CN104576727A - 一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法 - Google Patents

一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法 Download PDF

Info

Publication number
CN104576727A
CN104576727A CN201510039730.7A CN201510039730A CN104576727A CN 104576727 A CN104576727 A CN 104576727A CN 201510039730 A CN201510039730 A CN 201510039730A CN 104576727 A CN104576727 A CN 104576727A
Authority
CN
China
Prior art keywords
gaas
layer
growth
forms
algaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510039730.7A
Other languages
English (en)
Inventor
陈新宇
蒋东铭
杨磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING GEC ELECTONICS CO Ltd
Original Assignee
NANJING GEC ELECTONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING GEC ELECTONICS CO Ltd filed Critical NANJING GEC ELECTONICS CO Ltd
Priority to CN201510039730.7A priority Critical patent/CN104576727A/zh
Publication of CN104576727A publication Critical patent/CN104576727A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法,采用金属有机物化学气相沉积MOCVD或分子束外延MBE的生长方法制备,GaAs复合PHEMT-PIN的外延结构,从下至上依次包括:衬底(1)、GaAs缓冲层(2)、第一i-GaAs层(3)、第一平面掺杂层(4)、第一spacer层(5)、i-InGaAs层(6)、第二spacer层(7)、第二平面掺杂层(8)、i-AlGaAs层(9)、n-GaAs层(10)、第二i-GaAs层(11)、P-GaAs层(12)。发明在传统的GaAs PHEMT结构中增加材料层,形成PIN的材料结构,从而在工艺中实现PHEMT、PIN二极管,肖特基二极管的兼容集成,增加电路设计的灵活性,提升单片电路的性能。

Description

一种 GaAs 复合 PHEMT-PIN 的外延材料结构及其制备方法
技术领域
本发明涉及一种砷化镓(GaAs)复合PHEMT-PIN的外延材料结构,属于半导体技术领域。
背景技术
GaAs PHEMT器件和PIN 二极管器件作为微波元器件在微波毫米波系统中应用广泛,可以组合在一起,实现放大器、开关,衰减器,移相器,混频器,检波器等多种功能。
GaAs PHEMT器件具有增益高,频率特性好的特点,主要应用于放大器、开关,衰减器,混频器,检波器等电路。
GaAs PIN二极管具有高击穿电压,功率容量大的特点,经常应用于微波毫米波开关,衰减器,混频器,检波器等电路。
在传统的单片集成电路芯片设计中,采用GaAs PHEMT的材料结构,只能设计加工成PHEMT器件和电路。PIN材料结构只能设计加工PIN二极管电路。因为二者材料的差异,导致工艺无法兼容。因此传统的GaAs PHEMT管材料结构和GaAs PIN二极管材料局限了电路设计的灵活性,不能最大限度的发挥GaAs PIN管和GaAs PHEMT的优势。
发明内容
本发明所要解决的技术问题是针对背景技术的缺陷,提出一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法。
本发明为解决上述技术问题采用以下技术方案:
一种GaAs复合PHEMT-PIN的外延材料结构,从下至上依次包括:GaAs衬底、GaAs缓冲层、第一i-GaAs层、第一平面掺杂层、第一spacer层、i-InGaAs层、第二spacer层、第二平面掺杂层、i-AlGaAs层、n-GaAs层、第二i-GaAs层、P-GaAs层。
进一步的,本发明的GaAs复合PHEMT-PIN的外延材料结构,所述GaAs缓冲层的厚度为300~1000nm,所述第一i-GaAs层的厚度为20~200nm,所述第一平面掺杂层的厚度为0.1~1nm,所述第一spacer层的厚度为2~4nm,所述i-InGaAs层的厚度为10~14nm,所述第二spacer层的厚度为2~4nm,所述第二平面掺杂层的厚度为0.1~1nm,所述i-AlGaAs层的厚度为30~60nm ,所述n-GaAs层的厚度为30~2000nm,所述第二i-GaAs层的厚度为500~5000nm,所述P-GaAs层的厚度为100~300nm。
本发明还提出一种GaAs复合PHEMT-PIN的外延材料结构的制备方法,采用金属有机物化学气相沉积MOCVD或分子束外延MBE的生长方法,进行以下步骤:
1)选择砷化镓GaAs材料的单晶作为衬底;
2)在衬底上,生长300~1000nm的GaAs缓冲层;
3)在GaAs缓冲层上,生长20~200nm的不掺杂GaAs,形成第一i-GaAs层;
4)在第一 i-GaAs层上,生长0.1~1nm的平面掺杂硅,形成第一平面掺杂层;
5)在第一平面掺杂层上,生长2~4nm的不掺杂AlGaAs,形成第一spacer层;
6)在第一spacer层上,生长10~14nm不掺杂的InGaAs,形成i-InGaAs层;
7)在i-InGaAs层上,生长2~4nm不掺杂的AlGaAs,形成第二spacer层;
8)在第二spacer层上,生长0.1~1nm的平面掺杂硅,形成第二平面掺杂层;
9)在第二平面掺杂层上,生长30~60nm的不掺杂AlGaAs,形成i-AlGaAs层;
10)在i-AlGaAs层上,生长30~2000nm高掺杂的n型GaAs,形成n-GaAs层;
11)在n-GaAs层上,生长500~5000nm不掺杂的n型GaAs,形成第二i-GaAs层;
12)在第二i-GaAs层上,生长100~300nm高掺杂的p型GaAs,形成P-GaAs层。
进一步的,本发明的外延材料结构的制备方法中,所述第一平面掺杂层中硅的浓度为1E12/cm-3,所述第二平面掺杂层中硅的浓度为4E12/cm-3,所述n-GaAs层中n型GaAs的浓度>2E18/cm-3,所述P-GaAs层中p型GaAs的浓度>1E19/cm-3
进一步的,本发明的外延材料结构的制备方法中,步骤2)中,是在衬底上,生长700nm的GaAs缓冲层,步骤3)中,是在GaAs缓冲层上,生长50nm的不掺杂GaAs,形成第一i-GaAs层。
进一步的,本发明的外延材料结构的制备方法中,步骤4)中,是在第一 i-GaAs层上,生长0.5nm的平面掺杂硅,形成第一平面掺杂层。
进一步的,本发明的外延材料结构的制备方法中,步骤5)中,是在第一平面掺杂层上,生长4nm的不掺杂AlGaAs,形成第一spacer层。
进一步的,本发明的外延材料结构的制备方法中,步骤6)中,是在第一spacer层上,生长12nm不掺杂的InGaAs,形成i-InGaAs层。
进一步的,本发明的外延材料结构的制备方法中,步骤7)中,是在i-InGaAs层上,生长4nm不掺杂的AlGaAs,形成第二spacer层。
进一步的,本发明的外延材料结构的制备方法中,步骤8)中,是在第二spacer层上,生长0.5nm的平面掺杂硅,形成第二平面掺杂层。
进一步的,本发明的外延材料结构的制备方法中,步骤9)中,是在第二平面掺杂层上,生长30nm的不掺杂AlGaAs,形成i-AlGaAs层。
进一步的,本发明的外延材料结构的制备方法中,步骤10)中,是在i-AlGaAs层上,生长1000nm高掺杂的n型GaAs,形成n-GaAs层。
进一步的,本发明的外延材料结构的制备方法中,步骤11)中,是在n-GaAs层上,生长3000nm不掺杂的n型GaAs,形成第二i-GaAs层。
进一步的,本发明的外延材料结构的制备方法中,步骤12)中,是在第二i-GaAs层上,生长200nm高掺杂的p型GaAs,形成P-GaAs层。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
本发明通过对GaAs材料结构的新型设计,在同一材料结构中,既可以通过工艺实现GaAs PIN管,也可以工艺实现GaAs PHEMT。由于材料结构的创新,使GaAs PIN管和GaAs PHEMT可以实现了工艺的兼容性,因此增加了电路设计的灵活性,提升了单片电路的性能。本发明的材料结构可以实现全单片的多功能微波单片集成电路,实现多项功能(如放大器、开关、衰减器、混频器、检波器)的单芯片集成。
附图说明
图1是本发明提出的GaAs复合PHEMT-PIN的外延材料结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以下结合附图对本发明的技术方案做进一步的详细说明:
如图1所示,本发明提出的GaAs复合PHEMT-PIN的外延材料结构从下至上依次包括:GaAs衬底1、GaAs缓冲层2、第一i-GaAs层3、第一平面掺杂层4、第一spacer层5、i-InGaAs层6、第二spacer层7、第二平面掺杂层8、i-AlGaAs层9、n-GaAs层10、第二i-GaAs层11、P-GaAs层12。
其中:GaAs缓冲层2的厚度为300~1000nm,第一i-GaAs层3的厚度为20~200nm,第一平面掺杂层4的厚度为0.1~1nm,第一spacer层5的厚度为2~4nm,i-InGaAs层6的厚度为10~14nm,第二spacer层7的厚度为2~4nm,第二平面掺杂层8的厚度为0.1~1nm,i-AlGaAs层9的厚度为30~60nm ,n-GaAs层10的厚度为30~2000nm,第二i-GaAs层11的厚度为500~5000nm,P-GaAs层12的厚度为100~300nm。
本发明可以采用金属有机物化学气相沉积(MOCVD)或分子束外延(MBE)的生长方法,完成下列结构。
1)选择砷化镓(GaAs)材料的单晶作为衬底1,保证表面清洁;
2)在衬底1上,生长300~1000nm的GaAs缓冲层2;
3)在缓冲层2上,生长20~200nm的不掺杂GaAs,形成i-GaAs层3;
4)在 i-GaAs层3上,生长0.1~1nm平面掺杂硅(浓度1E12/cm-3),形成δ_掺杂层(平面掺杂层)4;
5)在 δ_掺杂层4上,生长2~4nm的不掺杂AlGaAs,形成spacer层5;
6)在spacer层5上,生长10~14nm不掺杂的InGaAs,形成i-InGaAs层6;
7)在i-InGaAs层6上,生长2~4nm不掺杂的AlGaAs,形成spacer层7;
8)在spacer层7上,生长0.1~1nm平面掺杂硅(浓度4E12/cm-3),形成δ_掺杂层8;
9)在δ_掺杂层层8上,生长30~60nm的不掺杂AlGaAs,形成i-AlGaAs层9;
10)在i-AlGaAs层9上,生长30~2000nm高掺杂(浓度>2E18/cm-3)的n型GaAs,形成n-GaAs层10;
11)在n-GaAs层10上,生长500~5000nm不掺杂的n型GaAs,形成i-GaAs层11;
12)在i-GaAs层11上,生长100~300nm高掺杂(浓度>1E19/cm-3)的p型GaAs,形成P-GaAs层12。
实施例1:
采用分子束外延(MBE)的生长方法,完成下列结构。
1)选择砷化镓(GaAs)材料的单晶作为衬底1,保证表面清洁。
2)继续生长,生长700nm的GaAs缓冲层;
3)继续生长,生长50nm的不掺杂GaAs,形成i-GaAs层3;
4)继续生长,生长0.5nm平面掺杂硅(浓度1E12/cm-3),形成δ_掺杂层4;
5)继续生长,生长4nm的不掺杂AlGaAs,形成spacer层5;
6)继续生长,生长12nm不掺杂的InGaAs,形成i-InGaAs层6;
7)继续生长,生长4nm不掺杂的AlGaAs,,形成spacer层7;
8)继续生长,生长0.5nm平面掺杂硅(浓度4E12/cm-3),形成δ_掺杂层8;
9)继续生长,生长30nm的不掺杂AlGaAs,形成i-AlGaAs层9;
10)继续生长,生长1000nm高掺杂(浓度>2E18/cm-3)的n型GaAs,形成n-GaAs层10;
11)继续生长,生长3000nm不掺杂的n型GaAs,形成i-GaAs层11;
12)继续生长,生长200nm高掺杂(浓度>1E19/cm-3)的p型GaAs,形成P-GaAs层12。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种GaAs复合PHEMT-PIN的外延材料结构,其特征在于,从下至上依次包括:GaAs衬底(1)、GaAs缓冲层(2)、第一i-GaAs层(3)、第一平面掺杂层(4)、第一spacer层(5)、i-InGaAs层(6)、第二spacer层(7)、第二平面掺杂层(8)、i-AlGaAs层(9)、n-GaAs层(10)、第二i-GaAs层(11)、P-GaAs层(12)。
2.如权利要求1所述的GaAs复合PHEMT-PIN的外延材料结构,其特征在于,所述GaAs缓冲层(2)的厚度为300~1000nm,所述第一i-GaAs层(3)的厚度为20~200nm,所述第一平面掺杂层(4)的厚度为0.1~1nm,所述第一spacer层(5)的厚度为2~4nm,所述i-InGaAs层(6)的厚度为10~14nm,所述第二spacer层(7)的厚度为2~4nm,所述第二平面掺杂层(8)的厚度为0.1~1nm,所述i-AlGaAs层(9)的厚度为30~60nm ,所述n-GaAs层(10)的厚度为30~2000nm,所述第二i-GaAs层(11)的厚度为500~5000nm,所述P-GaAs层(12)的厚度为100~300nm。
3.一种基于权利要求1所述的GaAs复合PHEMT-PIN的外延材料结构的制备方法,其特征在于,采用金属有机物化学气相沉积MOCVD或分子束外延MBE的生长方法,进行以下步骤:
1)选择砷化镓GaAs材料的单晶作为衬底(1);
2)在衬底(1)上,生长300~1000nm的GaAs缓冲层(2);
3)在GaAs缓冲层(2)上,生长20~200nm的不掺杂GaAs,形成第一i-GaAs层(3);
4)在第一 i-GaAs层(3)上,生长0.1~1nm的平面掺杂硅,形成第一平面掺杂层(4);
5)在第一平面掺杂层(4)上,生长2~4nm的不掺杂AlGaAs,形成第一spacer层(5);
6)在第一spacer层(5)上,生长10~14nm不掺杂的InGaAs,形成i-InGaAs层(6);
7)在i-InGaAs层(6)上,生长2~4nm不掺杂的AlGaAs,形成第二spacer层(7);
8)在第二spacer层(7)上,生长0.1~1nm的平面掺杂硅,形成第二平面掺杂层(8);
9)在第二平面掺杂层(8)上,生长30~60nm的不掺杂AlGaAs,形成i-AlGaAs层(9);
10)在i-AlGaAs层(9)上,生长30~2000nm高掺杂的n型GaAs,形成n-GaAs层(10);
11)在n-GaAs层(10)上,生长500~5000nm不掺杂的n型GaAs,形成第二i-GaAs层(11);
12)在第二i-GaAs层(11)上,生长100~300nm高掺杂的p型GaAs,形成P-GaAs层(12)。
4.根据权利要求3所述的制备方法,其特征在于,所述第一平面掺杂层中硅的浓度为1E12/cm-3,所述第二平面掺杂层中硅的浓度为4E12/cm-3,所述n-GaAs层中n型GaAs的浓度>2E18/cm-3,所述P-GaAs层中p型GaAs的浓度>1E19/cm-3
5.根据权利要求3所述的制备方法,其特征在于,GaAs缓冲层(2)的厚度为700nm,步骤3)中,是在GaAs缓冲层(2)上,生长50nm的不掺杂GaAs,形成第一i-GaAs层(3),步骤11)中,是在n-GaAs层(10)上,生长3000nm不掺杂的n型GaAs,形成第二i-GaAs层(11)。
6.根据权利要求3所述的制备方法,其特征在于,步骤4)中,是在第一 i-GaAs层(3)上,生长0.5nm的平面掺杂硅,形成第一平面掺杂层(4);步骤8)中,是在第二spacer层(7)上,生长0.5nm的平面掺杂硅,形成第二平面掺杂层(8)。
7.根据权利要求3所述的制备方法,其特征在于,步骤5)中,是在第一平面掺杂层(4)上,生长4nm的不掺杂AlGaAs,形成第一spacer层(5),步骤7)中,是在i-InGaAs层(6)上,生长4nm不掺杂的AlGaAs,形成第二spacer层(7)。
8.根据权利要求3所述的制备方法,其特征在于,步骤6)中,是在第一spacer层(5)上,生长12nm不掺杂的InGaAs,形成i-InGaAs层(6)。
9.根据权利要求3所述的制备方法,其特征在于,步骤9)中,是在第二平面掺杂层(8)上,生长30nm的不掺杂AlGaAs,形成i-AlGaAs层(9),步骤10)中,是在i-AlGaAs层(9)上,生长1000nm高掺杂的n型GaAs,形成n-GaAs层(10)。
10.根据权利要求3所述的制备方法,其特征在于,步骤12)中,是在第二i-GaAs层(11)上,生长200nm高掺杂的p型GaAs,形成P-GaAs层(12)。
CN201510039730.7A 2015-01-27 2015-01-27 一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法 Pending CN104576727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510039730.7A CN104576727A (zh) 2015-01-27 2015-01-27 一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510039730.7A CN104576727A (zh) 2015-01-27 2015-01-27 一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法

Publications (1)

Publication Number Publication Date
CN104576727A true CN104576727A (zh) 2015-04-29

Family

ID=53092377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510039730.7A Pending CN104576727A (zh) 2015-01-27 2015-01-27 一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法

Country Status (1)

Country Link
CN (1) CN104576727A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601613A (zh) * 2015-10-20 2017-04-26 中国科学院苏州纳米技术与纳米仿生研究所 云母薄膜的制备方法及晶体管
CN111244188A (zh) * 2020-01-19 2020-06-05 中国科学院上海微系统与信息技术研究所 异质结AlGaAs/GaAs二极管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447484A (zh) * 2007-11-28 2009-06-03 中国科学院微电子研究所 单片集成砷化镓基mhemt和pin二极管材料结构
CN101447485A (zh) * 2007-11-28 2009-06-03 中国科学院微电子研究所 单片集成GaAs基PHEMT和PIN二极管材料结构
CN103779405A (zh) * 2014-01-02 2014-05-07 中国电子科技集团公司第五十五研究所 GaAs衬底上生长赝配高电子迁移晶体管材料及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447484A (zh) * 2007-11-28 2009-06-03 中国科学院微电子研究所 单片集成砷化镓基mhemt和pin二极管材料结构
CN101447485A (zh) * 2007-11-28 2009-06-03 中国科学院微电子研究所 单片集成GaAs基PHEMT和PIN二极管材料结构
CN103779405A (zh) * 2014-01-02 2014-05-07 中国电子科技集团公司第五十五研究所 GaAs衬底上生长赝配高电子迁移晶体管材料及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601613A (zh) * 2015-10-20 2017-04-26 中国科学院苏州纳米技术与纳米仿生研究所 云母薄膜的制备方法及晶体管
CN106601613B (zh) * 2015-10-20 2019-12-06 中国科学院苏州纳米技术与纳米仿生研究所 云母薄膜的制备方法及晶体管
CN111244188A (zh) * 2020-01-19 2020-06-05 中国科学院上海微系统与信息技术研究所 异质结AlGaAs/GaAs二极管及其制备方法
CN111244188B (zh) * 2020-01-19 2022-04-01 中国科学院上海微系统与信息技术研究所 异质结AlGaAs/GaAs二极管及其制备方法

Similar Documents

Publication Publication Date Title
EP2333827B1 (en) Monolithic integrated composite group III-V and group IV semiconductor device and method for fabricating same
EP1218944A1 (en) Superlattice fabrication for inas/gasb/alsb semiconductor structures
TWI552341B (zh) 具有阻隔層結構之異質接面雙極性電晶體
US8866154B2 (en) Lattice mismatched heterojunction structures and devices made therefrom
US20130200387A1 (en) Nitride based heterojunction semiconductor device and manufacturing method thereof
CN103811305B (zh) 一种硅基半绝缘砷化镓衬底的制备方法
US9640650B2 (en) Doped gallium nitride high-electron mobility transistor
US9853136B2 (en) Directed epitaxial heterojunction bipolar transistor
EP3123516A1 (en) Iii-n transistors with enhanced breakdown voltage
EP2840613B1 (en) III-V heterojunction unipolar diode with low turn-on voltage and method of manufacturing the same
Li et al. Fabrication of 150-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by MOCVD
US8350295B1 (en) Device structure including high-thermal-conductivity substrate
CN104409593A (zh) 一种制作氮化物外延层、衬底与器件晶圆的方法
US20130119404A1 (en) Device structure including high-thermal-conductivity substrate
CN104576727A (zh) 一种GaAs复合PHEMT-PIN的外延材料结构及其制备方法
US20220310796A1 (en) Material structure for low thermal resistance silicon-based gallium nitride microwave and millimeter-wave devices and manufacturing method thereof
CN104795409B (zh) GaAs基PHEMT和长波长谐振腔单片集成光探测器
TWI655773B (zh) 異質接面雙極性電晶體、電子系統和製造異質接面雙極性電晶體的方法
CN115148734B (zh) 砷化镓低噪声放大器和氮化镓功率放大器单片集成电路及其制备
CN105304706A (zh) Si基MHEMT外延结构
TW201824459A (zh) 整合場效電晶體與異質接面雙極電晶體的結構
CN204375756U (zh) 一种GaAs复合PHEMT-PIN的外延材料结构
CN101447485B (zh) 单片集成GaAs基PHEMT和PIN二极管材料结构
US8796117B2 (en) Structure of high electron mobility transistor growth on Si substrate and the method thereof
CN100590874C (zh) 单片集成砷化镓基mhemt和pin二极管材料结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150429

WD01 Invention patent application deemed withdrawn after publication