2的负极、快恢复二极管VD9的阳极相连,快恢复二极管VD9的阴极连于前级升压电路的正极输出端,并作为辅助电路的正极输出端,快恢 A cascaded bidirectional soft switching DC / DC circuit topology, including the pre-stage booster circuit, auxiliary circuit, the push-pull transformer stage, a full bridge circuit, sequentially connected therebetween, characterized in that said auxiliary circuit It includes a resonant inductor L r, resonant capacitor Cr2 is, containing the anti-parallel body diode of the auxiliary switch VT VD2 2, fast recovery diode VD9, VD1 (), a first relay K; wherein one end of a resonant inductor L r auxiliary circuit positive input terminal, a source connected to the positive output terminal of the preceding stage booster circuit, the other end of the resonant inductor Lr of the positive electrode and the resonant capacitor C r2, respectively, the drain of the auxiliary switching tube VT2 is connected to the auxiliary switch circuit as an auxiliary pole VT2 a negative input terminal, respectively, and a negative output terminal of the preceding stage booster circuit VD 1Q fast recovery diode anode is connected to one end of the fast recovery diode connected to the cathode of the first VDio K of the relay, the other end of the first relay K, respectively resonant capacitor C r2 of the negative electrode, is connected to the anode of the fast recovery diode VD9, VD9 fast recovery diode cathode connected to the positive output terminal of the preceding stage booster circuit, and a positive output terminal of the auxiliary circuit, fast recovery 二极管VD 1Q的阳极作为辅助电路的负极输出端。 The anode of the diode VD 1Q as the negative terminal of the auxiliary output circuit.
2. 根据权利要求1所述的级联双向软开关DC/DC电路拓扑,其特征是所述的前级升压电路包括低压侧直流电源ul,滤波电容心,升压电感U,内含反并联体二极管VDi的主开关管VTl,钳位电容Crl;其中,低压侧直流电源UL的正极与升压电感Ll的一端相连,升压电感Ll的另一端连于主开关管VTi的漏极,主开关管VTi的源极与低压侧直流电源UL的负极相连,滤波电容&正向并联于低压侧直流电源UL,钳位电容C r〇H向并联于主开关管漏源极,主开关管VTi的漏极作为前级升压电路的正极输出端,主开关管VTi的源极作为前级升压电路的负极输出端。 The cascaded bidirectional soft switching DC / DC circuit topology according to claim 1, wherein said front-stage booster circuit includes a low-side DC power supply ul, heart filter capacitor, the boost inductor U, containing trans parallel body diode of VTl VDi of the main switch, the clamp capacitor CrI; wherein the low pressure side is connected to the positive DC power supply UL boost inductor Ll and the one end, the other end of the boost inductor Ll is connected to the drain of the main switch VTi, VTi source of the main switch and the negative side of the DC power supply low voltage UL is connected in parallel with the filter capacitor forward & side DC power supply low voltage UL, the clamp capacitor C connected in parallel to r〇H the drain-source of the main switch, the main switch the drain output terminal VTi of the previous stage as a positive booster circuit, the source electrode of the main switch VTi as the negative output terminal of the preceding stage booster circuit.
3. 根据权利要求1所述的级联双向软开关DC/DC电路拓扑,其特征是所述的后级推挽变压器包括内含反并联体二级管VD3的功率开关管VT 3,内含反并联体二级管VD4的功率开关管VT4,原边三端口、副边两端口的变压器;其中,变压器原边中间的端口作为后级推挽变压器的正极输入端,与副边的上端口是一组同名端,并连于辅助电路的正极输出端,变压器原边的上端口与副边的上端口是另一组同名端,并连于功率开关管VT 3的漏极,功率开关管VT3的源极作为后级推挽变压器的负极输入端,分别与辅助电路的负极输出端、功率开关管VT 4的源极相连,功率开关管VT4的漏极连于变压器原边的下端口,功率开关管VT3、VT 4组成一对推挽开关管,变压器副边的上端口作为后级推挽变压器的正极输出端,变压器副边的下端口作为后级推挽变压器的负极输出端。 3. The soft switching cascaded bidirectional DC / DC circuit topology according to claim 1, wherein said push-pull transformer comprising a stage after diode VD3 antiparallel inclusion body power switch VT 3, containing anti-parallel body diode of the power switch VT4 VD4, primary three-port, two-port transformer secondary side; wherein the primary port side of the intermediate transformer as the positive input terminal of the rear stage push-pull transformer, and the secondary port side is a group of the dot end, and connected to the positive output terminal of the auxiliary circuit, the transformer primary port and the secondary port side of the other end of the group of the same name, and a drain connected to the power switch of the VT 3, the power switch VT3 source electrode as a negative electrode input terminal of the rear stage push-pull transformer, respectively, and the negative terminal of the auxiliary output circuit, a power source switch VT electrode 4 is connected to the drain of the power switch is connected to the port VT4 transformer primary, power switch VT3, VT 4 form a push-pull switch, a transformer on the secondary side port as a positive output terminal of the rear stage push-pull transformer, the transformer secondary side of the port as a negative output terminal of the rear stage push-pull transformer.
4. 根据权利要求1所述的级联双向软开关DC/DC电路拓扑,其特征是所述的全桥电路包括饱和电感L2,第二继电器K,隔直电容C 2,内含反并联体二极管VD5、输出结电容(:5的功率开关管VT 5,内含反并联体二极管VD6、输出结电容C6的功率开关管VT6,内含反并联体二极管VD7、输出结电容C7的功率开关管VT7,内含反并联体二极管VDs、输出结电容C8的功率开关管VT8,滤波电容Co,高压侧直流电源UH;其中,饱和电感L2的一端作为全桥电路的正极输入端, 与后级推挽变压器的正极输出端相连,饱和电感L 2的另一端连于隔直电容(:2的正极,第二继电器K并联于饱和电感L2,隔直电容C2的负极分别与功率开关管VT5的源极、功率开关管VT7 的漏极相连,功率开关管VT 5的漏极分别与功率开关管VT6的漏极、滤波电容Co的正极、高压侧直流电源UH的正极相连,功率开关管VT 7的源极分别与功 4. The soft switch cascaded bidirectional DC / DC circuit topology according to claim 1, characterized in that the full bridge circuit comprises a saturable inductor L2, the second relay K, blocking capacitor C 2, inclusion body antiparallel diodes VD5, the output junction capacitance (: 5 power switch VT 5, containing the anti-parallel body diode VD6, the output junction capacitance of the power switch C6 VT6, containing the anti-parallel body diode VD7, capacitor C7 the output node of the power switch VT7, containing VDs from anti-parallel body diodes, the output junction capacitance of the power switch C8 VT8, filter capacitor Co, the UH high side DC power supply; wherein, L2 of the end of a saturable inductor as a full bridge circuit, a positive input terminal, and the push stage positive output terminal connected to pull transformer, L 2 and the other end connected to a saturable inductor blocking capacitor (: positive electrode 2, the second relay K in parallel with the saturable inductor L2, capacitors C2 anode compartments, respectively, and the source of the power switch VT5 pole, power switch VT7 connected to the drain of the power switch drain of VT 5 are VT6 and the drain of the power switch, the positive electrode of the smoothing capacitor Co, the high-side DC power supply is connected to the positive electrode UH, the power switch of the VT 7 power source, respectively 开关管VT8的源极、滤波电容Co 的负极、高压侧直流电源UH的负极相连,功率开关管VT8的漏极作为全桥电路的负极输入端, 分别与后级推挽变压器的负极输出端、功率开关管VT6的源极相连,功率开关管VT 5、VT7组成全桥电路的超前桥臂,功率开关管VT5、VT7组成全桥电路的滞后桥臂。 VT8 switch source connected to the negative electrode, the high-side DC power supply filter capacitor Co UH negative electrode, the drain of the power switch as a full-bridge circuit VT8 negative input terminal, and the negative-stage push-pull transformer output terminals, respectively, VT6 power source switch is connected to the source, the power switch VT 5, VT7 composition lead leg full bridge circuit, the power switch VT5, VT7 composition lagging leg full bridge circuit.
CN201410836076.8A 2014-12-29 2014-12-29 Soft switching cascaded bidirectional dc / dc circuit topology CN104578806B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410836076.8A CN104578806B (en) 2014-12-29 2014-12-29 Soft switching cascaded bidirectional dc / dc circuit topology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410836076.8A CN104578806B (en) 2014-12-29 2014-12-29 Soft switching cascaded bidirectional dc / dc circuit topology

Publications (2)

Publication Number Publication Date
CN104578806A CN104578806A (en) 2015-04-29
CN104578806B true CN104578806B (en) 2017-02-22

Family

ID=53094190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410836076.8A CN104578806B (en) 2014-12-29 2014-12-29 Soft switching cascaded bidirectional dc / dc circuit topology

Country Status (1)

Country Link
CN (1) CN104578806B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452088B (en) * 2016-11-18 2019-02-01 佛山市新光宏锐电源设备有限公司 A kind of isolation type bidirectional DC-DC converting means and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395359A (en) * 2001-06-29 2003-02-05 三垦电气株式会社 Switching power supply device
CN201639842U (en) * 2009-12-31 2010-11-17 浙江工业大学 Electric driving device for high pressure gas discharge lamp
CN104040860A (en) * 2011-11-17 2014-09-10 通用电气公司 LED Power Source With Over-voltage Protection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218541B2 (en) * 2004-07-21 2007-05-15 Dell Products L.P. High efficiency two stage inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395359A (en) * 2001-06-29 2003-02-05 三垦电气株式会社 Switching power supply device
CN201639842U (en) * 2009-12-31 2010-11-17 浙江工业大学 Electric driving device for high pressure gas discharge lamp
CN104040860A (en) * 2011-11-17 2014-09-10 通用电气公司 LED Power Source With Over-voltage Protection

Also Published As

Publication number Publication date
CN104578806A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
Wu et al. Boost converter with coupled inductors and buck–boost type of active clamp
US7518895B2 (en) High-efficiency power converter system
Liang et al. Analysis of integrated boost-flyback step-up converter
CN102624239B (en) Bi-directional dc-dc converter and method for controlling the same
JP3663388B2 (en) Loss and noise reduction in the power converter
Cheng et al. A novel single-stage high-power-factor AC/DC converter featuring high circuit efficiency
KR20130062916A (en) Two stage resonant converter
Gu et al. Zero-voltage-switching PWM resonant full-bridge converter with minimized circulating losses and minimal voltage stresses of bridge rectifiers for electric vehicle battery chargers
CN102005928B (en) Photovoltaic high-frequency isolation boost soft switch DC/DC converter and control method thereof
Zhang et al. A novel ZVS DC/DC converter for high power applications
CN1055804C (en) Topological circuit for soft switch
CN101453164B (en) Unidirectional DC-DC converter
US7782639B2 (en) Adaptively configured and autoranging power converter arrays
CN102332813B (en) Power factor correction efficiency improvement circuit, a converter employing the circuit and a method of manufacturing a converter
Kim et al. An improved current-fed ZVS isolated boost converter for fuel cell applications
Do Zero-voltage-switching synchronous buck converter with a coupled inductor
Kang et al. ZVZCS single-stage PFC AC-to-DC half-bridge converter
CN201352763Y (en) Phase-shifted full bridge zero-current and zero-voltage PWM converter
US20140334189A1 (en) Bi-directional dc-dc converter
CN100416994C (en) Separation boost push-pull soft switch DC/AC converter
Ryu et al. Interleaved active clamp flyback inverter using a synchronous rectifier for a photovoltaic AC module system
Seo et al. Asymmetrical PWM flyback converter
Leu et al. Analysis and design of the two-transformer asymmetrical half-bridge converter
Chiu et al. A high-efficiency soft-switched AC/DC converter with current-doubler synchronous rectification
CN1133263C (en) Soft switch topology circuit for step-up/step-down voltage conversion

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model