CN104538484B - 一种波长扩展型InGaAs雪崩光电二极管的外延结构 - Google Patents

一种波长扩展型InGaAs雪崩光电二极管的外延结构 Download PDF

Info

Publication number
CN104538484B
CN104538484B CN201410729324.9A CN201410729324A CN104538484B CN 104538484 B CN104538484 B CN 104538484B CN 201410729324 A CN201410729324 A CN 201410729324A CN 104538484 B CN104538484 B CN 104538484B
Authority
CN
China
Prior art keywords
type
epitaxial structure
layer
alternation
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410729324.9A
Other languages
English (en)
Other versions
CN104538484A (zh
Inventor
马英杰
张永刚
顾溢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
String sea (Shanghai) Quantum Technology Co., Ltd.
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201410729324.9A priority Critical patent/CN104538484B/zh
Publication of CN104538484A publication Critical patent/CN104538484A/zh
Application granted granted Critical
Publication of CN104538484B publication Critical patent/CN104538484B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种波长扩展型InGaAs雪崩光电二极管的外延结构,所述外延结构采用与衬底晶格匹配的P‑型In0.52Al0.48As材料作为电子倍增层,失配的P‑型InxGa1‑xAs材料作为光吸收层,且采用能带递变和组分递变双过渡层;其中,0.53<x<1。本发明的器件结构可以在不牺牲倍增区材料质量的情况下,根据需要自由地将雪崩光电二极管的探测截止波长延伸到1.7‑3.5μm之间。该器件结构适合于探测1‑3.5μm波段的红外弱光信号,可以被广泛应用于如气体含量检测、医疗光谱检测、自由空间光通讯、卫星遥感与成像、导弹发动机尾焰探测等领域。

Description

一种波长扩展型InGaAs雪崩光电二极管的外延结构
技术领域
本发明属于半导体光电子材料与信息器件领域,特别涉及一种波长扩展型InGaAs雪崩光电二极管的外延结构。
背景技术
短波红外1-3.5μm波段的红外光探测在商业和军事领域都有十分广泛的应用,如气体含量检测、医疗光谱检测、自由空间光通讯、卫星遥感与成像、导弹发动机尾焰探测等。而该波段的光探测,通常都会面临光强度弱的问题,因而需要探测系统对光电信号进行放大。此外这些应用还要求探测器具有高灵敏度、快的响应速度,室温或者接近室温工作特性,良好的像元均一性和高的探测材料产量。目前1-3μm波段的PIN型光电检测器主要有InAs、InSb、HgCdTe、波长扩展的InGaAs等半导体光电管型探测器和PbS、PbSe等光导型探测器。但是由于这些材料的禁带宽度较小,通常工作时都需要进行制冷,以降低器件的暗电流。
雪崩光电二极管(Avalanche Photodiode,APD)是一类具有内部信号增益的高灵敏度半导体光电检测器。与普通的PIN型光电管、光电导型和热释电型等探测器相比,其最突出的优势在于对弱光信号的探测,可以提供高约5-10dB的探测灵敏度。APD被广泛用于各种商业、国防和研究领域。通过工作在Geiger模式,某些APD甚至可以实现对单个光子的高灵敏探测。
显然,对于光强较弱的红外光探测使用APD更具有吸引力。红外波段APD目前研究比较成熟的仅有HgCdTe。可以实现2-25μm波长范围的红外光探测。但是该材料的生长较为困难、大面积均匀性较低,因此存在一定限制。InP晶格匹配的InGaAs材料也是一种性能优良的直接带隙半导体材料,其制备方法稳定,光吸收系数大,器件工艺成熟。1-1.7μm InP/InGaAs探测器在光纤通讯和航空航天探测领域都已经获得了广泛应用,其室温探测率高达1012cm·Hz1/2/W。通过提高In组分可以减小InGaAs的禁带宽度,使其截止波长从1.7μm扩展到2-3μm。然而,这种扩展是以材料的晶格失配、更多的结晶缺陷和更大的暗电流为代价的。目前针对波长扩展InGaAs APD的研究报道还很少。这主要是由于在与InP晶格失配的情况下,InGaAs吸收层中缺陷密度会大大增加,进而使得暗电流也显著增加。在APD的大电场条件下,小信号下将出现暗电流大于光电流的情况,进而使得信号无法探测。研究高灵敏度的波长扩展型InGaAs APD,十分具有挑战,但同时在实际应用方面也十分具有吸引力。
发明内容
本发明所要解决的技术问题是提供一种波长扩展型InGaAs雪崩光电二极管的外延结构,该外延结构使APD器件对光响应的截止波长扩展至1.7-3.5μm之间。
本发明的一种波长扩展型InGaAs雪崩光电二极管的外延结构,所述外延结构采用与衬底晶格匹配的P型In0.52Al0.48As材料作为电子倍增层,失配的P型InxGa1-xAs材料作为光吸收层,且采用能带递变和组分递变双过渡层;其中,0.53<x<1。
所述能带递变过渡层为P型In0.52AlxGa0.47-xAs,x从0.48递减至0。
所述组分递变过渡层为P型InxGa1-xAs,x从0.53递增至y,0.53<y<1。
在电子倍增层与能带递变过渡层之间还包括电场控制层。
所述电场控制层为重掺杂P型In0.52Al0.48As。
所述InGaAs雪崩光电二极管对应截止波长在1.7-3.5μm范围内可调。
(1)器件的设计思路
目前市场上商用的1.55μm波长响应的In0.53Ga0.47As/In0.52Al0.48As APD成熟结构通常是在InP衬底上采用In0.52Al0.48As作为倍增层材料,In0.53Ga0.47As作为吸收层材料,吸收层倍增层分离,并且两层之间插入InAlxGa1-xAs(x从0.52递减至0)作为能带递变层。(参考中国发明专利:CN103107231A(公开号),英文期刊:Applied Physics Letters Vol.82,No.13,pp2175-2177,2013等)部分器件在倍增层和能带递变层之间插入一个重掺杂的薄层In0.52Al0.48As作为电场控制层以降低器件暗电流。由于材料的电子碰撞离化系数大于空穴,因此通常采用电子倍增结构,即采用N+P-P+结构,其中倍增层和吸收层的掺杂类型均为P-。采用这种吸收层倍增层分离的器件结构是为了实现倍增区存在高电场和高增益系数的同时,保持吸收层处于低电场,进而降低器件的暗电流。而采用能带过渡层的目的则是降低吸收层和倍增层之间因能带突变产生的导带带阶对电子运动的阻挡。采用InP、In0.53Ga0.47As和In0.52Al0.48As材料的原因是因为这些材料质量高,且均为晶格匹配体系,外延生长工艺成熟,便于以较低的成本进行大批量生产。由于的In0.53Ga0.47As室温禁带宽度为~0.74eV,因此基于In0.53Ga0.47As吸收层的APD的光谱响应峰值波长一般在1.5μm左右,而截至波长一般在1.7μm。
欲将APD器件对光响应的截止波长扩展至大于1.7μm,首先要求吸收层材料的有效禁带宽度小于0.74eV。仅考虑材料本身,可供选择的材料有含Sb化合物,如GaSb,InGaSb等,和富In化合物,如InxGa1-xAs其中0.53<x<1。然而考虑到与倍增层材料匹配度,外延生长的材料质量和产量等因素,InxGa1-xAs其中0.53<x<1较含Sb化合物更具有优势。而倍增层仍然可以采用In0.52Al0.48As材料以保持耐高电场、低暗电流和高增益系数的优势。由于吸收层采用富In组分的InxGa1-xAs,与衬底InP和倍增层In0.52Al0.48As均存在晶格失配,且In组分越高失配度越大。采用直接异变生长将大大降低InxGa1-xAs层的材料质量,因此需要引入一个晶格递变层作为缓冲过渡层。同时由于富In组分的InxGa1-xAs的禁带更小,与倍增层In0.52Al0.48As的导带带阶增加,因此需要同时使用能带递变层作为过渡。材料禁带越小,耐压值越低,价带导带之间的隧道暗电流越大,因此对于富In组分的InxGa1-xAs吸收层而言,更需要严格控制吸收层内的电场大小,保证吸收层处于低电场下,以减小器件暗电流。因此还需要在吸收层和倍增层之间使用电场控制层来控制大偏压下的电场分布。
(2)器件的材料结构
基于以上设计思路,在InP/InAlAs/InGaAs材料体系内,给出一种包含匹配In0.52Al0.48As倍增层、失配InxGa1-xAs(0.53<x<1)吸收层、能带递变和组分递变的双过渡层和电场控制层的雪崩光电二极管器件的外延结构。器件采用采用N+P-P+结构,其中吸收层、倍增层、递变层均为P-型掺杂,而电场控制层为P+掺杂。器件材料结构如附图1所示。根据吸收层x值的不同,器件的光响应截止波长可以自由的在1.7到3.5μm范围内调节。
具体而言,衬底采用半绝缘或者N型导电(n>2×1018cm-3)InP(001)衬底。在衬底上外延InP或者In0.52Al0.48As缓冲层,其同时也作为N型接触层,掺杂类型为N型重掺杂,浓度n>2×1018cm-3。在缓冲层上外延In0.52Al0.48As电子倍增层,其掺杂类型为P型轻掺杂,浓度p<8×1016cm-3。在倍增层上外延In0.52Al0.48As电场控制层,其掺杂类型为P型重掺杂,要求掺杂面载流子浓度p>4×1012cm-3。在电场控制层上外延In0.52AlxGa0.48-xAs,能带递变层,x从0.48递减至0。在能带递变层上外延InyGa1-yAs组分递变层,y从0.53递增至z,0.53<z<1。在组分递变层上外延InzGa1-zAs光吸收层。能带递变层、组分递变层和光吸收层三层的掺杂类型均为P型轻掺杂,浓度相同且均为p<8×1016cm-3。在光吸收层上外延InzAl1-zAs电子阻挡层其,其掺杂类型为P型重掺杂,浓度p>2×1018cm-3。在电子阻挡层上外延InzGa1-zAs P型接触层,其掺杂类型为P型重掺杂,浓度p>2×1018cm-3
有益效果
(1)本发明采用倍增层匹配,吸收层失配的材料配置:即倍增层材料为与衬底晶格匹配的P-型In0.52Al0.48As,而吸收层材料为富In的P-型InxGa1-xAs(其中0.53<x<1);
(2)倍增层In0.52Al0.48As材料的耐压高,电子碰撞离化系数比大,额外噪声低,增益高。
(3)本发明在倍增层、吸收层之间依次采用能带递变和组分递变的双过渡层结构。
(4)根据应用需要,探测器的光响应截止波长可以通过改变吸收层材料InxGa1-xAs的In组分来进行自由调控:0.53<x<1,对应截止波长在1.7-3.5μm范围内。
(5)另外,本发明所涉及的InGaAs/InAlAs/InP等材料的外延生长工艺已经十分成熟,所获得的材料质量高、产量高,有利于提高器件可靠性。同时,高产量和大片材料均匀性也有利于开展焦平面阵列成像应用。
附图说明
图1为本发明的材料外延结构图;
图2为实施例1的材料外延结构图;
图3为实施例1的电场分布和能带模拟图;
图4为实施例2的材料外延结构图;
图5为实施例2的电场分布和能带模拟图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
截止波长为2.0μm的波长扩展型InGaAs/InAlAs雪崩光电二极管的器件材料结构生长
本实施例目的是获得光响应截止波长为2.0μm的波长扩展型InGaAs/InAlAs雪崩光电二极管的器件材料结构。需要生长光吸收层为In0.7Ga0.3As的雪崩光电二极管外延材料,采用吸收层和倍增层分离、能带组分双过渡层和电场控制层结构。具体的器件的材料结构如附图2所示。其结构由下至上依次包含以下材料:
材料1:导电InP(001)衬底。
材料2:N型InP接触层(同时作为缓冲层)。
材料3:In0.52Al0.48As电子倍增层。
材料4:In0.52Al0.48As电场控制层。
材料5:In0.52AlxGa0.48-xAs能带递变层。
材料6:InyGa1-yAs组分递变层。
材料7:In0.7Ga0.3As光吸收层。
材料8:In0.69Al0.31As电子扩散阻挡层。
材料9:P型In0.7Ga0.3As接触层。
其中,x值从0.47递减至0;y值从0.53递增至0.7。
其中材料1的掺杂类型为N+,掺杂浓度~4×1018cm-3,厚度为350μm。
其中材料2的掺杂类型为N+,掺杂浓度为~4×1018cm-3,厚度为800nm。
其中材料3的掺杂类型为P-,掺杂浓度为~1×1015cm-3,厚度为800nm。
其中材料4的掺杂类型为P+,掺杂浓度为~6×1017cm-3,厚度为70nm。
其中材料5的掺杂类型为P-,掺杂浓度为~1×1015cm-3,厚度为72nm。
其中材料6的掺杂类型为P-,掺杂浓度为~1×1015cm-3,厚度为300nm。
其中材料7的掺杂类型为P-,掺杂浓度为~1×1015cm-3,厚度为1500nm。
其中材料8的掺杂类型为P+,掺杂浓度为~3×1018cm-3,厚度为450nm。
其中材料9的掺杂类型为P+,掺杂浓度为~3×1018cm-3,厚度为50nm。
材料制备通过常规分子束外延方法实现。分别以Si和Be元素作为N型和P型掺杂源。
器件材料的分子束外延生长过程如下:
(1)在正式生长之前先通过预备生长确定在InP衬底上生长晶格匹配的In0.52Al0.48As、In0.52AlxGa0.48-xAs,In0.7Ga0.3As和In0.69Al0.31As时的束源炉温度、衬底温度等生长条件;
(2)在对Epi-Ready InP(001)衬底进行氧化物脱附处理后,依次生长材料2至材料9,其中每层的厚度、掺杂浓度均如上所述。其中72nm的In0.52AlxGa0.48-xAs能带递变层是由In0.53Ga0.47As/In0.52Al0.48As厚度数字递变超晶格过渡层组成,每个周期厚度9nm,每周期中In0.53Ga0.47As与In0.52Al0.48As层厚的比值依次为8:1、7:2……2:7、1:8;
(3)材料9生长完毕后结束生长,在保护气氛下降衬底温度和源炉温度,取出外延材料进行必要的测试和器件工艺制作。
所获得的器件在外加-16V反向偏压下倍增层、电场控制层、能带递变层、组分递变层和吸收层中的能带结构和电场分布图如图3所示。
实施例2
截止波长为2.5μm的波长扩展型InGaAs/InAlAs雪崩光电二极管的器件材料结构生长
本实施例目的是获得光响应截止波长为2.5μm的波长扩展型InGaAs/InAlAs雪崩光电二极管的器件材料结构。需要生长光吸收层为In0.83Ga0.17As的雪崩光电二极管外延材料,采用吸收层和倍增层分离、能带组分双过渡层和电场控制层结构。具体的器件的材料结构如附图4所示。其结构由下至上依次包含以下材料:
材料1:导电InP(001)衬底。
材料2:N型InP接触层(同时作为缓冲层)。
材料3:In0.52Al0.48As电子倍增层。
材料4:In0.52Al0.48As电场控制层。
材料5:In0.52AlxGa0.48-xAs能带递变层。
材料6:InyGa1-yAs组分递变层。
材料7:In0.83Ga0.17As光吸收层。
材料8:In0.82Al0.18As电子扩散阻挡层。
材料9:P型In0.83Ga0.17As接触层。
其中,x值从0.47递减至0;y值从0.53递增至0.83。
其中材料1的掺杂类型为N+,掺杂浓度~4×1018cm-3,厚度为350μm。
其中材料2的掺杂类型为N+,掺杂浓度为~4×1018cm-3,厚度为800nm。
其中材料3的掺杂类型为P-,掺杂浓度为~6×1016cm-3,厚度为200nm。
其中材料4的掺杂类型为P+,掺杂浓度为~6×1017cm-3,厚度为70nm。
其中材料5的掺杂类型为P-,掺杂浓度为~6×1016cm-3,厚度为72nm。
其中材料6的掺杂类型为P-,掺杂浓度为~6×1016cm-3,厚度为500nm。
其中材料7的掺杂类型为P-,掺杂浓度为~6×1016cm-3,厚度为1000nm。
其中材料8的掺杂类型为P+,掺杂浓度为~3×1018cm-3,厚度为450nm。
其中材料9的掺杂类型为P+,掺杂浓度为~3×1018cm-3,厚度为150nm。
材料制备通过常规分子束外延方法实现。分别以Si和Be元素作为N型和P型掺杂源。
器件材料的分子束外延生长过程如下:
(4)在正式生长之前先通过预备生长确定在InP衬底上生长晶格匹配的In0.52Al0.48As、In0.52AlxGa0.48-xAs,In0.83Ga0.17As和In0.82Al0.18As时的束源炉温度、衬底温度等生长条件;
(5)在对Epi-Ready InP(001)衬底进行氧化物脱附处理后,依次生长材料2至材料9,其中每层的厚度、掺杂浓度均如上所述。其中72nm的In0.52AlxGa0.48-xAs能带递变层是由In0.53Ga0.47As/In0.52Al0.48As厚度数字递变超晶格过渡层组成,每个周期厚度9nm,每周期中In0.53Ga0.47As与In0.52Al0.48As层厚的比值依次为8:1、7:2……2:7、1:8;
(6)材料9生长完毕后结束生长,在保护气氛下降衬底温度和源炉温度,取出外延材料进行必要的测试和器件工艺制作。
所获得的器件在外加-16V反向偏压下倍增层、电场控制层、能带递变层、组分递变层和吸收层中的能带结构和电场分布图如图5所示。

Claims (4)

1.一种波长扩展型InGaAs雪崩光电二极管的外延结构,其特征在于:所述外延结构采用与衬底晶格匹配的P型In0.52Al0.48As材料作为电子倍增层,失配的P型InxGa1-xAs材料作为光吸收层,其中,0.53<x<1,且采用能带递变和组分递变双过渡层;所述能带递变过渡层为P型In0.52AlxGa0.48-xAs,x从0.48递减至0;所述组分递变过渡层为P型InyGa1-yAs,y从0.53递增至z,0.53<z<1。
2.根据权利要求1所述的一种波长扩展型InGaAs雪崩光电二极管的外延结构,其特征在于:在电子倍增层与能带递变过渡层之间还包括电场控制层。
3.根据权利要求2所述的一种波长扩展型InGaAs雪崩光电二极管的外延结构,其特征在于:所述电场控制层为重掺杂P型In0.52Al0.48As。
4.根据权利要求1所述的一种波长扩展型InGaAs雪崩光电二极管的外延结构,其特征在于:所述InGaAs雪崩光电二极管的截止波长在1.7-3.5μm范围内可调。
CN201410729324.9A 2014-12-04 2014-12-04 一种波长扩展型InGaAs雪崩光电二极管的外延结构 Expired - Fee Related CN104538484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410729324.9A CN104538484B (zh) 2014-12-04 2014-12-04 一种波长扩展型InGaAs雪崩光电二极管的外延结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410729324.9A CN104538484B (zh) 2014-12-04 2014-12-04 一种波长扩展型InGaAs雪崩光电二极管的外延结构

Publications (2)

Publication Number Publication Date
CN104538484A CN104538484A (zh) 2015-04-22
CN104538484B true CN104538484B (zh) 2017-05-24

Family

ID=52853983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410729324.9A Expired - Fee Related CN104538484B (zh) 2014-12-04 2014-12-04 一种波长扩展型InGaAs雪崩光电二极管的外延结构

Country Status (1)

Country Link
CN (1) CN104538484B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170847A (zh) * 2017-05-16 2017-09-15 中国科学院半导体研究所 基于AlInAsSb体材料作倍增区的雪崩光电二极管及其制备方法
CN108982449A (zh) * 2018-07-23 2018-12-11 浙江大学 基于短波红外apd的共聚焦扫描显微成像系统
CN110911519A (zh) * 2019-11-11 2020-03-24 中国科学院上海技术物理研究所 一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法
CN114122191A (zh) * 2021-10-15 2022-03-01 北京英孚瑞半导体科技有限公司 一种雪崩光电探测器的制备方法
CN115249755B (zh) * 2022-09-21 2022-11-25 北京英孚瑞半导体科技有限公司 一种雪崩光电探测器的制备方法
JP7433540B1 (ja) 2023-02-06 2024-02-19 三菱電機株式会社 アバランシェフォトダイオード

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492670C (zh) * 2007-06-08 2009-05-27 中国科学院上海微系统与信息技术研究所 波长扩展InGaAs探测器及阵列宽带缓冲层和窗口层及制作方法
CN102157599B (zh) * 2010-09-25 2013-03-13 中国科学院上海微系统与信息技术研究所 用于雪崩光电二极管的能带递变倍增区结构及其制备方法

Also Published As

Publication number Publication date
CN104538484A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN104538484B (zh) 一种波长扩展型InGaAs雪崩光电二极管的外延结构
Arslan et al. Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations
Decoster et al. Optoelectronic sensors
CN105742397B (zh) 一种可见光到红外光探测的宽波段光电二极管
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
Dehzangi et al. Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
Dehzangi et al. Impact of scaling base thickness on the performance of heterojunction phototransistors
US9748430B2 (en) Staircase avalanche photodiode with a staircase multiplication region composed of an AIInAsSb alloy
Arslan et al. \(640\times 512\) Extended Short Wavelength Infrared In 0.83 Ga 0.17 As Focal Plane Array
Kalinowski et al. Recent advances in manufacturing of miniaturized uncooled IR detection modules
CN106206832B9 (zh) 一种单极阻挡结构窄带通紫外探测器
CN102593234B (zh) 一种基于异质结构的吸收、倍增层分离的紫外雪崩光电探测器
Brunkov et al. Cooled P-InAsSbP/n-InAs/N-InAsSbP double heterostructure photodiodes
Liu et al. High Temperature Behaviors of 1–2.5 μm Extended Wavelength In₀. ₈₃Ga₀. ₁₇As Photodetectors on InP Substrate
CN107240616B (zh) 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
Ban et al. Midinfrared optical upconverter
Li et al. Optimum design of the charge layer for avalanche photodiodes
Xie et al. Performance study of short-wave infrared photodetectors based on InAs/GaSb/AlSb superlattice
Bansal et al. Photodetectors for security application
Hwang et al. Base-width modulation effects on the optoelectronic characteristics of n-ITO/p-NiO/n-ZnO heterojunction bipolar phototransistors
Bandara et al. Heterojunction-based GaSb/InAs strained-layer superlattice long wavelength infrared detectors
Suo et al. Dark Current Analysis of InAsSb-Based Hetero-$ p {\text {-}} i {\text {-}} n $ Mid-Infrared Photodiode
CN103077995B (zh) 利用电子阻挡层降低暗电流的InGaAs探测器及制备
Kumar et al. Mid-Infrared Photodetectors-based on Lattice Matched SiGeSn/GeSn Heterojunction Bipolar Transistor with an i-GeSn Absorber Layer

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180130

Address after: 200070 room 701A-18, No. 912, Jingan District republic new road, Shanghai

Patentee after: String sea (Shanghai) Quantum Technology Co., Ltd.

Address before: 200050 Shanghai Road, Changning, building 505, room 5, building 865, room

Patentee before: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170524

Termination date: 20201204