CN104556149B - 一种Zr2CN的合成方法 - Google Patents

一种Zr2CN的合成方法 Download PDF

Info

Publication number
CN104556149B
CN104556149B CN201310513108.6A CN201310513108A CN104556149B CN 104556149 B CN104556149 B CN 104556149B CN 201310513108 A CN201310513108 A CN 201310513108A CN 104556149 B CN104556149 B CN 104556149B
Authority
CN
China
Prior art keywords
blank
temperature
synthetic method
base substrate
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310513108.6A
Other languages
English (en)
Other versions
CN104556149A (zh
Inventor
王榕林
王力任
卜景龙
张利芳
王志发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Science and Technology
Original Assignee
North China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Science and Technology filed Critical North China University of Science and Technology
Priority to CN201310513108.6A priority Critical patent/CN104556149B/zh
Publication of CN104556149A publication Critical patent/CN104556149A/zh
Application granted granted Critical
Publication of CN104556149B publication Critical patent/CN104556149B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • C04B35/58035Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides based on zirconium or hafnium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种Zr2CN的合成方法,属于高温陶瓷材料领域。为了对Zr2CN材料的性能及其应用进行深入研究,克服对Zr2CN认知还仅限于由离子溅射方法所制备的ZrCN复合薄膜及其对薄膜性能的贡献问题,提供一种Zr2CN的合成方法。该方法以单斜氧化锆和炭黑为原料,经过配料、混合、成型、干燥及在高纯氮气(氮气纯度为:N2>99.99%)条件下煅烧获得Zr2CN合成材料。本发明可合成出纯度较高的Zr2CN材料,在流动的高纯氮气气氛及1650℃恒温5小时的煅烧条件下,当单斜氧化锆与炭黑的摩尔比为1:4时,ZrO2的转化反应趋于完全,可合成出含量约为100%的Zr2CN。

Description

一种Zr2CN的合成方法
技术领域
本发明属于高温陶瓷材料领域,具体涉及一种以氧化锆和炭黑为原料在高温氮气条件下反应合成Zr2CN的方法。
背景技术
一些过渡金属元素的碳化物、氮化物和氮碳化物,因其具有许多热学、力学和化学等方面的优良特性而获得广泛关注。其中,氮化锆(ZrN)材料、氮碳化锆(ZrC,N)系复合材料及其薄膜,是近年来的研究热点之一。
在金属Zr的氮化物中ZrN是唯一稳定的物相,因其具有金属能带结构而呈现黄金色泽。ZrN具有许多优良的性能,如高熔点、高热导率、低蠕变、抗侵蚀、高化学稳定、极高硬度、极耐磨损、极低电阻率、抗氧化以及电光特性等,因而国内外学者对其应用进行了深入研究并取得了丰硕成果。目前,ZrN薄膜可用作各种切削工具和机零部件的硬质耐磨保护层,可用作太阳能的反光层,可用作装饰材料;ZrN陶瓷可用作加工铸铁、碳素热处理钢、硬质钢以及硅铝合金等硬质合金材料的切削工具,可用作各种电子电工制品,可用作高温环境使用的内燃机、燃气轮机以及强腐蚀性环境下的机零部件,可用作特种耐磨截止阀以及功能性耐火材料等。另外,由于ZrN具有极低的电阻率和良好的耐热性,使其在激光器和超导器方面有着重要的应用。显然,ZrN薄膜和ZrN粉体的制备与合成技术是其应用基础。目前,ZrN薄膜的制备可采用电弧沉积、直流反应磁控溅射、脉冲激光沉积和离子束辅助沉积等方法;ZrN粉体的合成可采用金属Zr直接氮化、氯化锆气相沉积、ZrH2脱氢氮化和自蔓延燃烧等方法。
最新研究结果表明,由Zr-基氮化物薄膜引入第三种元素C所制备出的ZrCN复合薄膜,可使其性能获得进一步提高。该薄膜可提高器件的疲劳寿命和机械性能,而且将其涂布在侵入性手术刀具上,与人体组织具有良好的生物相容性。对ZrCN复合薄膜所进行的XRD分析结果显示,除了含有ZrN和ZrC等二元化合物外,其中还形成了三元化合物Zr2CN。特别引人注目的是,Zr2CN具有比ZrN和ZrC更高的显微硬度。
然而,目前人们对Zr2CN材料的认知,还仅限于由离子溅射方法所制备的ZrCN复合薄膜及其对薄膜性能的贡献,有关Zr2CN的合成、Zr2CN陶瓷的制备与性能等方面的研究未见报道。
本发明的目的在于克服对Zr2CN材料研究和认知上的不足,提供一种合成Zr2CN的方法,为Zr2CN材料的应用研究奠定基础。
发明内容
一种Zr2CN的合成方法,其特征在于所采用的原料以及原料的摩尔百分比为:氧化锆20-40mol%、炭黑60-80mol%。其合成工艺包括以下步骤:坯料制备;坯体成型;坯体干燥;高温煅烧。
该Zr2CN合成所用氧化锆为:单斜氧化锆(m-ZrO2);单斜氧化锆的粒径为<74μm, 单斜氧化锆的纯度为ZrO2≥99%。
该Zr2CN合成所用炭黑为:纳米炭黑;炭黑粒径为<100nm,炭黑纯度为挥发份<10%。
该Zr2CN合成所用坯料的制备方法为:按预定的摩尔百分比,将氧化锆细粉和炭黑准确称量,干混2~4分钟后加入适量的无水乙醇,湿法混合4~6小时后获得坯料料浆;经抽滤脱除坯料料浆中的无水乙醇,获得坯料混合粉;在不断翻搅混合的状态下向坯料混合粉中逐滴加入质量浓度2%的聚乙烯醇溶液(PVA)10%~13%(质量百分数,外加),继续翻搅混合10~20分钟后进行密封困料,经3~5小时困料后获得可供压力成型的坯料。
该Zr2CN合成所用坯体的成型方法为:采用液压机将上述混合均匀并经困料的坯料成型为坯体,坯体成型压强为≥50MPa。
该Zr2CN合成所用坯体的干燥方法为:将成型后坯体在60~110℃条件下干燥4~6小时,获得供烧成的干燥坯体。
该Zr2CN合成所用高温煅烧方法为:将干燥后坯体置于高温气氛电炉中的均温带,密封电炉并进行抽真空操作,然后通入高纯氮气(氮气纯度为:N2>99.99%),在动态氮气气氛下,按室温~1000℃为5℃/min、1000~1700℃为3℃/min的升温制度进行加热升温,经1550~1700℃恒温3~6小时高温煅烧后,随炉冷却获得Zr2CN合成材料。
附图说明
图1是具体实施方式实施例1得到的Zr2CN合成材料的XRD图;
图2是具体实施方式实施例2得到的Zr2CN合成材料的XRD图;
图3是具体实施方式实施例3得到的Zr2CN合成材料的XRD图;
图4是具体实施方式实施例3得到的Zr2CN合成材料的SEM图;
图5是具体实施方式实施例3得到的Zr2CN合成材料的SEM-EDS图。
具体实施方式
实施例1
配料组成:m-ZrO2粉33.3mol%2,炭黑粉66.7mol%。
按预定的摩尔百分比,将氧化锆细粉和炭黑准确称量,干混3分钟后加入适量的无水乙醇,湿法混合5小时后获得坯料料浆;经抽滤脱除坯料料浆的中无水乙醇,获得坯料混合粉;在不断翻搅混合的状态下向坯料混合粉中逐滴加入质量浓度2%的聚乙烯醇溶液(PVA)12%(质量百分数,外加),继续翻搅混合15分钟后进行密封困料,经5小时困料后获得可供压力成型的坯料;采用60MPa的压力于液压机上将坯料成型为坯体;将成型后坯体于100℃条件下干燥5小时,获得供煅烧的干燥坯体;将干燥后坯体置于高温气氛电炉中的均温带,密封电炉并进行抽真空操作,然后通入高纯氮气(氮气纯度为:N2>99.99%),在动态氮气气氛下,按室温~1000℃为5℃/min、1000~1600℃为3℃/min的升温制度进行加热升温,经1600℃恒温4小时高温煅烧后,随炉冷却获得Zr2CN合成材料。
本实施例合成的Zr2CN材料中Zr2CN含量约为90.8%。
实施例2
配料组成:m-ZrO2粉25mol%2,炭黑粉75mol%。
按预定的质量百分比,将氧化锆细粉和炭黑准确称量,干混3分钟后加入适量的无水乙醇,湿法混合5小时后获得坯料料浆;经抽滤脱除坯料料浆中无水乙醇,获得坯料混合粉;在不断翻搅混合的状态下向坯料混合粉中逐滴加入质量浓度2%的聚乙烯醇溶液(PVA)12%(质量百分数,外加),继续翻搅混合15分钟后进行密封困料,经5小时困料后获得可供压力成型的坯料;采用60MPa的压力于液压机上将坯料成型为坯体;将成型后坯体于100℃条件下干燥5小时,获得供烧成的干燥坯体;将干燥后坯体置于高温气氛电炉中的均温带,密封电炉并进行抽真空操作,然后通入高纯氮气(氮气纯度为:N2>99.99%),在动态氮气气氛下,按室温~1000℃为5℃/min、1000~1650℃为3℃/min的升温制度进行加热升温,经1650℃恒温5小时高温煅烧,随炉冷却后获得Zr2CN合成材料。
本实施例合成的Zr2CN材料中Zr2CN含量约为99.8%。
实施例3
配料组成:m-ZrO2粉20mol%2,炭黑粉80mol%。
按预定的质量百分比,将氧化锆细粉和炭黑准确称量,干混3分钟后加入适量的无水乙醇,湿法混合5小时后获得坯料料浆;经抽滤脱除坯料料浆中无水乙醇,获得坯料混合粉;在不断翻搅混合的状态下向坯料混合粉中逐滴加入质量浓度2%的聚乙烯醇溶液(PVA)12%(质量百分数,外加),继续翻搅混合15分钟后进行密封困料,经5小时困料后获得可供压力成型的坯料;采用60MPa的压力于液压机上将坯料成型为坯体;将成型后坯体于100℃条件下干燥5小时,获得供烧成的干燥坯体;将干燥后坯体置于高温气氛电炉中的均温带,密封电炉并进行抽真空操作,然后通入高纯氮气(氮气纯度为:N2>99.99%),在动态氮气气氛下,按室温~1000℃为5℃/min、1000~1650℃为3℃/min的升温制度进行加热升温,经1650℃恒温5小时高温煅烧,随炉冷却后获得Zr2CN合成材料。
本实施例合成的Zr2CN材料中Zr2CN含量约为100%。

Claims (6)

1.一种Zr2CN的合成方法,其特征在于所采用的原料以及原料的摩尔百分比为:氧化锆20-33.3mol%、炭黑66.7-80mol%,其合成工艺包括以下步骤:坯料制备;坯体成型;坯体干燥;高温煅烧;
所述高温煅烧方法为:将干燥后坯体置于高温气氛电炉中的均温带,密封电炉并进行抽真空操作,然后通入高纯氮气,所述高纯氮气的纯度为:N2>99.99%,在动态氮气气氛下,按室温~1000℃为5℃/min、1000~1700℃为3℃/min的升温制度进行加热升温,经1550~1700℃恒温3~6小时高温煅烧后,随炉冷却获得Zr2CN合成材料,所用高温气氛电炉为:管式高温气氛电炉或箱式高温气氛电炉。
2.如权利要求1所述的一种Zr2CN的合成方法,其特征在于所用氧化锆为:粒径<74μm、纯度为ZrO2≥99%的单斜氧化锆(m-ZrO2)。
3.如权利要求1所述的一种Zr2CN的合成方法,其特征在于所用炭黑为:粒径<100nm、纯度为挥发份<10%的纳米炭黑。
4.如权利要求1所述的一种Zr2CN的合成方法,其特征在于所用坯料的制备方法为:按预定的摩尔百分比,将氧化锆细粉和炭黑准确称量,干混2~4分钟后加入适量的无水乙醇,湿法混合4~6小时后获得坯料料浆;经抽滤脱除坯料料浆中无水乙醇,获得坯料混合粉;在不断翻搅混合的状态下向坯料混合粉中逐滴加入质量浓度2%的聚乙烯醇溶液,聚乙烯醇溶液加入量为原料配料总质量的10-13%,继续翻搅混合10~20分钟后进行密封困料,经3~5小时困料后获得可供压力成型的坯料。
5.如权利要求1所述的一种Zr2CN的合成方法,其特征在于所用坯体的成型方法为:采用液压机将坯料成型为坯体,坯体成型压强为≥50MPa。
6.如权利要求1所述的一种Zr2CN的合成方法,其特征在于所用坯体的干燥方法为:将成型后坯体在60~110℃条件下干燥4~6小时,获得供烧成的干燥坯体。
CN201310513108.6A 2013-10-22 2013-10-22 一种Zr2CN的合成方法 Expired - Fee Related CN104556149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310513108.6A CN104556149B (zh) 2013-10-22 2013-10-22 一种Zr2CN的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310513108.6A CN104556149B (zh) 2013-10-22 2013-10-22 一种Zr2CN的合成方法

Publications (2)

Publication Number Publication Date
CN104556149A CN104556149A (zh) 2015-04-29
CN104556149B true CN104556149B (zh) 2017-07-28

Family

ID=53073355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310513108.6A Expired - Fee Related CN104556149B (zh) 2013-10-22 2013-10-22 一种Zr2CN的合成方法

Country Status (1)

Country Link
CN (1) CN104556149B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114277351B (zh) * 2022-03-03 2022-05-20 中南大学湘雅医院 一种涂层材料及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1600746A (zh) * 2004-10-13 2005-03-30 天津大学 高韧性多孔网络结构部分稳定氧化锆陶瓷的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI287585B (en) * 2005-07-29 2007-10-01 Raycomm Microwave Technologies Method of ZrCN physical sputtering of magnetron and non-balanced magnetron for micro drill under 0.25 mm
CN102660729A (zh) * 2012-04-27 2012-09-12 江苏科技大学 ZrCN纳米复合膜及其制备方法
CN103121844B (zh) * 2013-03-04 2014-04-02 武汉科技大学 一种纳米碳化锆陶瓷粉体及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1600746A (zh) * 2004-10-13 2005-03-30 天津大学 高韧性多孔网络结构部分稳定氧化锆陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Zirconium Oxide-Based Compound as New Cathode Without Platinum Group Metals for PEFC;Y.Ohgi et al.;《Journal of The Electrochemical Society》;20100427;第157卷(第6期);B885-B891 *

Also Published As

Publication number Publication date
CN104556149A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
Zhao et al. High-entropy (Y0. 2Nd0. 2Sm0. 2Eu0. 2Er0. 2) AlO3: A promising thermal/environmental barrier material for oxide/oxide composites
Cao et al. Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method
CN109678511A (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
Peng et al. Effect of powder preparation on (CeO2) 0.8 (Sm2O3) 0.1 thin film properties by screen-printing
CN107078316A (zh) 取向性磷灰石型氧化物离子导体及其制造方法
Hossein-Zadeh et al. Microstructure investigation of V2AlC MAX phase synthesized through spark plasma sintering using two various sources V and V2O5 as the starting materials
CN113480315B (zh) 一种高熵低硼化物陶瓷及其制备方法
Yang et al. Reactive synthesis for porous Ti3AlC2 ceramics through TiH2, Al and graphite powders
Lifanov et al. Deposition of heat-resistant coatings based on the ZrSi2-MoSi2-ZrB2 system for protection of non-metallic composite materials in high-speed high-enthalpy gas flows
Miao et al. Oxidation behavior of SiBCN-Zr composites at 1500° C prepared by reactive spark plasma sintering
Ligon et al. Performance analysis of Na-β ″-Al2O3/YSZ solid electrolytes produced by conventional sintering and by vapor conversion of α-Al2O3/YSZ
CN106116586A (zh) 一种钼合金MoSi2‑ZrO2‑Y2O3涂层及其制备方法和应用
Ma et al. Ablation performance of C/C-ZrC-SiC composites with in-situ YSi2-doped ZrC-SiC-ZrSi2 coating under oxyacetylene torch
CN104556149B (zh) 一种Zr2CN的合成方法
Fan et al. Static water vapor corrosion behavior of MoSi2/Mullite composite coating on Nb based alloy at 1500° C
Niazmand et al. Effect of dip coating parameters on microstructure and thickness of 8YSZ electrolyte coated on NiO-YSZ by sol-gel process for SOFCs applications
Liu et al. Hot corrosion of V2O5-coated NdMgAl11O19 ceramic in air at 950° C
Noor-A-Alam et al. Effect of composition on the growth and microstructure of hafnia–zirconia based coatings
Sawka Metal-organic chemical vapour deposition of lanthana-doped ceria layers at low temperatures
CN104988448A (zh) 一种Al-Ti-C体系反应粉芯丝材的制备方法
Ren et al. Al 2 O 3/YSZ Composite Coatings Prepared by a Novel Sol–Gel Process and Their High-Temperature Oxidation Resistance
Titov et al. Influence of WSi 2 content and additions of magnesium alumosilicates on oxidation and strength properties of MoSi 2-WSi 2 composites
Zhang et al. Preparation and moderate temperature oxidation behavior of Ti-and Al-doped NbSi2-Si3N4 composite coatings on Nb alloy
Miao et al. A novel in situ synthesis of SiBCN-Zr composites prepared by a sol–gel process and spark plasma sintering
CN106673047B (zh) 一种制备过渡金属一氧化物粉体、靶材和薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 063009 Hebei province Tangshan City Xinhua West Road No. 46 Hebei United University College of materials

Applicant after: North China Polytechnics

Address before: 063009 Hebei province Tangshan City Xinhua West Road No. 46 Hebei United University College of materials

Applicant before: Hebei United University

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170728

Termination date: 20181022