CN104577696B - Q开关激光装置 - Google Patents

Q开关激光装置 Download PDF

Info

Publication number
CN104577696B
CN104577696B CN201410575624.6A CN201410575624A CN104577696B CN 104577696 B CN104577696 B CN 104577696B CN 201410575624 A CN201410575624 A CN 201410575624A CN 104577696 B CN104577696 B CN 104577696B
Authority
CN
China
Prior art keywords
laser
yag
switch
exciting light
technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410575624.6A
Other languages
English (en)
Other versions
CN104577696A (zh
Inventor
平等拓范
拉凯什·班达里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAT INST OF NATURAL SCIENCES
Original Assignee
NAT INST OF NATURAL SCIENCES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAT INST OF NATURAL SCIENCES filed Critical NAT INST OF NATURAL SCIENCES
Publication of CN104577696A publication Critical patent/CN104577696A/zh
Application granted granted Critical
Publication of CN104577696B publication Critical patent/CN104577696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094076Pulsed or modulated pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

本发明提供一种Q开关激光装置。当将包含稀土元素的YAG作为激光介质并入射激发光时,激发光的入射面附近被局部加热而产生双折射现象,Q开关激光装置输出的激光的强度下降,变得不能线性偏振。为了避免上述情况,需要将激发光作为脉冲,并降低该脉冲的重复频率。在本发明的Q开关激光装置中,将不含稀土元素的YAG与激光介质的入射面接合。这样一来,入射面的变形被抑制,即使提高激发光的重复频率,也能抑制激光介质中的光束直径变细,抑制激光的功率下降。进而,使YAG的<100>轴延伸的方向沿着激光共振系统的光轴。这样一来,能够获得线性偏振的脉冲激光。

Description

Q开关激光装置
技术领域
本说明书公开一种当进行光激发时对脉冲激光进行振荡的Q开关激光装置。特别是,公开一种将包含稀土元素的钇铝石榴石的晶体用于激光介质的Q开关激光装置。在本说明书中,将钇铝石榴石的晶体称作YAG。
背景技术
公知一种激光装置,在对插入有包含稀土元素的YAG的共振系统输入激发光时,利用了对激光进行振荡的现象。还公知一种技术,通过将Q开关插入到共振系统而使脉冲激光振荡。在非专利文献1中公开了将包含稀土元素的YAG用作激光介质的Q开关激光装置。
存在想要增大脉冲激光的峰值功率的要求。为了实现上述要求,推测提高输入到激光介质内的激发光的空间密度是有希望的。即,期待通过对激发光进行聚光并输入到激光介质内而增大脉冲激光的峰值功率。实际上,在连续振荡激光装置的情况下,通过对激发光进行聚光,激光功率增大。
然而,在Q开关激光装置的情况下,即使提高激发光的聚光度,仅脉冲激光的重复频率增大,脉冲激光的峰值功率不增大。为了解决该问题,研发出了专利文献1和2所记载的技术。在该技术中,不提高激发光的聚光度,而扩大输入到激光介质中的激发光的光束直径。即,增加在光开关打开时所积蓄的反转分布(反転分布)的总量。具体而言,不对激发光聚光,而扩大激发光的光束面积并入射到激光介质。当光束直径扩大时,由于反转分布的总数增加,因此从Q开关激光装置振荡的脉冲激光的输出能量即峰值功率增大。
当激发光入射到激光介质时,因量子数亏损,激光介质被加热。具体而言,在激发光入射面中的激发光的照射范围内和其附近,激光介质被局部地加热。当激光介质被局部地加热时,激光介质局部地热膨胀,激发光的入射面变形,对激光的振荡造成恶劣影响(以下称作“热问题”)。
根据专利文献1和2所记载的技术,即根据扩大激发光的光束面积并输入的技术(以下称作“激发体积增大技术”),激光介质的激发光入射面中的每单位面积的激发光功率减少,降低激光介质的每单位体积的发热量。
当将相对于激发光透明的固体板接合在激光介质的激发光入射面(以下称作端盖技术)上时,能够抑制激发光入射面的变形。端盖技术也有助于解决热问题。
如果能够将连续光用作激发Q开关激光装置的激发光,则也能够使用脉冲光。当将脉冲光用作激发光时,入射到激光介质的激发光入射面中的激发光功率的时间平均值下降,能够抑制热问题。另一方面,由于可以进行瞬时的强激发,因此反转分布能够提高。越是以重复频率低的脉冲光激发,则激发光功率的时间平均值越低,能够较强地抑制热问题并且提高Q开关激光装置的特性(以下称作低频激发技术)。
在专利文献1和2的技术中,兼顾使用激发体积增大技术、端盖技术及低频激发技术,来抑制热问题。
另外,下文记载非专利文献2和专利文献3的公开内容。
现有技术文献
非专利文献
非专利文献1:High Average Power Diode End-Pumped Composite Nd:YAGLaser Passively Q-switched by Cr4+:YAG Saturable Absorber,Nicolaie Pavel,JiroSaikawa,Sunao Kurimura and Takunori Taira,Jpn.J.Appl.Phys.Vol.40(2001)pp1253-1259
非专利文献2:Intrinsic reduction of the depolarization loss in solid-state lasers by use of a(110)-cut Y3Al5O12crystal,Ichiro Shoji and TakunoriTaira,Applied Physics letters.Vol.80Number 17,(2002)pp3048-3050
专利文献
专利文献1:日本特开2003-158325号公报
专利文献2:美国专利公报6950449号公报
专利文献1:日本特许3585891号公报
发明内容
虽然组合使用激发体积增大技术、端盖技术及低频激发技术的专利文献1和2的技术是抑制热问题并使脉冲激光的峰值功率增大的优异的技术,但是其中存在必须使激发光的重复频率低频化(具体而言,100Hz左右)的问题。
存在想要计测例如PM2.5这样的微粒子中的物质分布的要求,质量成像装置(質量イメージング装置)的开发正在发展中。该分析装置需要具有例如1kHz左右的重复频率的脉冲激光。由于在专利文献1和2的技术中采用低频激发技术,因此不能应对上述要求。
在专利文献1和2的技术中,尝试将激发光的重复频率高频化至1kHz左右。这样一来,利用激发体积增大技术和端盖技术来解决热问题的效果高,即使将激发光的重复频率高频化至1kHz左右,峰值功率也不相应地下降。然而,当将激光输入到波长转换装置并进行波长转换时,波长转换后的峰值功率极端地下降。为了使波长转换用的脉冲激光振荡,需要配合使用激发体积增大技术、端盖技术及低频激发技术,当不采用低频激发技术时,波长转换效率极端地低下。在通过利用YAG的Q开关激光装置来使波长转换用的脉冲激光振荡的情况下,需要将重复频率抑制在100Hz左右。
在本说明书中公开了一种不依赖低频激发技术而使波长转换用的脉冲激光振荡的技术。如果脉冲激光线性偏振,则能够将波长转换后的峰值功率维持得较高。在本说明书中,公开了一种不依赖低频激发技术而由YAG使线性偏振的脉冲激光振荡的技术。
对如下情况的原因进行了研究:当不采用低频激发技术时,虽然能够确保脉冲激光的强度,但是脉冲激光的线性偏振度劣化。由于强度被确保,因此热问题应该被抑制,尽管如此,但是线性偏振度劣化的原因不明。其结果是,可以确认,当使用激发体积增大技术和端盖技术时,即使不使用低频激发技术,也能抑制在沿着激光介质的光轴的区域内的热问题并能确保脉冲激光的强度,但是,在激光介质和端盖的接合面中形成局部加热区域,由于该局部加热区域所产生的双折射现象,激光的线性偏振度劣化。具体而言,虽然包含稀土元素的YAG因激发所引起的量子数亏损而将要发热、膨胀,但是不包含稀土元素的YAG不发热,因此在两者之间产生应力。两者越是在原子能级下接合,则在其界面越是产生强应力。另一方面,如果所述界面的接合不严密,则两者的应力缓和。但是,在此情况下,不包含稀土元素的YAG的排热效果下降。
由上述内容可以获得如下想法:如果存在即使牢固地接合也不易因局部产生的应力而引起偏振度劣化的新结晶轴,就能一举解决这些问题。研究的结果是,当将YAG配置在<100>轴沿着激光装置的共振系统的光轴延伸的方向上时,能够抑制上述现象,并能够抑制激光由线性偏振发生劣化。
在本说明书中公开的Q开关激光装置具备端盖、激光介质和Q开关,并按照该顺序将端盖、激光介质和Q开关配置在直线(即激光装置的光轴)上。端盖由不包含稀土元素的YAG构成,激光介质由包含稀土元素的YAG构成。形成端盖的YAG和形成激光介质的YAG被配置在它们的<100>轴沿着激光装置的光轴延伸的方向上。形成端盖的YAG和形成激光介质的YAG接合。
通常,将YAG配置在<111>轴沿着激光装置的光轴延伸的方向上。由于YAG沿着<111>轴生长,因此容易获得沿着<111>轴向延伸的杆状晶体。在非专利文献1、专利文献1和专利文献2所公开的激光装置中,也将YAG配置在<111>轴沿着光轴延伸的方向上。当将结晶轴已对齐的YAG(不包含稀土,相对于激发光透明)与沿着<111>轴向延伸的杆状YAG(包含稀土,吸收激发光并振荡激光)的激发光入射面接合时,利用端盖效果,能够防止激发光入射面受热影响而变形。当与激发体积增大技术配合使用时,即使不兼用低频激发技术,也能使峰值功率高的脉冲激光振荡。然而,当不组合使用低频激发技术时,由线性偏振发生劣化。
与此相对地,当将YAG配置在<100>轴沿着激光装置的光轴延伸的方向上时,即使不兼用低频激发技术,也能维持线性偏振。同样,在将YAG配置在<110>轴沿着激光装置的光轴延伸的方向上的情况下,也能获得相同的效果。根据本说明书所记载的激光装置,使线性偏振被维持且峰值功率高的脉冲激光振荡。能够获得在波长转换后得到高峰值功率的激光。
在非专利文献2和专利文献3中公开了将用作激光介质的YAG配置在其<100>轴沿着共振系统的光轴延伸的方向上的技术。该技术涉及对连续波的激光进行振荡的技术,是沿着用作激光介质的YAG的光轴的范围在激光介质的整个长度上被加热的情况下的技术。其中报告了沿着激光介质的光轴的范围在整个长度上被加热的情况通过<100>轴配置在沿着光轴延伸的方向上而维持线性偏振。当与本说明书所公开的技术比较时,虽然在将<100>轴与光轴平行配置这一点上共通,但是从由线性偏振发生劣化的原因不同,不能简化本技术的创新研究过程。可以考虑到,针对在沿着激光介质的光轴延伸范围内产生的现象的处理方法、和针对在激发光入射面(作为端盖的无添加YAG和作为激光介质的添加稀土元素的YAG的接合界面)产生现象的处理方法当然不同。虽然非专利文献2和专利文献3具有本发明人报告的内容,但是在连续激光的振荡装置和脉冲激光的振荡装置中,输入的激发光的能量能级不同,激光介质的加热程度不同,激光介质的加热区域不同。不能预料到非专利文献2和专利文献3所报告的连续激光的振荡技术也能应用到Q开关激光的振荡技术中。
根据本说明书所公开的激光装置,即使不采用低频激发技术,也能使脉冲激光振荡,该脉冲激光提供线性偏振度良好且在波长转换后也具有较高的峰值功率的光。其结果是,能够提供下一代质量成像装置的实现所需的脉冲激光(重复频率高且线性偏振的脉冲激光)。
附图说明
图1是示意性地表示实施例的Q开关激光装置的构成的图。
图2是表示激发光的重复频率和脉冲激光的能量的关系的图。
图3是表示激发光的重复频率和脉冲激光的线性偏振度的关系的图。
图4是示意性地表示其他实施例的Q开关激光装置的构成的图。
图5是示意性地表示其他实施例的Q开关激光装置的构成的图。
图6是示意性地表示其他实施例的Q开关激光装置的构成的图。
图7是示意性地表示其他实施例的Q开关激光装置的构成的图。
图8是示意性地表示其他实施例的Q开关激光装置的构成的图。
图9是示意性地表示其他实施例的Q开关激光装置的构成的图。
图10是示意性地表示其他实施例的Q开关激光装置的构成的图。
具体实施方式
首先列举以下说明的实施例的特征。
﹙特征1﹚将包含Nd的YAG用作激光介质。
﹙特征2﹚将不包含稀土元素的YAG用作端盖。
﹙特征3﹚将包含Cr4+的YAG用作Q开关。作为利用可饱和吸收体的被动Q开关进行动作。
﹙特征4﹚通过LBO晶体,将波长从1064nm转换到532nm。
﹙特征5﹚通过BBO晶体,将波长从532nm转换到266nm。
【实施例】
在图1中,标号2是半导体激光装置,发出激发光4。在实验中,施加标号2a所示的脉冲电流,获得标号4a所示的脉冲激发光。激发光4的波长为808nm,功率是100W,脉冲宽度是120μs。使重复频率在100Hz~1kHz之间变化来进行实验。
标号6是不包含稀土元素的YAG,是端盖。形成为直径为5mm且厚度为1mm的圆板形状。YAG6的<100>轴朝向厚度方向。
标号8是包含1.1at.%的Nd的YAG,是激光介质。形成为直径为5mm且厚度为4mm的圆板形状。YAG8的<100>轴朝向厚度方向。
YAG6与Nd:YAG8的半导体激光装置2侧的端面接合。不包含稀土元素的YAG6针对波长808nm的激发光透明。激发光4输入到Nd:YAG8的半导体激光装置2侧的端面。在激发光4中使用激发体积增大技术。
标号10是包含Cr4+的YAG,初期穿透率为40%。Cr4+:YAG10是可饱和吸收体,作为被动Q开关进行动作。
标号12是输出耦合器(output coupler),并形成有镜面膜。在YAG6也形成有镜面膜。由输出耦合器12的镜面膜和YAG6的镜面膜形成共振系统,在该共振系统的内侧配置有端盖(YAG6)、激光介质(Nd:YAG8)和被动Q开关(Cr4+:YAG10)。端盖、激光介质和被动Q开关被配置在与两片镜面膜正交的直线上。YAG6和Nd:YAG8的<100>轴被配置在沿着上述直线延伸的方向上。对于Cr4+:YAG10,其结晶轴和光轴的关系没有特别限制,可以是<111>轴与光轴平行,也可以是<100>轴或<110>轴与光轴平行。
当向上述激光装置输入激发光4时,由输出耦合器12使脉冲激光14振荡。脉冲激光14的波长为1064nm,重复频率与激发光4的重复频率相等。脉冲激光14的脉冲宽度(半频带宽度)为600ps。
图2表示激发光的重复频率(与脉冲激光的重复频率相等)和脉冲激光的能量(mJ)的关系。即使提高激发光的重复频率,脉冲激光的能量也不会相应地减少。即使不采用低频激励技术,用1kHz激发,也能确保1.42mJ程度的能量(峰值功率是2.4MW)。
图3表示激发光的重复频率和脉冲激光14的线性偏振度的关系。图3表示,越靠纵轴上方,则线性偏振的劣化程度越大。曲线32表示使<111>轴和光轴平行的情况下的关系。其表示当使激发光的重复频率高频化时,脉冲激光14由线性偏振发生劣化的情况。与此相对地,曲线34表示使<100>轴和光轴平行的情况下的关系。其表示即使将激发光的重复频率高频化,脉冲激光14也维持线性偏振。当<100>轴和光轴平行时,可以获得能够得到波长转换后的强度较高的光的脉冲激光。虽然未图示,但即使YAG的<110>轴和光轴平行,也能获得类似于曲线34的曲线。当YAG的<110>轴和光轴平行时,也可以获得能够得到波长转换后的强度较高的光的脉冲激光。
图10表示通过LBO晶体将Q开关激光装置振荡的1064nm的激光转换成532nm的激光、通过BBO晶体将532nm的激光转换成266nm的激光的装置构成。如图3所示,当使YAG的<100>或<110>轴与光轴平行地配置时,可以获得较高的线性偏振度,因此波长转换后的强度较高,从LBO晶体获得的532nm的激光的峰值功率为1.1MW,从BBO晶体获得的266nm的激光的峰值功率为0.511MW。
另外,本发明并不限定于上述实施例,根据本发明的主旨能够进行各种变形,而不将这些情况从本发明的范围内排除。
在上述实施例中,虽然按照端盖、激光介质、Q开关的顺序进行配置,但是也可以按照端盖、激光介质、端盖、Q开关的顺序配置,也可以按照端盖、激光介质、端盖、Q开关、端盖的顺序配置。图4~图9示意性地表示其他实施例的Q开关激光装置的构成。而且在本实施例中,使用了被动Q开关,但是也可以使用从外部控制的Q开关。虽然将Nd用作向激光介质添加的稀土元素,但是也可以使用除此之外的稀土元素。
本说明书或附图所说明的技术要素可以单独发挥技术的实用性,或进行各种组合来发挥技术的实用性,并不限定于申请时的权利要求所记载的组合。而且,本说明书或附图所例示的技术能够同时达成多个目的,达成的其中一个目的自身具有技术实用性。

Claims (1)

1.一种Q开关激光装置,将端盖、激光介质和Q开关依次配置在直线上而成,所述Q开关激光装置的特征在于,
端盖由不包含稀土元素的YAG构成,该YAG为钇铝石榴石的晶体,
激光介质由包含稀土元素的YAG构成,
形成端盖的YAG和形成激光介质的YAG的<100>轴或<110>轴沿着所述直线延伸,
形成端盖的YAG和形成激光介质的YAG接合。
CN201410575624.6A 2013-10-25 2014-10-24 Q开关激光装置 Active CN104577696B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-222736 2013-10-25
JP2013222736A JP6281935B2 (ja) 2013-10-25 2013-10-25 Qスイッチレーザー装置

Publications (2)

Publication Number Publication Date
CN104577696A CN104577696A (zh) 2015-04-29
CN104577696B true CN104577696B (zh) 2019-08-02

Family

ID=52811804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410575624.6A Active CN104577696B (zh) 2013-10-25 2014-10-24 Q开关激光装置

Country Status (4)

Country Link
US (1) US9203210B2 (zh)
JP (1) JP6281935B2 (zh)
CN (1) CN104577696B (zh)
DE (1) DE102014015813A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017060967A1 (ja) * 2015-10-06 2018-07-26 株式会社島津製作所 波長変換装置
US9810786B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Optical parametric oscillator for lidar system
US9810775B1 (en) * 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system
US9905992B1 (en) 2017-03-16 2018-02-27 Luminar Technologies, Inc. Self-Raman laser for lidar system
US11183809B2 (en) 2017-05-29 2021-11-23 Sony Corporation Passive Q-switch pulse laser device, processing apparatus, and medical apparatus
EP3680998B1 (en) * 2017-09-05 2023-06-14 National Institutes for Quantum Science and Technology Laser device, light source, and measurement device
JP7185893B2 (ja) * 2018-05-14 2022-12-08 大学共同利用機関法人自然科学研究機構 レーザー装置
EP3852209A4 (en) * 2018-09-14 2022-06-08 Inter-University Research Institute Corporation National Institutes of Natural Sciences OPTICAL OSCILLATOR
EP4033617A4 (en) * 2019-11-28 2022-11-16 Sony Group Corporation LASER ELEMENT, LASER ELEMENT MANUFACTURING METHOD, LASER DEVICE AND LASER AMPLIFIER ELEMENT
CN115152104A (zh) 2020-02-27 2022-10-04 索尼集团公司 光学谐振器、光学谐振器的构成部及激光设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973115B1 (en) * 1997-12-24 2005-12-06 Commissariat A L'energie Atomique Passive Q-switched microlaser with controlled polarization
CN101320880A (zh) * 2007-04-03 2008-12-10 株式会社拓普康 Q开关微型激光器设备与使用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653056A (en) * 1985-05-01 1987-03-24 Spectra-Physics, Inc. Nd-YAG laser
JPH05267753A (ja) * 1992-03-19 1993-10-15 Brother Ind Ltd 固体レーザ装置
SE510442C2 (sv) * 1996-09-05 1999-05-25 Fredrik Laurell Mikrochipslaser
JP2003086873A (ja) * 2001-09-10 2003-03-20 Hamamatsu Photonics Kk 受動qスイッチレーザ
JP2003158325A (ja) 2001-09-10 2003-05-30 Hamamatsu Photonics Kk 受動qスイッチレーザ
US6950449B2 (en) * 2001-09-10 2005-09-27 Hamamatsu Photonics K.K. Passively Q-switched laser
JP3585891B2 (ja) * 2002-02-01 2004-11-04 独立行政法人 科学技術振興機構 レーザー素子
WO2008070911A1 (en) * 2006-12-15 2008-06-19 Ellex Medical Pty Ltd Laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973115B1 (en) * 1997-12-24 2005-12-06 Commissariat A L'energie Atomique Passive Q-switched microlaser with controlled polarization
CN101320880A (zh) * 2007-04-03 2008-12-10 株式会社拓普康 Q开关微型激光器设备与使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Pump-Induced Bleaching of the Saturable Absorber in Short-Pulse Nd:YAG/Cr4+:YAG Passively Q-Switched Microchip Lasers";John J.等;《IEEE JOURNAL OF QUANTUM ELECTRONICS》;20031231;第39卷(第12期);第1589页

Also Published As

Publication number Publication date
US9203210B2 (en) 2015-12-01
CN104577696A (zh) 2015-04-29
JP6281935B2 (ja) 2018-02-21
US20150117475A1 (en) 2015-04-30
DE102014015813A1 (de) 2015-04-30
JP2015084390A (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
CN104577696B (zh) Q开关激光装置
CN102904155B (zh) 一种全固态皮秒激光再生放大器
WO2013169787A1 (en) Intra-cavity harmonic generation in lasers
Zendzian et al. Intracavity optical parametric oscillator at 1572-nm wavelength pumped by passively Q-switched diode-pumped Nd: YAG laser
Mlynczak et al. Monolithic thermally bonded Er3+, Yb3+: glass/Co2+: MgAl2O4 microchip lasers
Yao et al. A graphene-based passively Q-switched Ho: YAG laser
CN106058632B (zh) 一种基于键合晶体的脉冲能量可调的被动调q拉曼激光系统
Major et al. Ultrafast Yb: KGd (WO4) 2 laser for multimodal biomedical imaging with reduced photodamage
Zhuang et al. Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb: YAG microchip laser with diamond surface cooling
Miao et al. Efficient diode-pumped passively Q-switched laser with Nd: YAG/Cr: YAG composite crystal
Dong et al. Laser-diode pumped self-Q-switched microchip lasers
Han et al. Sub-nanosecond passively Q-switched Nd: YVO4/Cr4+: YAG microchip lasers
JP6583894B2 (ja) Qスイッチレーザー装置
Dong et al. Efficient laser performance of Yb: Y3Al5O12/Cr4+: Y3Al5O12 composite crystals
CN104682182A (zh) 二极管端面泵浦全固态激光器
CN203932662U (zh) 克尔透镜自锁模Yb:LYSO激光器
Jia et al. Passively Q-switched operation of an Yb: CNGG disordered garnet laser with a GaAs crystal plate as the saturable absorber
Kleine et al. High brightness Nd: YVO4 laser for nonlinear optics
Joly et al. Novel method for pulse control in Nd: YVO4/Cr4+: YAG passively Q-switched microchip laser
Miao et al. Highly stable and efficient KTP-based intracavity optical parametric oscillator with a diode-pumped passively Q-switched laser
CN204012177U (zh) 克尔透镜自锁模Yb:LSO激光器
Mikheev et al. Picosecond pulsed high-peak-power lasers
KR102241895B1 (ko) 고휘도 극초단 빔 발생 펨토초 레이저 장치
Aman Diode-end-pumped frequency-doubled Nd: YAP/Cr: YAG laser using a KTP crystal
Li et al. Diode-pumped passively Q-switched Nd: LuxY1− xVO4 laser at 1.34 μm with two V: YAG saturable absorbers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant