CN104535540A - 基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用 - Google Patents

基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用 Download PDF

Info

Publication number
CN104535540A
CN104535540A CN201510019084.8A CN201510019084A CN104535540A CN 104535540 A CN104535540 A CN 104535540A CN 201510019084 A CN201510019084 A CN 201510019084A CN 104535540 A CN104535540 A CN 104535540A
Authority
CN
China
Prior art keywords
surface plasma
nano fiber
micro
palladium nanometer
stub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510019084.8A
Other languages
English (en)
Other versions
CN104535540B (zh
Inventor
张丽
谷付星
吴国庆
曾和平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201510019084.8A priority Critical patent/CN104535540B/zh
Publication of CN104535540A publication Critical patent/CN104535540A/zh
Application granted granted Critical
Publication of CN104535540B publication Critical patent/CN104535540B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及氢气传感器技术领域,其目的是提供一种基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用。一种基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器,包括吸附有单晶钯纳米短棒的拉锥微纳光纤,利用超连续光源照射所述单晶钯纳米短棒,激发所述单晶钯纳米短棒中的表面等离子体信号并使表面等离子体信号在微纳光纤的回音壁腔内谐振增强后输出,形成传输光信号变化的光学气体传感器。本发明基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器具有低功耗,小型化,结构简单紧凑,价格低廉的特点,品质因素高且稳定;其制备方法经济可靠,使用方便;目前可以检测3.9%~17.6%的氢气。

Description

基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用
技术领域
本发明涉及氢气传感器技术领域,更具体的说,是涉及一种基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用。
背景技术
光纤传感和探测在科研、工业、环境、医疗、军事以及食品、卫生等很多方面得到了广泛的应用和发展。随着纳米技术的快速发展,以及人们对传感器和探测器的性能和应用要求的不断提高,减小尺寸、提高集成度、加快响应速度、提高灵敏度、降低样品需求量、拓宽应用极限等已经成为目前发展的重要方向。将光纤技术与当前快速发展的纳米技术结合起来,发展尺寸更小、性能和集成度更高的纳米光纤传感器和探测器,具有十分广阔的应用潜力和发展前景。
氢气是很重要的工业气体和特种气体,在石油化工、电子工业、冶金工业、精细有机合成及航空航天等方面有着广泛的应用。但氢气是一种极易燃的气体,在空气中的体积分数为4%至75%时都能燃烧。此外,氢气无色无味,有很高的燃烧热。因此对氢气的检测是非常重要的。但对检测装置有一定的要求, 如低成本,小尺寸,耐久性,可靠性等。和电学检测方法相比,光学检测方法高灵敏,快响应,抗电磁,很适合检测易燃易爆物质,并可使用强度、波长(光谱)、相位、偏振、荧光寿命等多种手段。由于纳米材料的尺寸小和体表面积比较大,它们对外界环境的变化有着很快的响应和很高的灵敏度,被广泛地应用在各种物理、化学和生物传感和探测领域。
金属钯是对氢气有着较高的溶解性,在一定的温度和氢压力差条件下,只让氢气透过的材料。 金属钯吸收的氢最多可达本身体积的2800倍,在温度为 300℃以上真空中,可把吸收的氢放出。钯与氢的这种反应是可逆的。除氢气及其同位素之外,其它任何气体均不能透过钯膜,故金属钯还对氢气有着较高选择性。金属钯常被作为敏感材料用于氢气的光学传感检测中,其检测手段主要通过测量其光学信号如强度相位等的变化来检测氢气。目前基于光学手段研究钯纳米材料与氢反应体系的结构和器件,典型的有基于钯纳米颗粒的光直接透射型,基于二氧化硅纳米线和半导体纳米线的光学倏逝波型,及钯纳米颗粒的表面等离子体共振型。
全固态的介质回音壁模式微腔支持非常稳定的高Q谐振模式, 并且具有尺寸小、制备方便的优点。随着现代微纳加工技术的发展,以及材料制备手段的进步, 回音壁模式已经在各种不同材料的微腔中实现,包括各种玻璃,聚合物,晶体和半导体等材料, 而腔的形状也是多种多样, 例如球形,盘形, 多边形柱形等。
表面等离体激元是存在于金属与介质界面上的一种电子极化和振荡现象。由于其能够将光场能量约束在远小于光波长的空间范围内和表面能量增强效应等特性,表面等离激元可在纳米尺度上实现光与物质相互作用。总的来说,目前典型的检测氢气的表面等离体激元传感器可分为两类:基于二维薄膜结构的传导表面等离子体激元型传感器和基于零维纳米颗粒结构的局域表面等离子体共振型传感器。而基于回音壁模式的纳米短棒结构的传导表面等离子体氢气传感器则没有报道过。
发明内容
本发明的目的是提供一种基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器。
本发明的另一目的是提供一种使用上述基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器的制备方法。
本发明的另一目的是提供一种使用上述基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器应用。
为实现上述目的,本发明通过以下技术方案实现的:
一种基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器,包括吸附有单晶钯纳米短棒的拉锥微纳光纤,利用超连续光源照射所述单晶钯纳米短棒,激发所述单晶钯纳米短棒中的表面等离子体信号并使表面等离子体信号在微纳光纤的回音壁腔内谐振增强后输出,形成传输光信号变化的光学气体传感器。
其中,所述拉锥微纳光纤的尖端直径为1.5~2.5微米;所述钯纳米短棒的长度为0.1~1微米,直径为20~300纳米;所述超连续光源的波长为400-800纳米。
一种基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器的制备方法,该方法是:用拉锥微纳光纤吸附单晶钯纳米短棒,再将所述拉锥微纳光纤固定在玻璃片上,然后用超连续光源照射所述拉锥微纳米光纤的单晶钯纳米短棒使单晶钯纳米短棒的局域等离子体在光纤形成的回音壁模式中加强,形成传输光信号变化的光学气体传感器。
更进一步地,该方法包括:
(1)利用气相-液相-固相法制备单根单晶钯纳米短棒;
(2)在显微镜下对步骤(1)中所制得的单晶钯纳米短棒进行转移微操作,把所述单晶钯纳米短棒放置在衬底上;
(3)用高温拉伸法拉制出尖端直径在1.5~2.5微米的拉锥微纳光纤;
(4)在光学显微镜下操纵步骤(3)中所制得的拉锥微纳光纤,将所述拉锥微纳光纤压在步骤(2)中的钯纳米短棒上,使所述钯纳米短棒通过静电吸力吸附在所述拉锥微纳光纤上;
(5)将所述拉锥微纳光纤翻转,使所述钯纳米短棒位于拉锥微纳光纤上侧,再移动所述拉锥微纳光纤并固定于两片玻璃片上使拉锥微纳光纤的吸附有钯纳米短棒部分悬空,然后将此结构放入一个密封容器里面;
(6)用普通光纤输出的超连续光源的白光沿着拉锥微纳光纤方向照射吸附在拉锥微纳光纤表面的单晶钯纳米短棒,激发单晶钯纳米棒中的表面等离子体信号并使表面等离子体信号在微纳光纤的回音壁腔内谐振增强后输出,以形成传输光信号变化的光学气体传感器。
其中,所述步骤(1)包括:
(1.1)在管式高温炉的石英管内,先将盛有钯粉的石英舟放置在管式高温炉中间的高温区,再将单晶蓝宝石片放置在管式高温炉的降温区,石英管两端密封;
(1.2)通氩气除去石英管中的氧气,氩气气流为200~900 ml/min,同时打开真空泵抽真空保持石英管内的压强为200~1000Pa;
(1.3)升温到1200~1300℃,钯蒸气在单晶蓝宝石片上生长出单晶钯纳短棒。
其中,所述步骤(6)中所述超连续光源的白光的照射方向与所述拉锥微纳光纤之间的夹角为30°~ 45°。
如上所述的基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器的应用,所述氢气传感器通过检测单晶钯纳米短棒的表面等离子体信号的波长变化来检测氢气。
其中所述表面等离子体信号的波长变化通过钯纳米短棒散射信号被探测器检测,可检测氢气的体积浓度范围是3.9%~17.6% 。
由于采用了上述技术方案,本发明具有的有益效果是:本发明的单根单晶钯纳米短棒的氢气传感器是一种回音壁谐振腔增强的表面等离子体传感器,具有低功耗,小型化,结构简单紧凑,价格低廉的特点,尤其使用的回音壁模式谐振腔体其品质因素高且稳定;其制备方法经济可靠,使用方便;目前可以检测体积浓度范围为3.9%~17.6%的氢气,其尖锐的脉冲波峰使其灵敏度比传统的氢气传感器1~2个数量级。
附图说明
图1是回音壁模式的单根单晶钯纳米短棒的氢气传感器的结构原理示意图。
图2是照射直径长度2.15微米拉锥微纳光纤上的钯纳米短棒的光谱图,单峰脉宽线宽3.2纳米。
图3是单个单晶钯纳米短棒在不同浓度氢气环境中光谱波峰的移动图。氢气浓度从左向右分别为0%,3.9%,9.8%和17.6%。
图4是两个脉冲波峰对应波长625纳米及672纳米随氢气浓度增加波长移动的示意图。
具体实施方式
下面结合实例附图来详细说明本发明提出的具体结构及使用情况,但本实施例不能用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
使用普通单模光纤高温拉伸法制备出尖端约2微米的拉锥微纳光纤4,利用气相-液相-固相法制备出一根直径80纳米长度1微米的单晶钯纳米短棒2。在显微镜下对制备好的单晶钯纳米短棒2进行转移微操作,把单晶钯纳米短棒2放置在玻璃衬底1上。在光学显微镜下操纵上述拉锥微纳光纤4,将拉锥微纳光纤4压在钯纳米短棒2上,使钯纳米短棒2通过静电吸力吸附在拉锥微纳光纤4上。翻转拉锥微纳光纤180º,使钯纳米短棒2位于拉锥微纳光纤4上侧,然后移动拉锥微纳光纤4,将其固定于两片玻璃片1和3上,使拉锥微纳光纤4的吸附有钯纳米短棒2部分悬空;然后将此结构放入一个密封容器里面。用普通光纤5输出的超连续光源的白光沿着拉锥微纳光纤4方向照射吸附在拉锥微纳光纤4表面的单晶钯纳米短棒2,照射光纤5与拉锥微纳光纤4之间的夹角约为30º,激发单晶钯纳米棒2中的表面等离子体信号并使表面等离子体信号在微纳光纤的回音壁腔内谐振增强后输出,以形成传输光信号变化的光学气体传感器。
具体制备方法如下:
(1)首先利用气相-液相-固相法制备法单根单晶钯纳米棒:在管式高温炉的石英管内,先将盛有钯粉的石英舟放置在管式高温炉中间的高温区,再将单晶蓝宝石片放置在管式高温炉的降温区;石英管两端密封;然后通氩气除去石英管中的氧气,氩气气流为200~900 ml/min;同时打开真空泵抽真空保持石英管内的压强为200~1000Pa;然后温度升到1200~1300℃,钯蒸气在单晶蓝宝石片上生长出单晶钯纳短棒。升温过程中,为了防止温度升高太快使高温炉损坏,可采用40℃/min的加热速度升温。
(2)然后在显微镜下对制备好的单晶钯纳米短棒进行转移微操作,把单晶钯纳米短棒放置在氟化镁衬底上。
(3)用高温拉伸法拉制出尖端直径在1.5~2.5微米的拉锥微纳光纤。
(4)在光学显微镜下操纵上述拉锥微纳光纤,将拉锥微纳光纤压在钯纳米短棒上,使钯纳米棒通过静电吸力吸附在拉锥微纳光纤上。
(5)翻转拉锥微纳光纤180º,使单晶钯纳米短棒位于拉锥微纳光纤表面上侧,然后移动微纳光纤,将其固定于衬底玻璃片上,使拉锥微纳光纤的吸附有钯纳米短棒部分悬空;然后将此结构放入一个密封容器里面。
(6)用普通光纤输出的超连续光源的白光沿着拉锥微纳光纤方向照射吸附在拉锥微纳光纤表面的单晶钯纳米短棒,照射光纤与拉锥微纳光纤之间的夹角在30º~45º范围内,激发单晶钯纳米棒中的表面等离子体信号并使表面等离子体信号在微纳光纤的回音壁腔内谐振增强后输出,以形成传输光信号变化的光学气体传感器。
图1是本发明的结构原理示意图;图2是该纳米短棒在超连续光激发下形成的尖锐脉冲波,半峰全宽仅为3.2纳米;图3是该纳米短棒在氢气浓度从0%−17.6%之间变化的光波长变化响应图,检测光波长为625 纳米及672纳米;图4是两个脉冲波峰对应波长625纳米及672纳米随氢气浓度增加波长移动的示意图。
当待检测的氢气分子接触单根单晶钯纳米短棒时,会渗透进单根单晶钯纳米短棒里面,引起单根单晶钯纳米短棒的折射率和吸收带的变化,进而影响通过纳米短棒的光的波长的改变。所以通过检测输出光波长就可以检测待检测的氢气浓度。可以看到当氢气浓度从0%开始增加时,光波长逐渐红移,向长波长移动。当增加氢气浓度从3.9%增加17.6%的过程中,波峰从624.6纳米移动到625.5纳米。尽管光谱波峰移动量不是很大,但因其半峰全宽很窄,只有3.2纳米,因此,只要波峰微量移动就很容易识别,灵密度很高。

Claims (10)

1.一种基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器,其特征在于,包括吸附有单晶钯纳米短棒的拉锥微纳光纤,利用超连续光源照射所述单晶钯纳米短棒,激发所述单晶钯纳米短棒中的表面等离子体信号并使表面等离子体信号在微纳光纤的回音壁腔内谐振增强后输出,形成传输光信号变化的光学气体传感器。
2.如权利要求1所述的氢气传感器,其特征在于:所述拉锥微纳光纤的尖端直径为1.5~2.5微米。
3.如权利要求1所述的氢气传感器,其特征在于:所述钯纳米短棒的长度为0.1~1微米,直径为20~300纳米。
4.如权利要求1所述的氢气传感器,其特征在于:所述超连续光源的波长为400-800纳米。
5.一种如权利要求1所述的氢气传感器的制备方法,其特征在于,该方法是:用拉锥微纳光纤吸附单晶钯纳米短棒,再将所述拉锥微纳光纤固定在玻璃片上,然后用超连续光源照射所述拉锥微纳米光纤的单晶钯纳米短棒使单晶钯纳米短棒的局域等离子体在光纤形成的回音壁模式中加强,形成传输光信号变化的光学气体传感器。
6.如权利要求5所述的制备方法,其特征在于,该方法包括:
(1)利用气相-液相-固相法制备单根单晶钯纳米短棒;
(2)在显微镜下对步骤(1)中所制得的单晶钯纳米短棒进行转移微操作,把所述单晶钯纳米短棒放置在衬底上;
(3)用高温拉伸法拉制出尖端直径在1.5~2.5微米的拉锥微纳光纤;
(4)在光学显微镜下操纵步骤(3)中所制得的拉锥微纳光纤,将所述拉锥微纳光纤压在步骤(2)中的钯纳米短棒上,使所述钯纳米短棒通过静电吸力吸附在所述拉锥微纳光纤上;
(5)将所述拉锥微纳光纤翻转,使所述钯纳米短棒位于拉锥微纳光纤上侧,再移动所述拉锥微纳光纤并固定于两片玻璃片上使拉锥微纳光纤的吸附有钯纳米短棒部分悬空,然后将此结构放入一个密封容器里面;
(6)用普通光纤输出的超连续光源的白光沿着拉锥微纳光纤方向照射吸附在拉锥微纳光纤表面的单晶钯纳米短棒,激发单晶钯纳米棒中的表面等离子体信号并使表面等离子体信号在微纳光纤的回音壁腔内谐振增强后输出,以形成传输光信号变化的光学气体传感器。
7.如权利要求6所述的制备方法,其特征在于:所述步骤(1)包括:
(1.1)在管式高温炉的石英管内,先将盛有钯粉的石英舟放置在管式高温炉中间的高温区,再将单晶蓝宝石片放置在管式高温炉的降温区,石英管两端密封;
(1.2)通氩气除去石英管中的氧气,氩气气流为200~900 ml/min,同时打开真空泵抽真空保持石英管内的压强为200~1000 Pa;
(1.3)升温到1200-1300℃,钯蒸气在单晶蓝宝石片上生长出单晶钯纳短棒。
8.如权利要求6所述的制备方法,其特征在于:所述步骤(6)中所述超连续光源的白光的照射方向与所述拉锥微纳光纤之间的夹角为30°~ 45°。
9.一种如权利要求1所述的基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器的应用,其特征在于:所述氢气传感器通过检测单晶钯纳米短棒的表面等离子体信号的波长变化来检测氢气。
10.如权利要求9所述的基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器的应用,其特征在于:可检测氢气的体积浓度范围为3.9%~17.6% 。
CN201510019084.8A 2015-01-15 2015-01-15 基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用 Expired - Fee Related CN104535540B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510019084.8A CN104535540B (zh) 2015-01-15 2015-01-15 基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510019084.8A CN104535540B (zh) 2015-01-15 2015-01-15 基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104535540A true CN104535540A (zh) 2015-04-22
CN104535540B CN104535540B (zh) 2017-03-22

Family

ID=52851112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510019084.8A Expired - Fee Related CN104535540B (zh) 2015-01-15 2015-01-15 基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104535540B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051422A (zh) * 2017-11-21 2018-05-18 复旦大学 一种痕量炸药和毒品探测器及其使用方法
CN108624966A (zh) * 2018-04-25 2018-10-09 上海理工大学 静电纺丝制备可拉伸的单模激光元件的方法
CN109751515A (zh) * 2019-02-21 2019-05-14 安文霞 一种用于检测油井出油速度的光纤混合波导
CN113008841A (zh) * 2021-02-26 2021-06-22 复旦大学 一种基于钯-回音壁模式光学谐振腔的氢气传感器及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750280A (zh) * 2008-12-08 2010-06-23 吴群林 回音壁模式的光纤生物传感器
US20120069331A1 (en) * 2010-08-09 2012-03-22 Siyka Shopova Plasmonic enhancement of whispering gallery mode biosensors
CN102798624A (zh) * 2012-08-08 2012-11-28 中国科学院长春光学精密机械与物理研究所 基于回音壁模式的近场拉曼生物传感器
CN103308488A (zh) * 2013-05-24 2013-09-18 上海理工大学 单晶钯纳米线表面等离子体氢气传感器及其制备与使用
CN104132914A (zh) * 2014-07-31 2014-11-05 上海理工大学 干涉型氢气传感器及其制备和使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750280A (zh) * 2008-12-08 2010-06-23 吴群林 回音壁模式的光纤生物传感器
US20120069331A1 (en) * 2010-08-09 2012-03-22 Siyka Shopova Plasmonic enhancement of whispering gallery mode biosensors
CN102798624A (zh) * 2012-08-08 2012-11-28 中国科学院长春光学精密机械与物理研究所 基于回音壁模式的近场拉曼生物传感器
CN103308488A (zh) * 2013-05-24 2013-09-18 上海理工大学 单晶钯纳米线表面等离子体氢气传感器及其制备与使用
CN104132914A (zh) * 2014-07-31 2014-11-05 上海理工大学 干涉型氢气传感器及其制备和使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. FARCA等: "Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes", 《OPTICS EXPRESS》 *
邹长铃等: "回音壁模式光学微腔: 基础与应用", 《中国科学: 物理学 力学 天文学》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051422A (zh) * 2017-11-21 2018-05-18 复旦大学 一种痕量炸药和毒品探测器及其使用方法
CN108051422B (zh) * 2017-11-21 2020-09-29 复旦大学 一种痕量炸药和毒品探测器及其使用方法
CN108624966A (zh) * 2018-04-25 2018-10-09 上海理工大学 静电纺丝制备可拉伸的单模激光元件的方法
CN109751515A (zh) * 2019-02-21 2019-05-14 安文霞 一种用于检测油井出油速度的光纤混合波导
CN113008841A (zh) * 2021-02-26 2021-06-22 复旦大学 一种基于钯-回音壁模式光学谐振腔的氢气传感器及其制备和应用
CN113008841B (zh) * 2021-02-26 2022-08-23 复旦大学 一种基于钯-回音壁模式光学谐振腔的氢气传感器及其制备和应用

Also Published As

Publication number Publication date
CN104535540B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN103308488B (zh) 单晶钯纳米线表面等离子体氢气传感器及其制备与使用
Yang et al. A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state
CN104535540A (zh) 基于回音壁模式的单晶钯纳米短棒表面等离子体氢气传感器及其制备方法和应用
Wang et al. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing
CN102183506B (zh) 基于表面增强拉曼散射光纤探针的微量物质检测装置
CN106124478A (zh) 拉锥光纤和微小圆球透镜的光纤拉曼增强探针及制作方法
CN104597311A (zh) 基于石墨烯-微光纤环形谐振腔的电流传感器及测量方法
Wang et al. A review of droplet resonators: Operation method and application
CN110596041B (zh) 一种基于等离子体金刚石纳米环的折射率传感器
CN102374972A (zh) 单根量子点掺杂聚合物纳米线的湿度传感器及其制备方法
CN107219198A (zh) 折射率传感器、其制备方法及折射率检测装置
Zhang et al. Review of different coupling methods with whispering gallery mode resonator cavities for sensing
Guo et al. An organic microlaser based on an aggregation-induced emission fluorophore for tensile strain sensing
CN112432924A (zh) 基于spr的方孔光子晶体光纤折射率传感装置及方法
CN112432925A (zh) 基于spr的d型光子晶体光纤折射率传感器装置及方法
CN111190010B (zh) 一种布里渊光机腔内微流生化传感器
Wang et al. Trace Ethanol Concentration Sensor based on Hollow Microbubble Resonator Modified with MnCo 2 O 4.5
CN104132914B (zh) 干涉型氢气传感器及其制备和使用方法
CN112432923A (zh) 三角形气孔的d型光子晶体光纤折射率传感器装置及方法
CN102353664A (zh) 基于锗的微米/纳米锥阵列的荧光pH传感器及应用
CN101819143A (zh) 气体折射率传感元件及传感装置
CN202404025U (zh) 一种单根量子点掺杂聚合物纳米线的湿度传感器
CN104132914A (zh) 干涉型氢气传感器及其制备和使用方法
Farnesi et al. High Q silica microbubble resonators
Mapranathukaran et al. Photonic integrated circuit assisted Photo-Thermal Spectroscopy

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170322

Termination date: 20200115