CN110911519A - 一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法 - Google Patents

一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法 Download PDF

Info

Publication number
CN110911519A
CN110911519A CN201911093481.4A CN201911093481A CN110911519A CN 110911519 A CN110911519 A CN 110911519A CN 201911093481 A CN201911093481 A CN 201911093481A CN 110911519 A CN110911519 A CN 110911519A
Authority
CN
China
Prior art keywords
layer
avalanche
dark current
doping concentration
energy band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911093481.4A
Other languages
English (en)
Inventor
王芳
何家乐
胡伟达
王鹏
陈效双
陆卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201911093481.4A priority Critical patent/CN110911519A/zh
Publication of CN110911519A publication Critical patent/CN110911519A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法。该方法在雪崩探测器上耦合非对称能带结构的势垒阻挡型设计,可以有效降低吸收区的载流子浓度而抑制俄歇复合,在300K下对暗电流有1~2个数量级的降低;同时通过对器件的结构参数进行优化,可以获得保持雪崩特性的同时,大幅抑制雪崩反偏电压下的暗电流。本发明的优点在于,该非对称能带结构利用势垒阻止电子导电,可有效抑制高温碲镉汞红外雪崩光电探测器的暗电流;同时可以通过数值方法对关键结构参数进行优化,从而提高了产品的可靠性和性能,并大幅减少开发费用。本发明对于改善碲镉汞红外雪崩探测器性能和提升工作温度都有着十分重要的意义。

Description

一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法
技术领域
本发明涉及半导体红外光探测器件性能的设计和测量,具体是指一种在碲镉汞雪崩探测器中应用势垒阻挡型非对称能带设计低暗电流的结构设计和优化方法。
背景技术
碲镉汞(HgCdTe)是HgTe和CdTe混合而成的赝二元系统,其禁带宽度随Cd组分值x变化可以在-0.3~1.6eV连续变化,响应波段可以覆盖整个红外波段;作为直接带隙半导体,HgCdTe对红外光的探测是本征激发,具有较高的量子效率和吸收系数;这使得HgCdTe成为制备红外探测器的重要材料,在军事侦察和航天遥感等领域都体现了重要的国家战略需求和应用价值。
雪崩探测器(APD)是一种采用内增益的器件,在反向偏压下形成很高的内建电场,对光生载流子加速使其获得足够高的能量,与晶格相碰撞而产生更多的电子-空穴对,新产生的电子-空穴对又将被电场加速获得能量重复碰撞电离过程,从而产生雪崩效应放大光生信号。理想的APD需要电子和空穴碰撞电离系数差异很大的材料,否则在获得较高增益的同时,也会形成较大的过剩噪声和较低的响应速率。由于HgCdTe材料的空穴与电子的碰撞电离系数差异大,适用于制备高性能的APD器件。HgCdTe-APD以其高增益带宽积、高信噪比和适于线性工作进行成像等优点可以实现高速、弱信号甚至单光子探测,在光纤通信、三维激光雷达、天文观测以及大气探测等方面具有广泛应用。
HgCdTe-APD已经展现了非常优秀的应用前景,然而由于高温下受限于与温度密切相关的俄歇复合相关暗电流,因此HgCdTe-APD的工作温度始终无法突破液氮温度的限制。
为了解决上述碲镉汞雪崩光电探测器遇到的问题,本发明提出了一种在碲镉汞雪崩探测器中应用势垒阻挡型非对称能带设计低暗电流的结构设计和优化方法。利用势垒阻挡型结构对载流子的阻挡效果,将其耦合到碲镉汞APD中,可以显著降低碲镉汞APD在高工作温度下的暗电流。同时通过数值仿真对重要结构参数进行优化,可以获得该探测器最佳性能对应的几何结构设计。
发明内容
本发明提供了一种势垒阻挡型碲镉汞雪崩光电探测器非对称能带结构设计及其优化方法,该结构设计通过增加势垒阻挡层降低碲镉汞雪崩探测器的暗电流从而改善器件性能和提高工作温度;其优化方法通过模拟得到该结构的暗电流随结构关键参数的变化,从而获得最佳的结构参数值。其特征如下:
通过高镉组分的HgCdTe结构形成宽带隙的势垒层,通过合理的结构设计使势垒层与电极层之间的能带不匹配形成的势垒大部分落在导带上以阻止电子向吸收区的补充,抑制吸收层的载流子浓度以削弱俄歇复合从而降低暗电流;同时对吸收层及雪崩层的结构参数进行数值模拟,以优化其结构参数。
本发明提供了一种势垒阻挡型碲镉汞雪崩光电探测器非对称能带结构设计,该结构设计特征为:
p型电极层为掺杂1018cm-3,厚度3微米,Cd组分0.33。过渡层1为掺杂1018cm-3,厚度0.05微米,Cd组分由0.33渐变至0.57;势垒层为掺杂1018cm-3,厚度0.1微米,Cd组分0.57;过渡层2为掺杂1018cm-3,厚度0.2微米,Cd组分由0.57渐变至0.23;吸收层为掺杂在1014cm-3和1018cm-3之间,厚度7微米,Cd组分0.23;雪崩层为掺杂在1014cm-3和1018cm-3之间,厚度1微米,Cd组分0.23;n型电极层为掺杂1018cm-3,厚度3微米,Cd组分0.23。同时p型电极层和n型电极层分别安装电极。
本发明提供了势垒阻挡型非对称能带设计碲镉汞雪崩光电探测器的仿真优化方法,该方法特征为:
1)使用模拟软件构建势垒阻挡型非对称能带设计碲镉汞雪崩光电探测器结构模型,其结构如上述结构特征所述;本数值模拟中应用漂移扩散模型和有限元数值方法进行电学模拟。模拟中所用到的主要产生复合模型包括SRH复合、俄歇复合、辐射复合,带间直接隧穿及陷阱辅助带间隧穿。漂移扩散模型的基本方程是泊松方程、电子与空穴分别对应的稳态连续性方程及电流密度方程;通过有限元方法对解析区域离散化,获得上述方程的解析式,进行联立迭代求解。固定模拟环境温度为300K,模拟势垒阻挡型雪崩光电探测器暗电流;
2)构建普通结构碲镉汞雪崩光电探测器模型,吸收层掺杂为1016cm-3,厚度7微米,镉组分0.23;雪崩层掺杂为1016cm-3,厚度1微米,镉组分0.23;n型电极层为掺杂1018cm-3,厚度3微米,镉组分0.23。对其重复步骤1),将其暗电流与势垒阻挡型碲镉汞雪崩光电探测器暗电流相对照以验证后者对暗电流的抑制作用;
3)在步骤2)的基础上,改变吸收层掺杂浓度1014cm-3~1018cm-3,由模拟得到暗电流随吸收层掺杂浓度变化的曲线,发现随着吸收层掺杂浓度的上升暗电流增加,但是吸收层掺杂浓度低于1016cm-3时雪崩现象消失。改变雪崩层掺杂浓度1014cm-3~1018cm-3,由模拟得到暗电流随雪崩层掺杂浓度变化的曲线,发现随着雪崩层掺杂浓度的上升暗电流增加,但是雪崩层掺杂浓度低于1015cm-3后暗电流随掺杂的降低基本趋于稳定。
本发明的优点是:通过在APD中耦合势垒阻挡型非对称能带设计,可以有效降低吸收层的载流子浓度,显著降低碲镉汞APD在高工作温度下的暗电流;同时可以通过数值模拟和仿真研究不同结构参数下的暗电流特性,从而避开结构变化破坏器件原本的载流子雪崩特性,并优化器件结构参数以改善产品的可靠性和性能。
附图说明
图1为模拟的器件结构,图中1为p型电极层,2为过渡层I,3为势垒层,4为过渡层II,5为吸收层,6为雪崩层,7为n型电极层,8为电极。
图2为模拟的器件能带图。
图3为碲镉汞雪崩探测器和势垒阻挡型非对称能带设计碲镉汞雪崩探测器在300K下的暗电流对比。
图4为模拟的暗电流随吸收层掺杂浓度的变化曲线。
图5为模拟的暗电流随雪崩层掺杂浓度的变化曲线。
具体实施方式
下面结合附图对本发明的具体实施方式作详细说明:
本发明所设计的器件为二维pBp-APD势垒阻挡型碲镉汞雪崩探测器器件,p型电极层为掺杂1018cm-3,厚度3微米,Cd组分0.33。过渡层I为掺杂1018cm-3,厚度0.05微米,Cd组分由0.33渐变至0.57;势垒层为掺杂1018cm-3,厚度0.1微米,Cd组分0.57;过渡层II为掺杂1018cm-3,厚度0.2微米,Cd组分由0.57渐变至0.23;吸收层为掺杂在1014cm-3和1018cm-3之间,厚度7微米,Cd组分0.23;雪崩层为掺杂在1014cm-3和1018cm-3之间,厚度1微米,Cd组分0.23;n型电极层为掺杂1018cm-3,厚度3微米,Cd组分0.23。同时p型电极层和n型电极层分别安装电极,环境温度为300K。
作为对照测试的碲镉汞APD结构,吸收层掺杂为1016cm-3,厚度7微米,Cd组分0.23;雪崩层掺杂为1016cm-3,厚度1微米,Cd组分0.23;n型电极层为掺杂1018cm-3,厚度3微米,Cd组分0.23。
势垒层的镉组分较高,会形成一个宽带隙的势垒层。通过调节结构参数可以使势垒层与p型电极层之间的能带不匹配形成的势垒大部分落在导带上,这可以阻挡p型电极层中电子向吸收层的补充,而在器件工作偏压下,吸收层的电子会被雪崩层抽走,从而降低吸收层的电子浓度;同时在工作偏压下吸收层的空穴会被p型电极层抽走形成光电流,而由于n型电极层是重掺杂,其空穴浓度较低,对吸收层的空穴补充速度较慢,这将降低吸收层的空穴浓度。这样吸收层的载流子浓度会被显著降低,这将抑制其俄歇复合产生的暗电流。
在300K下对器件的p型电极层上的电极施加-7V的工作偏压,并将其暗电流与相同工作条件下的普通碲镉汞雪崩光电探测器的暗电流相对照,图2的结果显示势垒阻挡型非对称能带设计碲镉汞雪崩探测器可以显著降低器件的暗电流,而且雪崩现象也非常明显,说明器件的雪崩特性并没有被势垒阻挡结构的引入所破坏。
图3显示的不同吸收层掺杂浓度下的暗电流变化曲线,结果显示暗电流随吸收层浓度的上升而上升;然而当吸收层掺杂浓度低于1016cm-3时看不到雪崩,过低的吸收层掺杂可能会破坏器件的雪崩增益效果。图4显示的是不同雪崩层掺杂浓度下的暗电流变化曲线,结果显示雪崩层掺杂浓度的降低可以降低暗电流,但是在低于1015cm-3后暗电流趋于稳定。考虑到低掺杂对材料质量和器件制作工艺都有较高的要求,器件的结构设计上吸收区掺杂应控制在1016cm-3、雪崩区掺杂应控制在1015cm-3~1016cm-3范围。
结果说明本发明势垒阻挡型耦合非对称能带设计碲镉汞雪崩探测器结构可起到降低碲镉汞雪崩探测器暗电流的作用。

Claims (2)

1.一种势垒阻挡型非对称能带雪崩光电探测器,包括p型电极层(1),过渡层I(2)、势垒层(3)、过渡层II(4)、吸收层(5)、雪崩层(6),n型电极层(7)和金属电极(8),其特征在于:
所述的探测器结构自下而上依次为:p型电极层(1),过渡层I(2)、势垒层(3)、过渡层II(4)、吸收层(5)、雪崩层(6)和n型电极层(7),在p型电极层和n型电极层上有金属电极(8);其中:
所述的p型电极层(1)为重p型掺杂的HgCdTe,掺杂浓度1018cm-3,Cd组分0.33;
所述的过渡层I(2)为p型掺杂的HgCdTe,掺杂浓度1018cm-3,Cd组分由0.33渐变至0.57,厚度0.05微米;
所述的势垒层(3)为p型掺杂的HgCdTe,掺杂浓度1018cm-3,Cd组分0.57,厚度0.1微米;
所述的过渡层II(4)重p型掺杂的HgCdTe,掺杂浓度1018cm-3,Cd组分由0.57渐变至0.23,厚度0.2微米;
所述的吸收层(5)为p型掺杂的HgCdTe,掺杂浓度1016cm-3,Cd组分0.23,厚度7微米;
所述的雪崩层(6)为n型掺杂的HgCdTe,掺杂浓度1016cm-3,Cd组分0.23,厚度1微米;
所述的n型电极层(7)为n型掺杂的HgCdTe,掺杂浓度1018cm-3,Cd组分0.23,厚度3微米。
2.一种如权利要求1所述的势垒阻挡型非对称能带雪崩光电探测器的设计方法,其特征在于包括以下步骤:
1)使用Sentaurus-TCAD模拟软件构建势垒阻挡型非对称能带碲镉汞雪崩光电探测器,本数值模拟中应用题了漂移扩散模型和有限元数值方法进行电学模拟;模拟中所用到的主要产生复合模型包括SRH复合、俄歇复合、辐射复合,带间直接隧穿及陷阱辅助带间隧穿;漂移扩散模型的基本方程是泊松方程、电子与空穴分别对应的稳态连续性方程及电流密度方程;通过有限元方法对解析区域离散化,获得上述方程的解析式,进行联立迭代求解,随后调节物理参数,固定模拟环境温度,模拟势垒阻挡型非对称能带雪崩光电探测器暗电流;
2)构建PIN结构碲镉汞雪崩光电探测器模型,吸收层掺杂为1016cm-3,厚度7微米,镉组分0.23;雪崩层掺杂为1016cm-3,厚度1微米,镉组分0.23;n型电极层为掺杂1018cm-3,厚度3微米,镉组分0.23;对其重复步骤1),将其暗电流与势垒阻挡型非对称能带碲镉汞雪崩光电探测器暗电流相对照以验证后者对暗电流的抑制作用;
3)在步骤2)的基础上,改变吸收层掺杂浓度,由模拟得到暗电流随吸收层掺杂浓度变化的曲线;改变雪崩层掺杂浓度,由模拟得到暗电流随雪崩层掺杂浓度变化的曲线,得到器件在最低暗电流下的最佳结构参数。
CN201911093481.4A 2019-11-11 2019-11-11 一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法 Pending CN110911519A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911093481.4A CN110911519A (zh) 2019-11-11 2019-11-11 一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911093481.4A CN110911519A (zh) 2019-11-11 2019-11-11 一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法

Publications (1)

Publication Number Publication Date
CN110911519A true CN110911519A (zh) 2020-03-24

Family

ID=69817056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911093481.4A Pending CN110911519A (zh) 2019-11-11 2019-11-11 一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法

Country Status (1)

Country Link
CN (1) CN110911519A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299788A (zh) * 2021-05-21 2021-08-24 中国电子科技集团公司信息科学研究院 光伏型碲镉汞红外探测器及其制备方法
CN114420783A (zh) * 2022-02-10 2022-04-29 中国科学院上海技术物理研究所 一种基于双雪崩机制的台面型雪崩单光子探测器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN104465853A (zh) * 2014-12-24 2015-03-25 中国科学院半导体研究所 一种雪崩光电二极管及其制作方法
CN104538484A (zh) * 2014-12-04 2015-04-22 中国科学院上海微系统与信息技术研究所 一种波长扩展型InGaAs雪崩光电二极管的外延结构
US20150311375A1 (en) * 2013-05-24 2015-10-29 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150311375A1 (en) * 2013-05-24 2015-10-29 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector and method thereof
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN104538484A (zh) * 2014-12-04 2015-04-22 中国科学院上海微系统与信息技术研究所 一种波长扩展型InGaAs雪崩光电二极管的外延结构
CN104465853A (zh) * 2014-12-24 2015-03-25 中国科学院半导体研究所 一种雪崩光电二极管及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299788A (zh) * 2021-05-21 2021-08-24 中国电子科技集团公司信息科学研究院 光伏型碲镉汞红外探测器及其制备方法
CN114420783A (zh) * 2022-02-10 2022-04-29 中国科学院上海技术物理研究所 一种基于双雪崩机制的台面型雪崩单光子探测器

Similar Documents

Publication Publication Date Title
Böer Survey of semiconductor physics
Duenow et al. Single-crystal CdTe solar cells with Voc greater than 900 mV
CN102157599B (zh) 用于雪崩光电二极管的能带递变倍增区结构及其制备方法
Mebarkia et al. Energy efficiency of a photovoltaic cell based thin films CZTS by SCAPS
CN110911519A (zh) 一种势垒阻挡型非对称能带碲镉汞雪崩探测器及设计方法
Allwood et al. Power over fibre: Material properties of homojunction photovoltaic micro-cells
Becker et al. Monocrystalline 1.7-eV-bandgap MgCdTe solar cell with 11.2% efficiency
Abderrezek et al. Numerical modeling of GaAs solar cell performances
Connelly et al. Study of recombination mechanisms limiting the performance of Sb-based III-V type II superlattices for infrared detectors
Barnham et al. Recent Progress in QuantumWell Solar Cells
Noman et al. Effect of acceptor concentration on performance of CdTe solar cell from numerical analysis
Yagi et al. Evaluation of selective energy contact for hot carrier solar cells based on III–V semiconductors
Jose et al. A review on ZnO heterojunction photodetector for UV application
Idris et al. Size and grain-boundary effects on the performance of polycrystalline CIGS-based solar cells
Sivathanu et al. Modelling of CZTS/ZnS/AZO solar cell for efficiency enhancement
Ghosh et al. Multiple quantum barrier nano-avalanche photodiodes-Part I: Spectral Response
Fortes et al. Two-dimensional simulation study of textured pin a-Si: H solar cells with pa-SiC: H and p-nc-Si: H window layers
US11715809B2 (en) Space charge trap-assisted recombination suppressing layer for low-voltage diode operation
Shang et al. Effect of tunable dot charging on photoresponse spectra of GaAs pin diode with InAs quantum dots
Rai et al. Pushing limits of photovoltaics and photodetection using radial junction nanowire devices
US8513704B2 (en) Method for manufacturing a photodiode and corresponding photodiode and electromagnetic radiation detector
Darkwi et al. An Investigation of The JV Curve for N-AlGaAs/p-GaAs Heterojunction Solar Cell Due to Influence of Surface Recombination Velocity
ElKhamisy et al. The Effect of Temperature Variance with Different Surface Shapes on Efficiency of Silicon Thin Film Solar Cell
Imamzai et al. Numerical modeling and analysis of CdS/Cd 1− x Zn x Te solar cells as a function of CdZnTe doping, lifetime and thickness
Jozwikowski et al. Computer simulation of HgCdTe photovoltaic devices based on complex heterostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200324

RJ01 Rejection of invention patent application after publication