CN104560864B - Utilize the 293T cell lines of the knockout IFN β genes of CRISPR Cas9 system constructings - Google Patents
Utilize the 293T cell lines of the knockout IFN β genes of CRISPR Cas9 system constructings Download PDFInfo
- Publication number
- CN104560864B CN104560864B CN201410806018.0A CN201410806018A CN104560864B CN 104560864 B CN104560864 B CN 104560864B CN 201410806018 A CN201410806018 A CN 201410806018A CN 104560864 B CN104560864 B CN 104560864B
- Authority
- CN
- China
- Prior art keywords
- sequence
- ifn
- stranded
- grna
- pgl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108091033409 CRISPR Proteins 0.000 title claims description 29
- 108090000623 proteins and genes Proteins 0.000 title description 23
- 108090000467 Interferon-beta Proteins 0.000 claims abstract description 44
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 claims abstract description 12
- 239000013612 plasmid Substances 0.000 claims description 75
- 108020004414 DNA Proteins 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 230000002441 reversible effect Effects 0.000 claims description 14
- 102100033072 DNA replication ATP-dependent helicase DNA2 Human genes 0.000 claims description 13
- 101000927313 Homo sapiens DNA replication ATP-dependent helicase DNA2 Proteins 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 102000053602 DNA Human genes 0.000 claims description 8
- 108020004682 Single-Stranded DNA Proteins 0.000 claims description 6
- 108091008146 restriction endonucleases Proteins 0.000 claims description 5
- 238000003776 cleavage reaction Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 230000007017 scission Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 79
- 102100026720 Interferon beta Human genes 0.000 abstract description 18
- 241000700605 Viruses Species 0.000 abstract description 9
- 230000000840 anti-viral effect Effects 0.000 abstract description 7
- 238000003209 gene knockout Methods 0.000 abstract description 6
- 210000003292 kidney cell Anatomy 0.000 abstract description 6
- 238000004321 preservation Methods 0.000 abstract description 4
- 241000713196 Influenza B virus Species 0.000 abstract description 3
- 238000002474 experimental method Methods 0.000 abstract description 3
- 244000005700 microbiome Species 0.000 abstract description 3
- 230000035755 proliferation Effects 0.000 abstract description 3
- 241000712461 unidentified influenza virus Species 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 2
- 239000012528 membrane Substances 0.000 description 14
- 239000002609 medium Substances 0.000 description 13
- 239000013615 primer Substances 0.000 description 12
- 239000000499 gel Substances 0.000 description 11
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 238000012216 screening Methods 0.000 description 6
- 229930189065 blasticidin Natural products 0.000 description 5
- 238000010362 genome editing Methods 0.000 description 5
- 229950010131 puromycin Drugs 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 238000010354 CRISPR gene editing Methods 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108020005004 Guide RNA Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000012124 Opti-MEM Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 210000000822 natural killer cell Anatomy 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000009182 swimming Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 241000712431 Influenza A virus Species 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000010459 TALEN Methods 0.000 description 2
- 239000006180 TBST buffer Substances 0.000 description 2
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 229940123373 Adenovirus E1A gene Drugs 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 101100263837 Bovine ephemeral fever virus (strain BB7721) beta gene Proteins 0.000 description 1
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 description 1
- 108010040467 CRISPR-Associated Proteins Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101100316840 Enterobacteria phage P4 Beta gene Proteins 0.000 description 1
- 230000035519 G0 Phase Effects 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 206010069767 H1N1 influenza Diseases 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010066154 Nuclear Export Signals Proteins 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000037797 influenza A Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 201000010740 swine influenza Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000006656 viral protein synthesis Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了利用CRISPR‑Cas9系统构建的敲除IFN‑β基因的293T细胞系。本发明所提供的敲除IFN‑β基因的293T细胞系,具体为人胚肾细胞293T‑KO‑IFN‑β,它在中国微生物菌种保藏管理委员会普通微生物中心的保藏编号为CGMCC No.10096。实验证明,本发明所得的敲除IFN‑β基因的293T细胞系不能正确的表达IFN‑β蛋白。由于IFN‑β蛋白具有抗病毒作用,故B型流感病毒在野生型的293T细胞中不能大量的增殖。而敲除IFN‑β基因的293T细胞系由于不能正确的表达IFN‑β蛋白,故可用于B型流感病毒在该细胞系中更好的增殖,获得更大量病毒用于实验研究。The invention discloses a 293T cell line constructed by using a CRISPR-Cas9 system to knock out the IFN-β gene. The 293T cell line knocked out of the IFN-β gene provided by the present invention is specifically the human embryonic kidney cell 293T-KO-IFN-β, and its preservation number in the General Microbiology Center of the China Committee for the Collection of Microorganisms is CGMCC No. 10096. Experiments have proved that the knockout 293T cell line of the IFN-β gene obtained in the present invention cannot correctly express the IFN-β protein. Since the IFN-β protein has an antiviral effect, the type B influenza virus cannot proliferate in large quantities in wild-type 293T cells. The 293T cell line with IFN-β gene knockout can not express IFN-β protein correctly, so it can be used for better proliferation of influenza B virus in this cell line, and a larger amount of virus can be obtained for experimental research.
Description
技术领域technical field
本发明属于生物技术领域,涉及一种利用CRISPR-Cas9系统构建的敲除IFN-β基因的293T细胞系。The invention belongs to the field of biotechnology, and relates to a 293T cell line constructed by using a CRISPR-Cas9 system to knock out the IFN-β gene.
背景技术Background technique
293T细胞由293细胞衍生而出,293细胞是转染腺病毒E1A基因的人肾上皮细胞系,同时表达SV40大T抗原,含有SV40复制起始点与启动子区的质粒可以复制。用Ca3(PO4)2转染效率可高达50%。蛋白表达水平高,转染后2-3天用碱性磷酸酶分析可较容易地检测到表达的蛋白。瞬时转染293T细胞是过表达蛋白并获得细胞内及细胞外(分泌的或膜)蛋白的便捷方式。293T cells are derived from 293 cells. 293 cells are human renal epithelial cell lines transfected with adenovirus E1A gene, and express SV40 large T antigen at the same time. The plasmid containing the SV40 replication origin and promoter region can replicate. The transfection efficiency can be as high as 50% with Ca 3 (PO 4 ) 2 . The protein expression level is high, and the expressed protein can be easily detected by alkaline phosphatase analysis 2-3 days after transfection. Transient transfection of 293T cells is a convenient way to overexpress proteins and obtain intracellular and extracellular (secreted or membrane) proteins.
IFN-β是在细菌、病毒、多聚肌苷酸多聚胞苷酸(Poly IC)、核苷酸等刺激物诱导下,主要由成纤维细胞、白细胞等产生的一种糖蛋白。HuIFN-β的基因均定位于人第9号染色体,HuIFN-β蛋白由166个氨基酸组成,属于糖基化蛋白,分子量约23KD,肽链中含3个Cys,分别在17、31和141位,其中31和141位的半胱氨酸之间形成的二硫键对HuIFN-β的生物学活性非常重要。IFN-β具有多种生物学功能,主要包括抗病毒、抑制某些细胞的生长、免疫调节及抑制和杀伤肿瘤细胞的功能。IFN-β的抗病毒效果针对不同的病毒,甚至是同一病毒的不同血清型而不同。其抗病毒的作用机理主要是通过两个方面实现:1)通过抑制某些病毒的吸附、脱衣壳和转录、病毒蛋白合成以及成熟病毒的释放来实现其抗病毒功能;2)通过增强自然杀伤NK细胞,单核巨噬细胞对病毒的吞噬作用来实现其抗病毒功能。IFN-β还可以抑制某些细胞的生长,如成纤维细胞、上皮细胞、内皮细胞以及造血细胞的增殖,其机理可能是通过使细胞分裂停留在G0/G1期,降低DNA的合成,下调细胞原癌基因的转录水平,下调某些生长因子受体表达。IFN-β还具有免疫调节作用,包括促进大多数细胞MHC-I类抗原的表达,活化NK细胞和杀伤性T淋巴细胞增强巨噬细胞的功能,调节T、B淋巴细胞的功能。IFN-β可抑制和杀伤肿瘤细胞,主要是通过促进机体的免疫功能,提高巨噬细胞、NK细胞和CT L的杀伤水平。IFN-β is a glycoprotein mainly produced by fibroblasts and leukocytes under the induction of stimuli such as bacteria, viruses, polyinosinic acid polycytidylic acid (Poly IC), and nucleotides. The genes of HuIFN-β are all located on human chromosome 9. The HuIFN-β protein consists of 166 amino acids and is a glycosylated protein with a molecular weight of about 23KD. The peptide chain contains 3 Cys at positions 17, 31 and 141, respectively. , wherein the disulfide bond formed between cysteines 31 and 141 is very important for the biological activity of HuIFN-β. IFN-β has a variety of biological functions, mainly including anti-virus, inhibiting the growth of certain cells, immune regulation, and the functions of inhibiting and killing tumor cells. The antiviral effect of IFN-β is different for different viruses, even for different serotypes of the same virus. Its antiviral mechanism of action is mainly achieved through two aspects: 1) It realizes its antiviral function by inhibiting the adsorption, uncoating and transcription of certain viruses, viral protein synthesis and the release of mature viruses; 2) by enhancing natural killing NK cells and mononuclear macrophages phagocytize viruses to realize their antiviral functions. IFN-β can also inhibit the growth of certain cells, such as the proliferation of fibroblasts, epithelial cells, endothelial cells, and hematopoietic cells. The mechanism may be to stop cell division in G0/G1 phase, reduce DNA synthesis, and down-regulate cell Transcriptional levels of proto-oncogenes, downregulation of certain growth factor receptors. IFN-β also has immunoregulatory effects, including promoting the expression of MHC-I antigens in most cells, activating NK cells and killer T lymphocytes, enhancing the function of macrophages, and regulating the functions of T and B lymphocytes. IFN-β can inhibit and kill tumor cells, mainly by promoting the immune function of the body and increasing the killing level of macrophages, NK cells and CTL.
CRISPR-Cas9基因编辑技术是继ZFN和TALEN技术之后迅速发展起来的第三代基因组编辑技术,该技术来源于细菌和古细菌中存在抵抗噬菌体入侵的CRISPR-Cas获得性免疫系统,经人工改造而逐渐发展起来。CRISPR是指规律成簇间隔短回文重复序列,Cas是指CRISPR相关蛋白。CRISPR-Cas基因组编辑技术是通过一段RNA来识别打靶位点,通过Cas核酸内切酶对打靶位点附近的核酸进行切割来实现对基因组的定点编辑,因此该技术也叫做RNA指导的核酸内切酶技术。与ZFN和TALEN技术相比,CRISPR-Cas基因组编辑技术在设计、合成与阳性克隆的筛选上都更为便捷,而且可以实现同时在一个细胞内对多个位点进行编辑,提高基因编辑的效率。CRISPR-Cas9 gene editing technology is the third-generation genome editing technology developed rapidly after ZFN and TALEN technology. This technology comes from the CRISPR-Cas acquired immune system in bacteria and archaea that resists phage invasion. gradually developed. CRISPR refers to regularly clustered interspaced short palindromic repeats, and Cas refers to CRISPR-associated proteins. CRISPR-Cas genome editing technology uses a piece of RNA to identify the target site, and the Cas endonuclease cuts the nucleic acid near the target site to achieve fixed-point editing of the genome, so this technology is also called RNA-guided endonucleic acid cutting enzyme technology. Compared with ZFN and TALEN technologies, CRISPR-Cas genome editing technology is more convenient in design, synthesis and screening of positive clones, and can simultaneously edit multiple sites in a cell, improving the efficiency of gene editing .
发明内容Contents of the invention
本发明的一个目的是提供一种敲除IFN-β基因的293T细胞系。One object of the present invention is to provide a 293T cell line in which the IFN-β gene is knocked out.
本发明所提供的敲除IFN-β基因的293T细胞系具体为人胚肾细胞293T-KO-IFN-β,它在中国微生物菌种保藏管理委员会普通微生物中心的保藏编号为CGMCC No.10096。The 293T cell line with IFN-β gene knockout provided by the present invention is specifically human embryonic kidney cell 293T-KO-IFN-β, and its preservation number in the General Microbiology Center of China Committee for Culture Collection of Microorganisms is CGMCC No. 10096.
本发明的第二个目的是提供一种基于CRISPR-Cas9构建敲除IFN-β基因的293T细胞系的方法。The second object of the present invention is to provide a method for constructing a 293T cell line that knocks out the IFN-β gene based on CRISPR-Cas9.
本发明所提供的基于CRISPR-Cas9构建敲除IFN-β基因的293T细胞系的方法,是以序列表中序列1所示IFN-β基因序列中符合5’-GG-18N-NGG-3’或5’-GG-20N-NGG-3’或5’-CCN-18N-CC-3’或5’-CCN-20N-CC-3’序列排列规则的序列中的“18N”或“20N”所示序列为靶序列的;N为A或T或C或G。其中,18N为18个脱氧核糖核苷酸,20N为20个脱氧核糖核苷酸.The method for constructing a 293T cell line that knocks out the IFN-β gene based on CRISPR-Cas9 provided by the present invention is to conform to 5'-GG-18N-NGG-3' in the IFN-β gene sequence shown in sequence 1 in the sequence listing Or "18N" or "20N" in the sequence of 5'-GG-20N-NGG-3' or 5'-CCN-18N-CC-3' or 5'-CCN-20N-CC-3' sequence arrangement rules The sequence shown is that of the target sequence; N is A or T or C or G. Among them, 18N is 18 deoxyribonucleotides, and 20N is 20 deoxyribonucleotides.
所述靶序列可为1-2个;当所述靶序列为2个时,2个所述靶序列之间的间隔优选为大于200bp。There may be 1-2 target sequences; when there are 2 target sequences, the interval between the 2 target sequences is preferably greater than 200bp.
在本发明的一个实施例中,所述靶序列为序列表中序列1所示IFN-β基因序列的第216-235位,(记为靶序列1);在本发明的另一个实施例中,所述靶序列为序列表中序列1所示IFN-β基因序列的第545-562位(记为靶序列2)。In one embodiment of the present invention, the target sequence is the 216-235th position of the IFN-β gene sequence shown in Sequence 1 in the Sequence Listing (denoted as target sequence 1); in another embodiment of the present invention , the target sequence is the 545th-562th position of the IFN-β gene sequence shown in sequence 1 in the sequence table (denoted as target sequence 2).
更加具体的,所述方法为如下(A)或(B):More specifically, the method is as follows (A) or (B):
(A)包括如下步骤(a1)-(a4):(A) includes the following steps (a1)-(a4):
(a1)合成名称为正向单链DNA1和名称为反向单链DNA1的两个单链DNA;所述正向单链DNA1的序列如序列表中序列2所示,为在所述靶序列1的5’端加上ACCG;所述反向单链DNA1的序列如序列表中序列3所示,为在所述靶序列1的反向互补序列的5’端加上AAAC;(a1) Synthesize two single-stranded DNAs named forward single-stranded DNA1 and reverse single-stranded DNA1; the sequence of the forward single-stranded DNA1 is as shown in sequence 2 in the sequence table, which is in the target sequence ACCG is added to the 5' end of 1; the sequence of the reverse single-stranded DNA 1 is shown as sequence 3 in the sequence listing, which is to add AAAC to the 5' end of the reverse complementary sequence of the target sequence 1;
(a2)将所述正向单链DNA1和所述反向单链DNA1进行退火反应,得到双链DNA1(特异于靶序列1),该双链具有粘末端,其粘末端与BsaI酶切后的pGL-U6-gRNA质粒的酶切位点互补,可直接进行连接反应;(a2) annealing the forward single-stranded DNA1 and the reverse single-stranded DNA1 to obtain a double-stranded DNA1 (specific to the target sequence 1), the double-strand has a sticky end, and the sticky end is digested with BsaI The enzyme cutting site of pGL-U6-gRNA plasmid is complementary and can be used for direct ligation reaction;
(a3)将所述双链DNA1连接到pGL-U6-gRNA质粒的限制性内切酶BsaI的切割位点处,得到的重组质粒记为pGL-U6-gRNA-IFNβ-1;(a3) connecting the double-stranded DNA1 to the cleavage site of the restriction endonuclease BsaI of the pGL-U6-gRNA plasmid, and the resulting recombinant plasmid is denoted as pGL-U6-gRNA-IFNβ-1;
(a4)将所述pGL-U6-gRNA-IFNβ-1(Puromycin抗性)和Cas9质粒(Blasticidin抗性),共转染293T细胞,用Puromycin(3ug/ml)和Blasticidin(3ug/ml)进行抗性筛选,筛选时间为7天,然后换为正常的DMEM培养基,从转染后的293T细胞中获得IFN-β基因被敲除的293T细胞系;(a4) Co-transfect 293T cells with the pGL-U6-gRNA-IFNβ-1 (Puromycin resistance) and Cas9 plasmid (Blasticidin resistance), and perform with Puromycin (3ug/ml) and Blasticidin (3ug/ml) Resistance screening, the screening time was 7 days, and then replaced with normal DMEM medium, and the 293T cell line with the IFN-β gene knocked out was obtained from the transfected 293T cells;
(B)包括如下步骤(b1)-(b4):(B) includes the following steps (b1)-(b4):
(b1)合成名称为正向单链DNA2和名称为反向单链DNA2的两个单链DNA;所述正向单链DNA2的序列如序列表中序列4所示,为在所述靶序列2的反向互补序列的5’端加上ACCG;所述反向单链DNA2的序列如序列表中序列5所示,为在所述靶序列2的5’端加上AAAC;(b1) Synthesize two single-stranded DNAs named forward single-stranded DNA2 and reverse single-stranded DNA2; the sequence of the forward single-stranded DNA2 is as shown in sequence 4 in the sequence table, which is in the target sequence ACCG is added to the 5' end of the reverse complementary sequence of 2; the sequence of the reverse single-stranded DNA 2 is shown in sequence 5 in the sequence listing, which is AAAC is added to the 5' end of the target sequence 2;
(b2)将所述正向单链DNA2和所述反向单链DNA2进行退火反应,得到双链DNA2(特异于靶序列2),该双链具有粘末端,其粘末端与BsaI酶切后的pGL-U6-gRNA质粒的酶切位点互补,可直接进行连接反应;(b2) annealing the forward single-stranded DNA2 and the reverse single-stranded DNA2 to obtain a double-stranded DNA2 (specific to the target sequence 2), the double-strand has a sticky end, and the sticky end is digested with BsaI The enzyme cutting site of pGL-U6-gRNA plasmid is complementary and can be used for direct ligation reaction;
(b3)将所述双链DNA2连接到pGL-U6-gRNA质粒的限制性内切酶BsaI的切割位点处,得到的重组质粒记为pGL-U6-gRNA-IFNβ-2;(b3) connecting the double-stranded DNA 2 to the cleavage site of the restriction endonuclease BsaI of the pGL-U6-gRNA plasmid, and the resulting recombinant plasmid is denoted as pGL-U6-gRNA-IFNβ-2;
(b4)将所述pGL-U6-gRNA-IFNβ-2(Puromycin抗性)和Cas9质粒(Blasticidin抗性),共转染293T细胞,用Puromycin(3μg/ml)和Blasticidin(3μg/ml)进行抗性筛选,筛选时间为7天,然后换为正常的DMEM培养基,从转染后的293T细胞中获得IFN-β基因被敲除的293T细胞系;(b4) The pGL-U6-gRNA-IFNβ-2 (Puromycin resistance) and Cas9 plasmid (Blasticidin resistance) were co-transfected into 293T cells with Puromycin (3 μg/ml) and Blasticidin (3 μg/ml) Resistance screening, the screening time was 7 days, and then replaced with normal DMEM medium, and the 293T cell line with the IFN-β gene knocked out was obtained from the transfected 293T cells;
在所述方法的步骤(a2)和(b2)中,所述退火反应的条件均可为:97℃作用7min,然后关机,自然降温1h。In the steps (a2) and (b2) of the method, the conditions of the annealing reaction can be: 97°C for 7 minutes, then shut down, and cool down naturally for 1 hour.
在所述方法的步骤(a4)和(b4)中,将所述pGL-U6-gRNA-IFNβ-1(或所述pGL-U6-gRNA-IFNβ-2)和Cas9质粒共转染293T细胞时,所述pGL-U6-gRNA-IFNβ-1(或所述pGL-U6-gRNA-IFNβ-2)和所述Cas9质粒的质量比可为1:1。In steps (a4) and (b4) of the method, when the pGL-U6-gRNA-IFNβ-1 (or the pGL-U6-gRNA-IFNβ-2) and the Cas9 plasmid are co-transfected into 293T cells , the mass ratio of the pGL-U6-gRNA-IFNβ-1 (or the pGL-U6-gRNA-IFNβ-2) and the Cas9 plasmid can be 1:1.
利用所述方法制备得到的IFN-β基因被敲除的293T细胞系也属于本发明的保护范围。The 293T cell line in which the IFN-β gene is knocked out prepared by the method also belongs to the protection scope of the present invention.
所述IFN-β基因被敲除的293T细胞系具体为所述人胚肾细胞293T-KO-IFN-βCGMCCNo.10096。The 293T cell line in which the IFN-β gene is knocked out is specifically the human embryonic kidney cell 293T-KO-IFN-βCGMCC No. 10096.
本发明的第三个目的是提供一种成套质粒。The third object of the present invention is to provide a set of plasmids.
本发明所提供的成套质粒由所述pGL-U6-gRNA-IFNβ-1(或所述pGL-U6-gRNA-IFNβ-2)和所述Cas9质粒组成。The set of plasmids provided by the present invention consists of the pGL-U6-gRNA-IFNβ-1 (or the pGL-U6-gRNA-IFNβ-2) and the Cas9 plasmid.
其中,所述成套质粒中的两种质粒可以分别单独包装,也可以按照质量比为1:1的比例混合包装。Wherein, the two plasmids in the set of plasmids can be packaged separately, or mixed and packaged according to a mass ratio of 1:1.
所述成套质粒的用途也属于本发明的保护范围。The use of the set of plasmids also belongs to the protection scope of the present invention.
所述用途具体为基于CRISPR-Cas9敲除293T细胞中IFN-β基因(序列1)。The use is specifically to knock out the IFN-β gene (sequence 1) in 293T cells based on CRISPR-Cas9.
本发明的第四个目的是提供一种基于CRISPR-Cas9构建敲除IFN-β基因的293T细胞系的试剂盒。The fourth object of the present invention is to provide a kit for constructing a 293T cell line that knocks out the IFN-β gene based on CRISPR-Cas9.
本发明所提供的基于CRISPR-Cas9构建敲除IFN-β基因的293T细胞系的试剂盒,含有所述成套质粒及说明书;所述说明书中记载有如上所述的基于CRISPR-Cas9构建敲除IFN-β基因的293T细胞系的方法。The kit for constructing a 293T cell line that knocks out the IFN-β gene based on CRISPR-Cas9 provided by the present invention contains the set of plasmids and instructions; the instructions describe the above-mentioned construction of knockout IFN based on CRISPR-Cas9 -Methods for the 293T cell line of the beta gene.
所述人胚肾细胞293T-KO-IFN-β,或利用所述方法制备得到的IFN-β基因被敲除的293T细胞系在扩增B型流感病毒中的应用也属于本发明的保护范围。The application of the human embryonic kidney cell 293T-KO-IFN-β, or the IFN-β gene knockout 293T cell line prepared by the method in amplifying influenza B virus also belongs to the protection scope of the present invention .
本发明的优点在于:敲除IFN-β基因的293T细胞系,或缺少IFN-β基因的一部分,或由于敲除或插入某些片段而引起移码突变,故不能正确的表达IFN-β蛋白。由于IFN-β蛋白具有抗病毒作用,故B型流感病毒在野生型的293T细胞中不能大量的增殖。而敲除IFN-β基因的293T细胞系由于不能正确的表达IFN-β蛋白,故可用于B型流感病毒在该细胞系中更好的增殖,获得更大量病毒用于实验研究。The advantage of the present invention is that: the 293T cell line with IFN-β gene knockout, or lack of a part of IFN-β gene, or cause frameshift mutation due to knockout or insertion of certain fragments, so it cannot express IFN-β protein correctly . Since the IFN-β protein has an antiviral effect, the type B influenza virus cannot proliferate in large quantities in wild-type 293T cells. The 293T cell line with IFN-β gene knockout can not express IFN-β protein correctly, so it can be used for better proliferation of influenza B virus in this cell line, and a larger amount of virus can be obtained for experimental research.
保藏说明Preservation instructions
参椐的生物材料:293T-KO-IFN-βReference biological material: 293T-KO-IFN-β
科学描述:人胚肾细胞Scientific Description: Human Embryonic Kidney Cells
保藏机构:中国微生物菌种保藏管理委员会普通微生物中心Preservation institution: General Microbiology Center of China Committee for the Collection of Microorganisms
保藏机构简称:CGMCCDepository institution abbreviation: CGMCC
地址:北京市朝阳区北辰西路1号院3号Address: No. 3, Yard No. 1, Beichen West Road, Chaoyang District, Beijing
保藏日期:2014年12月1日Deposit date: December 1, 2014
保藏中心登记入册编号:CGMCC No.10096Registration number of the collection center: CGMCC No.10096
附图说明Description of drawings
图1为PCR鉴定结果。Figure 1 shows the results of PCR identification.
图2为Westren-Blotting鉴定结果。Fig. 2 is the identification result of Westren-Blotting.
具体实施方式detailed description
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
pGL-U6-gRNA质粒:将gRNA人工插入该质粒后组成的重组质粒具有导向作用,可以与所要编辑的基因组中相应的位置进行结合,起到Guiding的作用。记载于“Ma Y,Ma J,Zhang X,Chen W,Yu L,Lu Y,Bai L,Shen B,Huang X,Zhang L.2014.Generation of eGFPand Cre knockin rats by CRISPR/Cas9.FEBS J.Jul 17.doi:10.1111/febs.12935.”一文,公众可从中国科学院微生物研究所获得。pGL-U6-gRNA plasmid: The recombinant plasmid formed by artificially inserting gRNA into the plasmid has a guiding effect, and can be combined with the corresponding position in the genome to be edited to play the role of Guiding. Recorded in "Ma Y, Ma J, Zhang X, Chen W, Yu L, Lu Y, Bai L, Shen B, Huang X, Zhang L. 2014.Generation of eGFPand Cre knockin rats by CRISPR/Cas9.FEBS J.Jul 17.doi:10.1111/febs.12935.” The article is available to the public from the Institute of Microbiology, Chinese Academy of Sciences.
Cas9质粒:具有核酸内切酶的功能,该Cas9质粒可以通过与pGL-U6-gRNA的结合后到达所要编辑的基因组的位置实现其对基因组的切割功能。记载于“Ma Y,Zhang X,ShenB,Lu Y,Chen W,Ma J,Bai L,Huang X,Zhang L.2014.Generating rats withconditional alleles using CRISPR/Cas9.Cell Res.Jan;24(1):122-5.”一文,公众可从中国科学院微生物研究所获得。Cas9 plasmid: it has the function of endonuclease, and the Cas9 plasmid can reach the position of the genome to be edited to realize its cutting function on the genome by combining with pGL-U6-gRNA. Recorded in "Ma Y, Zhang X, ShenB, Lu Y, Chen W, Ma J, Bai L, Huang X, Zhang L. 2014. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res. Jan; 24(1): 122-5.", publicly available from the Institute of Microbiology, Chinese Academy of Sciences.
pGL-U6-gRNA质粒和Cas9质粒上都带有药物抗性,通过药物筛选,可获得基因敲除的细胞系。Both the pGL-U6-gRNA plasmid and the Cas9 plasmid have drug resistance, and through drug screening, gene knockout cell lines can be obtained.
大肠杆菌TOP10:购自Invitrogen公司和货号C4040-10。Escherichia coli TOP10: purchased from Invitrogen Company and Cat. No. C4040-10.
293T细胞:记载于“Sh Cao,X-L Liu,M-R Yu,J Li,X-J Jia,Y-H Bi,L Sun,George F.Gao,W-J Liu*.2012.A Nuclear Export Signal in the Matrix Protein ofInfluenza A Virus Is Required for the Efficient Virus Replication.Journal ofVirology,86(9):4883-91。”一文,公众可从中国科学院微生物研究所获得。293T cells: described in "Sh Cao, X-L Liu, M-R Yu, J Li, X-J Jia, Y-H Bi, L Sun, George F.Gao, W-J Liu*.2012.A Nuclear Export Signal in the Matrix Protein of Influenza A Virus Is Required for the Efficient Virus Replication. Journal of Virology, 86(9):4883-91." The article is available to the public from the Institute of Microbiology, Chinese Academy of Sciences.
实施例1、敲除IFN-β基因的293T细胞系的构建Embodiment 1, the construction of the 293T cell line of knocking out IFN-β gene
一、待敲除基因靶序列的确定及DNA oligo引物的设计1. Determination of the target sequence of the gene to be knocked out and the design of DNA oligo primers
1、待敲除基因靶序列的确定1. Determination of the target sequence of the gene to be knocked out
以HuIFN-β基因序列(序列1,无内含子)为待敲除基因,利用DNAStar软件中的Editseq软件对HuIFN-β基因序列进行分析,在此基础上人工筛选合适的靶序列。对于HuIFN-β基因全序列本发明的发明人最终设计了两个靶序列,分别为序列表中序列1的第216-235位(GAGGCTTGAATACTGCCTCA,记为靶序列1)和序列1的第545-562位(AGGAGTACAGTCACTGTG,记为靶序列2)。Taking the HuIFN-β gene sequence (sequence 1, without intron) as the gene to be knocked out, the Editseq software in the DNAStar software was used to analyze the HuIFN-β gene sequence, and on this basis, the appropriate target sequence was manually screened. For the complete sequence of the HuIFN-β gene, the inventors of the present invention finally designed two target sequences, which are respectively No. 216-235 of Sequence 1 in the sequence table (GAGGCTTGAATACTGCCTCA, denoted as target sequence 1) and No. 545-562 of Sequence 1 bit (AGGAGTACAGTCACTGTG, denoted as target sequence 2).
在进行靶序列确定时,本发明的发明人是按照如下原则进行的:When determining the target sequence, the inventors of the present invention carried out according to the following principles:
(1)优先选择HuIFN-β基因全序列(序列1)中符合5’-GG-18N-NGG-3’(N代表A或T或C或G)或5’-GG-20N-NGG-3’序列排列规律的序列中的“18N”或“20N”所示序列作为靶序列。若所要敲除的基因的全序列中没有上述两种序列,也可选择上述两种序列的互补序列5’-CCN-18N-CC-3’或5’-CCN-20N-CC-3’基序,将其方向互补后使用。(1) Preferentially select the HuIFN-β gene complete sequence (sequence 1) that conforms to 5'-GG-18N-NGG-3' (N stands for A or T or C or G) or 5'-GG-20N-NGG-3 'The sequence shown by "18N" or "20N" in the regular sequence sequence is used as the target sequence. If the above two sequences do not exist in the complete sequence of the gene to be knocked out, the complementary sequence 5'-CCN-18N-CC-3' or 5'-CCN-20N-CC-3' of the above two sequences can also be selected order, use it after its direction is complementary.
(2)一般选择外显子上的符合(1)中要求的序列为靶序列,一般同一个敲除的细胞系同时设立两对符合要求的靶序列。(2) Generally, the sequence on the exon that meets the requirements in (1) is selected as the target sequence. Generally, two pairs of target sequences that meet the requirements are established at the same time in the same knockout cell line.
(3)选择两对符合要求的靶序列时两者最好要间隔一定的距离(>200bp)。(3) When selecting two pairs of target sequences that meet the requirements, it is best to have a certain distance between them (>200bp).
(4)所选择的靶序列最好位于所翻译的蛋白质的较重要的功能结构域,这样能更好的保证敲除效果。(4) The selected target sequence is preferably located in a more important functional domain of the translated protein, which can better ensure the knockout effect.
2、DNA oligo引物的设计2. Design of DNA oligo primers
根据步骤1确定的靶序列,设计两对DNA oligo引物,具体序列如下:According to the target sequence determined in step 1, design two pairs of DNA oligo primers, the specific sequences are as follows:
合成了两对寡核苷酸引物用于制备gRNA,序列如下:Two pairs of oligonucleotide primers were synthesized for the preparation of gRNA, the sequences are as follows:
针对靶序列1的DNA oligo引物:DNA oligo primers for target sequence 1:
HuIFNβ-gRNA-UP1:5’-ACCGGAGGCTTGAATACTGCCTCA-3’(序列2);HuIFNβ-gRNA-UP1: 5'-ACCGGAGGCTTGAATACTGCCTCA-3' (SEQ ID NO: 2);
HuIFNβ-gRNA-DOWN1:5’-AAACTGAGGCAGTATTCAAGCCTC-3’(序列3)。HuIFNβ-gRNA-DOWN1: 5'-AAACTGAGGCAGTATTCAAGCCTC-3' (SEQ ID NO: 3).
针对靶序列2的DNA oligo引物:DNA oligo primers for target sequence 2:
HuIFNβ-gRNA-UP2:5’-ACCGCACAGTGACTGTACTCCT-3’(序列4);HuIFNβ-gRNA-UP2: 5'-ACCGCACAGTGACTGTACTCCT-3' (SEQ ID NO: 4);
HuIFNβ-gRNA-DOWN2:5’-AAACAGGAGTACAGTCACTGTG-3’(序列5)。HuIFNβ-gRNA-DOWN2: 5'-AAACAGGAGTACAGTCACTGTG-3' (SEQ ID NO: 5).
二、表达gRNA的重组质粒的构建2. Construction of recombinant plasmids expressing gRNA
1、寡核苷酸单链退火获得双链寡核苷酸1. Single-stranded oligonucleotides are annealed to obtain double-stranded oligonucleotides
将合成的针对靶序列1的两条DNA oligo单链(序列2和序列3)退火,得到双链双链寡核苷酸1。The two DNA oligo single strands (SEQ2 and SEQUENCE3) synthesized against the target sequence 1 were annealed to obtain double-stranded double-stranded oligonucleotide 1.
将合成的针对靶序列2的两条DNA oligo单链(序列4和序列5)退火,得到双链双链寡核苷酸2。The two DNA oligo single strands (SEQ ID NO:4 and ID NO:5) synthesized against target sequence 2 were annealed to obtain double-stranded double-stranded oligonucleotide 2.
退火反应体系及退火反应条件均如下:The annealing reaction system and the annealing reaction conditions are as follows:
退火反应体系:HuIFNβ-gRNA-UP1或HuIFNβ-gRNA-UP2(浓度10mM)20μl;HuIFNβ-gRNA-DOWN1或HuIFNβ-gRNA-DOWN 2(浓度10mM)20μl;NEB buffer210μl。Annealing reaction system: HuIFNβ-gRNA-UP1 or HuIFNβ-gRNA-UP2 (concentration 10mM) 20μl; HuIFNβ-gRNA-DOWN1 or HuIFNβ-gRNA-DOWN 2 (concentration 10mM) 20μl; NEB buffer 210μl.
退火反应条件:将上述体系混合均匀后PCR仪中,97℃作用7min,然后关机,自然降温,1h后取出样品进行2%的琼脂糖凝胶电泳检测并切胶回收退火产物,所用回收试剂盒为寡核苷酸回收试剂盒(天根公司),具体操作步骤严格按其说明书进行。Annealing reaction conditions: After mixing the above system evenly, put the PCR instrument at 97°C for 7 minutes, then shut down the machine, and cool down naturally. After 1 hour, take out the sample for 2% agarose gel electrophoresis detection and cut the gel to recover the annealed product. The recovery kit used It is an oligonucleotide recovery kit (Tiangen Company), and the specific operation steps are carried out strictly according to its instructions.
2、酶切及连接反应2. Enzyme digestion and ligation reaction
用去内毒素的质粒提取试剂盒提取pGL-U6-gRNA质粒,然后用限制性核酸内切酶BSAI进行酶切,酶切条件为37℃切4h。将酶切后的质粒进行1%的琼脂糖凝胶电泳检测酶切效果并进行胶回收,胶回收所用试剂盒为博迈德公司产品。The pGL-U6-gRNA plasmid was extracted with an endotoxin-free plasmid extraction kit, and then digested with restriction endonuclease BSAI at 37°C for 4 hours. The digested plasmid was subjected to 1% agarose gel electrophoresis to detect the effect of the enzyme digestion, and the gel was recovered. The kit used for the gel recovery was a product of Bomed Company.
因退火产物直接含有与pGL-U6-gRNA载体酶切位点互补的粘末端,故可以直接用于连接实验。Since the annealed product directly contains sticky ends complementary to the pGL-U6-gRNA vector restriction site, it can be directly used for ligation experiments.
将胶回收后的酶切质粒与胶回收退火产物进行连接反应,具体体系及条件如下:The enzyme-cut plasmid recovered from the gel and the annealed product recovered from the gel were ligated. The specific system and conditions are as follows:
连接体系:胶回收后的退火产物(双链寡核苷酸1或双链寡核苷酸2)6μl;胶回收后的酶切pGL-U6-gRNA载体2μl;连接酶1μl;10×连接酶Buffer 1μl。Ligation system: 6 μl of the annealed product (double-stranded oligonucleotide 1 or double-stranded oligonucleotide 2) recovered from the gel; 2 μl of the digested pGL-U6-gRNA vector recovered from the gel; 1 μl of ligase; 10× ligase Buffer 1μl.
连接条件:PCR仪中16℃连接过夜。Ligation conditions: ligate overnight at 16°C in a PCR instrument.
3、转化3. Conversion
于超净工作台中将10μl连接产物加入50μl的大肠杆菌TOP10感受态细胞中,冰浴30min,然后42℃水浴中热激90sec,接着冰浴5min,然后加入500μl无抗LB液体培养基后,37℃,200rpm震荡培养40min后,涂布氨苄抗性的LB固体平板,37℃培养箱中培养过夜。待出现单菌落后,挑取5个大小适中的菌落,提取质粒,交由博迈德公司进行测序。Add 10 μl of the ligation product to 50 μl of Escherichia coli TOP10 competent cells in an ultra-clean workbench, ice-bath for 30 minutes, then heat shock in a water bath at 42°C for 90 seconds, then ice-bath for 5 minutes, and then add 500 μl of anti-LB liquid medium, 37 After incubation at 200 rpm for 40 min with shaking at °C, coat an ampicillin-resistant LB solid plate and culture overnight in a 37°C incubator. After a single colony appeared, pick 5 moderately sized colonies, extract the plasmid, and send it to Biomed for sequencing.
将经测序表明在pGL-U6-gRNA质粒的酶切位点BSAI处插入Inserted at the restriction site BSAI of the pGL-U6-gRNA plasmid through sequencing
“5’-GAGGCTTGAATACTGCCTCA-3’”所示DNA片段的重组质粒命名为The recombinant plasmid of the DNA fragment shown in "5'-GAGGCTTGAATACTGCCTCA-3'" was named
pGL-U6-gRNA-IFNβ1;将经测序表明在pGL-U6-gRNA质粒的酶切位点BSAI处插入pGL-U6-gRNA-IFNβ1; will be inserted at the restriction site BSAI of the pGL-U6-gRNA plasmid by sequencing
“5’-CACAGTGACTGTACTCCT-3’”所示DNA片段的重组质粒命名为The recombinant plasmid of the DNA fragment indicated by "5'-CACAGTGACTGTACTCCT-3'" is named
pGL-U6-gRNA-IFNβ2。pGL-U6-gRNA-IFNβ2.
4、重组质粒的提取4. Extraction of recombinant plasmids
将测序正确的克隆进行扩大培养,用去内毒素的质粒提取试剂盒(天根公司)提取重组质粒并测定质粒浓度,重组质粒的具体操作步骤严格按照说明书进行。The clones with correct sequencing were expanded and cultivated, and the recombinant plasmid was extracted with an endotoxin-free plasmid extraction kit (Tiangen Company) and the concentration of the plasmid was measured. The specific operation steps of the recombinant plasmid were strictly followed the instructions.
三、转染及单克隆的筛选3. Transfection and screening of monoclonal
将步骤二构建的重组质粒pGL-U6-gRNA-IFNβ1(或pGL-U6-gRNA-IFNβ2)与Cas9质粒共转293T细胞,具体操作步骤如下:Cotransfect 293T cells with the recombinant plasmid pGL-U6-gRNA-IFNβ1 (or pGL-U6-gRNA-IFNβ2) constructed in step 2 and the Cas9 plasmid. The specific steps are as follows:
(1)将293T细胞分至10cm细胞培养皿后培养过夜,所用培养基为含10%(体积分数)FBS的DMEM培养基,待次日早细胞汇合度达到70%左右时进行下步操作。(1) Divide the 293T cells into 10 cm cell culture dishes and culture them overnight. The medium used is DMEM medium containing 10% (volume fraction) FBS. The next morning, when the cell confluency reaches about 70%, proceed to the next step.
(2)将细胞汇合度达到70%的细胞换液至opti-MEM中,2h后进行转染。然后将两种质粒及Lip2000分别稀释至250μl的opti-MEM中,然后将稀释后的Lip2000加入稀释后的混合质粒中,轻轻混匀,静置20min后,轻轻滴加提前换至opti-MEM培养基的细胞中,置于37℃细胞培养箱中进行培养,4-6h后将细胞换液至含10%(体积分数)FBS的DMEM培养基中继续培养。所转染的两种质粒浓度为分别12μg/10cm皿,质粒与Lip的比例为1:2.5,即加24μg的混合质粒,则需要使用的Lip2000的量为60μl。(2) The cells whose confluence reached 70% were transferred to opti-MEM, and transfected 2 hours later. Then dilute the two plasmids and Lip2000 into 250μl of opti-MEM respectively, then add the diluted Lip2000 into the diluted mixed plasmid, mix gently, let it stand for 20min, then gently drop it and change to opti-MEM in advance The cells in the MEM medium were placed in a cell culture incubator at 37° C. for culturing, and after 4-6 hours, the cells were replaced with DMEM medium containing 10% (volume fraction) FBS to continue culturing. The concentration of the two plasmids to be transfected is 12μg/10cm dish, and the ratio of plasmid to Lip is 1:2.5, that is, if 24μg of mixed plasmid is added, the amount of Lip2000 to be used is 60μl.
(3)待加完质粒24h后,将细胞换液至含3μg嘌呤霉素和3μg杀稻瘟菌素的10%(体积分数)FBS的DMEM培养基中,培养3-5天,每个24h换一次新鲜的抗性培养基。(3) 24 hours after the addition of the plasmid, the cells were replaced with 10% (volume fraction) FBS DMEM medium containing 3 μg puromycin and 3 μg blasticidin, and cultured for 3-5 days, 24 hours each Replace with fresh resistant medium.
(4)待3-5天出现单克隆后,换为抗性减半的培养基维持2-3天,之后换为不加抗性含10%(体积分数)FBS的DMEM的培养基进行培养。(4) After 3-5 days when monoclonals appear, change to the medium with half the resistance for 2-3 days, and then change to the medium without adding resistance and containing 10% (volume fraction) FBS DMEM for culture .
(5)待细胞形成单克隆后,有限稀释法将细胞稀释至96孔板中,培养7天后挑取单克隆孔,传代至24孔板中进行扩大培养。24孔板中培养4-5天后,胰酶消化传代至12孔板中,每个单克隆传2个孔,一个孔用于扩大培养至6孔板以方便后续的PCR检测,一个孔用于留存。(5) After the cells formed monoclones, the cells were diluted into a 96-well plate by the limiting dilution method, and after 7 days of culture, the monoclonal wells were picked and passaged to a 24-well plate for expanded culture. After 4-5 days of culture in a 24-well plate, trypsinization was passed to a 12-well plate, and each single clone was passed to 2 wells, one well was used to expand the culture to a 6-well plate to facilitate subsequent PCR detection, and one well was used for retain.
(6)PCR鉴定阳性克隆(6) PCR identified positive clones
将扩大至6孔板的单克隆进行细胞基因组DNA的提取,所用试剂盒为天根公司生产。The monoclonal expanded to 6-well plate was used to extract the genomic DNA of the cells, and the kit used was produced by Tiangen Company.
用于PCR鉴定共转染了重组质粒pGL-U6-gRNA-IFNβ1与Cas9质粒的293T细胞的引物序列如下:The primer sequences used for PCR identification of 293T cells co-transfected with recombinant plasmid pGL-U6-gRNA-IFNβ1 and Cas9 plasmid are as follows:
PCR-KOIFN-β-up1:5’-TCTAACTGCAACCTTTCGAAGCC-3’(序列1的第5-27位);PCR-KOIFN-β-up1: 5'-TCTAACTGCAACCTTTCGAAGCC-3' (position 5-27 of Sequence 1);
PCR-KOIFN-β-down1:5’-CCAGGACTGTCTTCAGATGGTTT-3’(序列1的第423-445位的反向互补序列)。PCR-KOIFN-β-down1: 5'-CCAGGACTGTCTTCAGATGGTTT-3' (reverse complement of positions 423-445 of Sequence 1).
采用PCR-KOIFN-β-up1/PCR-KOIFN-β-down1引物对扩增得不到大小为441bp目的条带(序列1的第5-445位)的克隆为阳性。Clones that cannot amplify the target band (position 5-445 of sequence 1) with a size of 441 bp using PCR-KOIFN-β-up1/PCR-KOIFN-β-down1 primer pair are positive.
用于PCR鉴定共转染了重组质粒pGL-U6-gRNA-IFNβ2与Cas9质粒的293T细胞的引物序列如下:The primer sequences used for PCR identification of 293T cells co-transfected with recombinant plasmid pGL-U6-gRNA-IFNβ2 and Cas9 plasmid are as follows:
PCR-KOIFN-β-up2:5’-GCATTGACCATCTATGAGATGCT-3’(序列1的第304-326位);PCR-KOIFN-β-up2: 5'-GCATTGACCATCTATGAGATGCT-3' (position 304-326 of Sequence 1);
PCR-KOIFN-β-down2:5’-CTTCTAGTGTCCTTTCATATGCAG-3’(序列1的第731-754位的反向互补序列)。PCR-KOIFN-β-down2: 5'-CTTCTAGTGTCCTTTCATATGCAG-3' (reverse complement of positions 731-754 of Sequence 1).
采用PCR-KOIFN-β-up2/PCR-KOIFN-β-down2引物对扩增得不到大小为451bp目的条带(序列1的第304-754位)的克隆为阳性。Clones that cannot amplify the target band (position 304-754 of sequence 1) with a size of 451 bp using PCR-KOIFN-β-up2/PCR-KOIFN-β-down2 primer pair are positive.
实验同时以野生型的293T细胞系基因组为模版作为对照组。At the same time, the wild-type 293T cell line genome was used as the template for the control group.
结果显示,以野生型293T细胞系基因组为模版的对照组,采用PCR-KOIFN-β-up1/PCR-KOIFN-β-down1引物对扩增得得到了大小为441bp目的条带(序列1的第5-445位),采用PCR-KOIFN-β-up2/PCR-KOIFN-β-down2引物对扩增得了大小为451bp目的条带(序列1的第304-754位)。而共转染了重组质粒pGL-U6-gRNA-IFNβ1与Cas9质粒的293T细胞,以及共转染了重组质粒pGL-U6-gRNA-IFNβ2与Cas9质粒的293T细胞均获得了阳性克隆。其中,部分采用PCR-KOIFN-β-up1/PCR-KOIFN-β-down1引物对鉴定共转染了重组质粒pGL-U6-gRNA-IFNβ1与Cas9质粒的293T细胞阳性克隆的结果如图1所示,泳道1为以野生型293T细胞系基因组为模版的对照组;泳道2为敲除了部分HuIFN-β基因后的293T细胞系的阳性克隆(即本发明最终获得的保藏细胞293T-KO-IFN-β)的扩增结果。The results showed that the PCR-KOIFN-β-up1/PCR-KOIFN-β-down1 primer pair was used to amplify the control group using the genome of the wild-type 293T cell line as a template to obtain a 441bp target band (the first sequence of sequence 1). 5-445 positions), PCR-KOIFN-β-up2/PCR-KOIFN-β-down2 primer pair was used to amplify the target band with a size of 451bp (positions 304-754 of sequence 1). Positive clones were obtained in 293T cells co-transfected with recombinant plasmid pGL-U6-gRNA-IFNβ1 and Cas9 plasmid, and in 293T cells co-transfected with recombinant plasmid pGL-U6-gRNA-IFNβ2 and Cas9 plasmid. Among them, some PCR-KOIFN-β-up1/PCR-KOIFN-β-down1 primer pairs were used to identify positive clones of 293T cells co-transfected with the recombinant plasmid pGL-U6-gRNA-IFNβ1 and the Cas9 plasmid. The results are shown in Figure 1 , Lane 1 is the control group using the wild-type 293T cell line genome as a template; Lane 2 is the positive clone of the 293T cell line after knocking out part of the HuIFN-β gene (that is, the preserved cell 293T-KO-IFN- β) Amplification results.
(7)Western-blot鉴定IFN-β的表达情况(7) Western-blot identification of the expression of IFN-β
①将所要鉴定的细胞系和野生型的293T细胞传代至24孔板中,培养过夜,所用培养基为含10%(体积分数)FBS的DMEM培养基,待次日早细胞汇合度达到70%左右时进行下步操作。① Passage the cell line to be identified and wild-type 293T cells into a 24-well plate, culture overnight, the medium used is DMEM medium containing 10% (volume fraction) FBS, and the next morning the cell confluence reaches 70% When left and right, proceed to the next step.
②用A型流感病毒的PR8株(A/H1N1/PR8)(记载于“钟菊迎,崔晓兰,时宇静等.金柴抗病毒胶囊防治甲型H1N1流感病毒PR8株感染小鼠肺炎的实验研究.世界中西医结合杂志,2010年第5卷第4期”一文)感染所要检测的细胞系,感染剂量为MOI=0.1,感染前和感染后12h分别取样。将细胞沉淀中加入预冷的Lysis buffer(配方:1%体积分数的Triton X100,150mM的NaCl,20mM的Hepes,10%体积分数的甘油,1mM的EDTA,pH7.4),每孔100μl,用细胞刮刮下细胞后,置入1.5ml的EP管中,离心后弃细胞沉淀,上清备用。②Using the PR8 strain of influenza A virus (A/H1N1/PR8) (recorded in "Zhong Juying, Cui Xiaolan, Shi Yujing et al. Experimental study on the prevention and treatment of pneumonia in mice infected with influenza A H1N1 influenza virus PR8 strain by Jinchai Antiviral Capsules . World Journal of Integrated Traditional Chinese and Western Medicine, 2010, Volume 5, Issue 4" article) infected the cell line to be detected, the infection dose was MOI=0.1, and samples were taken before infection and 12 hours after infection. Add pre-cooled Lysis buffer (recipe: 1% volume fraction of Triton X100, 150mM NaCl, 20mM Hepes, 10% volume fraction of glycerol, 1mM EDTA, pH7.4) to the cell pellet, 100 μl per well, and use After scraping the cells, put them into a 1.5ml EP tube, discard the cell pellet after centrifugation, and use the supernatant for later use.
③将准备好的样品进行Western-blot分析。具体操作步骤为:③The prepared samples were analyzed by Western-blot. The specific operation steps are:
A.按照《分子克隆》所述的方法进行SDS-PAGE。用预染的蛋白质分子量Marker。电泳完毕后,将凝胶放入电转缓冲液中平衡2min后进行转膜。A. Carry out SDS-PAGE according to the method described in "Molecular Cloning". Use pre-stained protein molecular weight markers. After the electrophoresis, the gel was placed in the electrotransfer buffer to equilibrate for 2 minutes and then transferred to the membrane.
B.按照凝胶的大小剪好六张3mm厚滤纸,浸泡于转移缓冲液中。剪一张比滤纸稍大的PVDF膜,在甲醇浸泡5min以上,电转液平衡10min后使用。在半干转膜仪中依次放置3层厚滤纸、转印膜、凝胶、3层滤纸,注意赶走各层间气泡。15V电转20min。B. Cut six pieces of 3mm thick filter paper according to the size of the gel and soak them in the transfer buffer. Cut a piece of PVDF membrane slightly larger than the filter paper, soak it in methanol for more than 5 minutes, and use it after the electrotransfer solution is equilibrated for 10 minutes. Place 3 layers of thick filter paper, transfer membrane, gel, and 3 layers of filter paper in sequence in the semi-dry transfer membrane apparatus, pay attention to drive away the air bubbles between the layers. 15V electricity for 20min.
C.切勿使转移的转印膜变干,转膜结束后快速放于适量封闭液中封闭。室温轻摇1h。C. Do not let the transferred transfer membrane dry out, and quickly place it in an appropriate amount of blocking solution to seal after the transfer is completed. Shake gently at room temperature for 1 h.
D.将转印膜放入杂交袋内,按照0.1ml/cm2用量分别加入用封闭液适当稀释的鼠抗HuIFNβ一抗(Santa Cruz公司产品,目录号:sc-17565,1:1000稀释),除尽气泡,封口。在室温下置于脱色摇床上轻摇孵育2h左右(或于4℃轻摇过夜),使抗体充分结合。将膜去除后放入TBST溶液中,洗膜3次,每次7min。D. Put the transfer membrane into the hybridization bag, and add mouse anti-HuIFNβ primary antibody (product of Santa Cruz Company, catalog number: sc-17565, diluted 1:1000) appropriately diluted with blocking solution according to the amount of 0.1ml/cm 2 , remove all air bubbles, and seal. Place on a decolorizing shaker at room temperature and incubate with gentle shaking for about 2 hours (or shake overnight at 4°C) to fully bind the antibodies. After removing the membrane, put it into TBST solution, wash the membrane 3 times, 7min each time.
E.将膜放入杂交袋内,加入用封闭液配制的辣根过氧化物酶(HRP)标记的相应羊抗鼠IgG二抗(Santa Cruz公司产品,目录号:sc-166261,1:5000稀释)。赶除气泡封口,室温振荡2h。E. Put the membrane into the hybridization bag, and add the corresponding goat anti-mouse IgG secondary antibody (product of Santa Cruz Company, catalog number: sc-166261, 1:5000) labeled with horseradish peroxidase (HRP) prepared in blocking solution dilution). Remove air bubbles and seal, shake at room temperature for 2h.
F.取出转印膜,用TBST洗三次,每次10min。F. Take out the transfer membrane and wash it three times with TBST for 10 minutes each time.
G.取发光液(天根公司产品)A液、B液各0.5ml等体积混合均匀。将转印膜轻轻接触滤纸吸干液体,有蛋白质的一面朝上放在保鲜膜上。将ECL混合液滴加到转印膜上,反应3min。立即用保鲜膜包裹PVDF膜,注意表面要平整,放入CLINX化学凝胶成像仪中成像。G. Take luminescence solution (Tiangen company product) A solution, B solution 0.5ml each in equal volume and mix evenly. Lightly touch the transfer membrane to the filter paper to absorb the liquid, and put the protein side up on the plastic wrap. Add the ECL mixture dropwise onto the transfer membrane and react for 3 minutes. Immediately wrap the PVDF membrane with plastic wrap, pay attention to the smooth surface, and put it into the CLINX chemical gel imager for imaging.
结果如图2所示,泳道1为以敲除部分HuIFN-β基因后的293T细胞系感染前0h的结果(无目的条带),泳道2为以敲除部分HuIFN-β基因后的293T细胞系感染后12h的结果(无目的条带),泳道3为野生型的293T细胞系感染前0h的结果(无目的条带),泳道4为野生型的293T细胞系感染后12h的结果(得到大小约为21KD的目的条带,与预期大小一致)。从结果可以看出,敲除部分HuIFN-β基因后的293T细胞系(即本发明最终获得的保藏细胞293T-KO-IFN-β)在病毒刺激后12h仍然检测不到HuIFN-β蛋白的表达,表明该细胞系敲除成功。The results are shown in Figure 2. Swimming lane 1 is the result of 0h before infection of the 293T cell line after knocking out part of the HuIFN-β gene (no target band), and lane 2 is the result of 293T cells after knocking out part of the HuIFN-β gene The result of 12h after infection (no object band), swimming lane 3 is the result of 0h before the infection of the wild-type 293T cell line (no object band), and swimming lane 4 is the result of 12h after the infection of the wild-type 293T cell line (obtained The target band is about 21KD in size, which is consistent with the expected size). It can be seen from the results that the 293T cell line after knocking out part of the HuIFN-β gene (that is, the preserved cell 293T-KO-IFN-β finally obtained in the present invention) still cannot detect the expression of HuIFN-β protein 12 hours after virus stimulation , indicating that the cell line was successfully knocked out.
本发明的发明人将其中一个经以上PCR鉴定和Western-blot鉴定均为阳性的克隆(共转染了重组质粒pGL-U6-gRNA-IFNβ1与Cas9质粒的293T细胞)于2014年12月1日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址:北京市朝阳区北辰西路1号院3号),参椐的生物材料:293T-KO-IFN-β,科学描述:人胚肾细胞,保藏中心登记入册编号:CGMCC No.10096。The inventors of the present invention made one of the clones (293T cells co-transfected with recombinant plasmid pGL-U6-gRNA-IFNβ1 and Cas9 plasmid) positive through the above PCR identification and Western-blot identification on December 1, 2014. Preserved in the General Microbiology Center of China Committee for the Collection of Microbial Cultures (CGMCC for short, address: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing), the reference biological material: 293T-KO-IFN-β, scientific description: human Embryonic kidney cells, registration number of the collection center: CGMCC No.10096.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410806018.0A CN104560864B (en) | 2014-12-22 | 2014-12-22 | Utilize the 293T cell lines of the knockout IFN β genes of CRISPR Cas9 system constructings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410806018.0A CN104560864B (en) | 2014-12-22 | 2014-12-22 | Utilize the 293T cell lines of the knockout IFN β genes of CRISPR Cas9 system constructings |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104560864A CN104560864A (en) | 2015-04-29 |
CN104560864B true CN104560864B (en) | 2017-08-11 |
Family
ID=53077944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410806018.0A Expired - Fee Related CN104560864B (en) | 2014-12-22 | 2014-12-22 | Utilize the 293T cell lines of the knockout IFN β genes of CRISPR Cas9 system constructings |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104560864B (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2734621B1 (en) | 2011-07-22 | 2019-09-04 | President and Fellows of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US9163284B2 (en) | 2013-08-09 | 2015-10-20 | President And Fellows Of Harvard College | Methods for identifying a target site of a Cas9 nuclease |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
JP2016536021A (en) | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR-related methods and compositions with governing gRNA |
US20150166982A1 (en) | 2013-12-12 | 2015-06-18 | President And Fellows Of Harvard College | Methods for correcting pi3k point mutations |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
CN105112412B (en) * | 2015-09-14 | 2017-12-26 | 中国科学院北京基因组研究所 | For knocking out the gRNA sequences and its knockout technique of people's BTF genes |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
MX387421B (en) | 2015-11-24 | 2025-03-18 | Commonwealth Scient And Industrial Reseach Organisation | VIRUS PRODUCTION IN AVIAN EGGS. |
WO2017088018A1 (en) | 2015-11-24 | 2017-06-01 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in cell culture |
SG11201900907YA (en) | 2016-08-03 | 2019-02-27 | Harvard College | Adenosine nucleobase editors and uses thereof |
CA3033327A1 (en) | 2016-08-09 | 2018-02-15 | President And Fellows Of Harvard College | Programmable cas9-recombinase fusion proteins and uses thereof |
WO2018039438A1 (en) | 2016-08-24 | 2018-03-01 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
KR102622411B1 (en) | 2016-10-14 | 2024-01-10 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | AAV delivery of nucleobase editor |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
WO2018165504A1 (en) | 2017-03-09 | 2018-09-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
WO2018165629A1 (en) | 2017-03-10 | 2018-09-13 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
IL306092A (en) | 2017-03-23 | 2023-11-01 | Harvard College | Nucleobase editors comprising nucleic acid programmable dna binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
CN107236741A (en) * | 2017-07-19 | 2017-10-10 | 广州医科大学附属第五医院 | A kind of gRNA and method for knocking out wild-type T cells TCR alpha chains |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
WO2019139645A2 (en) | 2017-08-30 | 2019-07-18 | President And Fellows Of Harvard College | High efficiency base editors comprising gam |
EP3697906A1 (en) | 2017-10-16 | 2020-08-26 | The Broad Institute, Inc. | Uses of adenosine base editors |
CN107937501A (en) * | 2017-11-24 | 2018-04-20 | 安徽师范大学 | A kind of method of fast and convenient screening CRISPR/Cas gene editing positive objects |
CN108148866B (en) * | 2018-01-19 | 2020-09-01 | 中国人民解放军第三0二医院 | HCBP6 gene knockout cell line and construction method thereof |
CN108504693A (en) * | 2018-04-04 | 2018-09-07 | 首都医科大学附属北京朝阳医院 | The O-type that T synthase genes structure is knocked out using Crispr technologies glycosylates abnormal colon carcinoma cell line |
CN108467874A (en) * | 2018-04-04 | 2018-08-31 | 首都医科大学附属北京朝阳医院 | The gene constructed O-type of Cosmc, which is knocked out, using Crispr technologies glycosylates abnormal colon carcinoma cell line |
EP3797160A1 (en) | 2018-05-23 | 2021-03-31 | The Broad Institute Inc. | Base editors and uses thereof |
US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
WO2020154500A1 (en) | 2019-01-23 | 2020-07-30 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
JP7618576B2 (en) | 2019-03-19 | 2025-01-21 | ザ ブロード インスティテュート,インコーポレーテッド | Editing Methods and compositions for editing nucleotide sequences |
EP4146804A1 (en) | 2020-05-08 | 2023-03-15 | The Broad Institute Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN114075549A (en) * | 2020-08-19 | 2022-02-22 | 中国科学院分子细胞科学卓越创新中心 | Fluorescent reporter cell for detecting interferon IFN beta induced expression and construction method thereof |
CN112481305A (en) * | 2020-11-30 | 2021-03-12 | 郑州大学 | Method for constructing EPB41 gene knockout THP-1 cell line based on CRISPR-Cas9 system |
CN118185879A (en) * | 2024-04-29 | 2024-06-14 | 北京博奥森生物技术有限公司 | Tumor cell line model for low expression of ACTB protein |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103668472B (en) * | 2013-12-31 | 2014-12-24 | 北京大学 | Method for constructing eukaryon gene knockout library by using CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system |
-
2014
- 2014-12-22 CN CN201410806018.0A patent/CN104560864B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104560864A (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104560864B (en) | Utilize the 293T cell lines of the knockout IFN β genes of CRISPR Cas9 system constructings | |
Nüssing et al. | Efficient CRISPR/Cas9 gene editing in uncultured naive mouse T cells for in vivo studies | |
CN105907758B (en) | CRISPR-Cas9 guide sequence and primer thereof, transgenic expression vector and construction method thereof | |
CN105518135B (en) | CRISPR-Cas9 specific knockout method of porcine CMAH gene and sgRNA for specific targeting of CMAH gene | |
Antsiferova et al. | Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice | |
WO2016197356A1 (en) | Method for knockout of swine sla-2 gene using crispr-cas9 specificity, and sgrna used for specifically targeting sla-2 gene | |
Kanda et al. | Highly efficient CRISPR/Cas9-mediated cloning and functional characterization of gastric cancer-derived Epstein-Barr virus strains | |
WO2016197357A1 (en) | Method for specific knockout of swine sla-3 gene using crispr-cas9 specificity, and sgrna used for specifically targeting sla-3 gene | |
WO2016197359A1 (en) | Method for specific knockout of swine sla-1 gene using crispr-cas9 specificity, and sgrna used for specifically targeting sla-1 gene | |
WO2016187904A1 (en) | Method for pig cmah gene specific knockout by means of crispr-cas9 and sgrna for specially targeting cmah gene | |
WO2016197361A1 (en) | Method for specific knockout of swine ggta1 gene using crispr-cas9 specificity, and sgrna used for specifically targeting ggta1 gene | |
WO2016197362A1 (en) | Method for specific knockout of swine vwf gene using crispr-cas9 specificity, and sgrna used for specifically targeting vwf gene | |
CN105492608A (en) | Method using CRISPR-Cas9 to specifically knock off pig PDX1 gene and sgRNA of PDX1 gene for specific targeting | |
WO2019119521A1 (en) | Marc-145 cell line against porcine reproductive and respiratory syndrome and preparation method and use thereof | |
CN105518138A (en) | Method knocking out pig GFRA1 genes with CRISPR-Cas9 specificity and sgRNA for specificity targeting GFRA1 genes | |
CN113897394B (en) | Recombinant adenovirus vaccine for African swine fever and construction method thereof | |
CN112057611B (en) | Application of African swine fever virus E120R protein as immunosuppressant and construction of immunosuppressive site knockout strain | |
CN108148866B (en) | HCBP6 gene knockout cell line and construction method thereof | |
CN113897395B (en) | Recombinant adenovirus vaccine for African swine fever and construction method thereof | |
CN102304580B (en) | Method for screening pig disease resistant breeds, and application thereof | |
Telling et al. | Constructing chimeric type 12/type 5 adenovirus E1A genes and using them to identify an oncogenic determinant of adenovirus type 12 | |
CN103255168B (en) | Construct and application thereof | |
CN104498509B (en) | HMG1 gene and application of HMG1 gene in silkworm microsporidia molecular detection | |
Oh et al. | Establishment and characterization of an in vivo model for Epstein–Barr virus positive gastric carcinoma | |
CN110468156A (en) | Correct the gene editing system and its application of the point mutation of ob/ob mouse Leptin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170811 |
|
CF01 | Termination of patent right due to non-payment of annual fee |