CN104525299A - 颚板及其制备方法 - Google Patents
颚板及其制备方法 Download PDFInfo
- Publication number
- CN104525299A CN104525299A CN201410657993.XA CN201410657993A CN104525299A CN 104525299 A CN104525299 A CN 104525299A CN 201410657993 A CN201410657993 A CN 201410657993A CN 104525299 A CN104525299 A CN 104525299A
- Authority
- CN
- China
- Prior art keywords
- jaw
- plate
- matrix
- dense ceramic
- ceramic layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
本发明提供一种颚板,其与物料接触的工作表面具有一种碳化物涂层,并且提供一种用于获得上述颚板的制备方法。所述颚板,在其表面具有碳化物涂层。所述碳化物涂层,包括V2C致密陶瓷层,还可进一步包括微米V8C7致密陶瓷层及V8C7与基体的融合层。所述V2C致密陶瓷层、微米V8C7致密陶瓷层及V8C7与基体的融合层依次呈梯度分布。可被施加于高锰钢表面。所述涂层与基体之间为冶金结合,结合力很强,克服了现有硬质颗粒与金属基体间非冶金结合,结合力很弱,颗粒容易脱落的问题,大幅度提高了颚板工作表面的耐磨性能。
Description
技术领域
本发明涉及一种具有耐磨涂层的复合颚板及其制备方法,尤其涉及一种具有耐磨碳化物涂层的复合颚板及其制备方法,具体涉及一种应用于高锰钢表面的耐磨碳化物涂层复合颚板及其制备方法。
背景技术
颚板作为颚式破碎机上一个重要部件,在破碎石料、矿石等物料时,极易被磨损破坏,更换频繁,降低了设备的工作效率,同时也造成钢材料的大量浪费。所以,通常要求颚板具有高耐磨性和高韧性,以及良好的力学性能,而且必须保证设备的安全及可靠性。
当前,常用的颚板材料几乎都是单一高锰钢材质。高锰钢的加工硬化能力的提高必需在高冲击条件下才能实现,而颚式破碎机工作条件不具备强烈冲击条件,所以难以发挥高锰钢的硬化特性。因此,单一高锰钢材质制备的颚板,其耐磨性不高,导致磨损严重,使用寿命很短,更换频繁,降低了设备生产效率同时也造成了大量材料浪费,而且通常需要生产单位准备更多的备件,从而大大增加了生产成本。
中国专利公开了一种“双液双金属复合铸造颚板方法”(申请号:91101454.3),其特点是用高硬度的高铬铸铁材质制作耐磨工作层,用高韧性的铸钢材质作衬垫层,用铸造的生产方式将两种金属形成牢固的冶金结合,从而铸造出复合颚板,在模拟试验中,该产品较高锰钢颚板产品使用寿命有大幅提高。但是,这种复合材料其耐磨层只是单一的高铬合金材料,虽然耐磨性好,但韧性差。衬垫层铸钢材料韧性虽然很高,但是无法直接改善耐磨工作面的韧性,可以想象,在工作时耐磨层容易发生脆裂,最终导致脱离现象。
然而仅仅提高颚板基体材料的硬度仍然不足以保证其服役的持久性,因此在其工作部位的表面增加涂层是解决该问题既经济又有效的手段。现阶段使用较多的为碳化物材料的涂层,其具有硬度高、耐磨损性能优越的特点,以涂层方式覆盖在金属合金基体表面可以提高由基体材料制备的零部件的耐磨性与寿命。其中VCp是一种常见的涂层材料,其有如下特点特性:
(1)具备密度低、强度高、弹性模量高、抗氧化、耐磨、耐腐蚀等优异的物理化学性能;
(2)烧结过程中长大倾向小,颗粒一般呈圆形,是一种较为理想的增强材料;
(3)钒资源丰富,容易获得,价格比较低廉,碳化钒在金属基复合材料中获得普遍应用;
(4)具有很高的热稳定性和高硬度的面心立方结构,晶格常数和晶格类型与奥氏体非常接近,这便于更好地与钢铁基体结合;
(5)VCp的标准生成焓△G0值低,其合成反应易于进行;
(6)VCp涂覆的钢铁基复合材料除了硬度高、耐磨性好外,可切削加工、锻造、焊接、热处理强化且变形小,而且具有普通熔炼钢的冷热加工性能。因此,VCp涂层材料被广泛地用作无屑冷热金属加工工具、切削刀具、各种模具、耐磨耐热耐蚀零件的耐磨表面。
目前制备碳化物涂层的方法有化学气相沉积法、物理气相沉积法、热喷涂方法、热渗镀方法等,但是这些方法,存在生产设备要求苛刻、生产效率低、涂层结合强度低等不足。
因此如何在颚板工作表面获得VCp涂层,并且选择一种生产设备简单、工艺流程短的制备方法,获得与基体结合力好、不易脱落且力学性能、耐磨性能优异的涂层是亟待解决的问题。
发明内容
针对上述现有技术存在的缺陷和不足,本发明的目的在于提供一种鄂板,其与物料结合的工作表面具有一种耐磨涂层,该耐磨涂层为V2C致密陶瓷层,其化学稳定性和耐磨性好,具有低摩擦系数、高硬度、低表面能以及低传热性;并且进一步地,提供一种用于获得上述复合鄂板的制备方法。
进一步地,本发明还提供一种鄂板,其与物料结合的工作表面具有一种梯度复合涂层,其优选被涂覆于鄂板基体表面,以提高其表面的耐磨性和断裂韧性,特别是高锰钢表面,并且提供一种用于获得上述涂层的制备方法。
所述颚板,在其与物料接触的工作表面具有耐磨涂层。从而有利保证颚板工作表面具有很高的硬度和很好的耐磨性,而基体部分具有很好的韧性,从而消除物料挤压过程中的脆性断裂。
其为实现本发明目的,本发明采用了如下技术方案:
一种表面具有耐磨涂层的鄂板,该耐磨涂层为V2C致密陶瓷层;优选地,V2C致密陶瓷层为准单晶相,所述准单晶相是指,介于多晶相与单晶相之间,相较于多晶相,晶向一致性高、晶界明显减少,并且原子排列比较有序的显微组织。
更优选地,沿V2C致密陶瓷层纵向剖面,其厚度为9-23μm,优选为12-20μm,更优选为15-20μm;优选地,其中V2C的体积分数大于80%,优选大于90%;优选地,V2C晶粒尺寸为20-50μm,优选为30-50μm。
此外,本发明还提供一种表面具有梯度复合涂层的鄂板,所述梯度复合涂层为碳化物涂层,包括依次呈梯度分布的V2C致密陶瓷层、微米V8C7致密陶瓷层、V8C7与基体的融合层。
优选地,V2C致密陶瓷层为准单晶相,所述准单晶相是指,介于多晶相与单晶相之间,相较于多晶相,晶向一致性高、晶界明显减少,并且原子排列比较有序的显微组织。
更优选地,沿V2C致密陶瓷层纵向剖面,其厚度为9-23μm,优选为12-20μm,更优选为15-20μm;优选地,其中V2C的体积分数大于80%,优选大于90%;优选地,V2C晶粒尺寸为20-50μm,优选为30-50μm。
进一步优选地,沿微米V8C7致密陶瓷层纵向剖面,其厚度为17-88μm,优选为40-80μm,更优选为60-80μm;优选地,V8C7的体积分数大于70%,优选大于75%;优选地,V8C7的晶粒尺寸为5-15μm,优选为6-15μm,更优选为8-15μm。
更进一步优选地,沿V8C7与基体的融合层纵向剖面,其厚度为124μm-1071μm,优选300-1050μm;优选地,其中V8C7的体积分数为20%-85%,优选为50%-85%;优选地,V8C7的晶粒尺寸为5-20μm,优选为10-20μm。
优选地,梯度复合涂层总厚度为150-1182μm,优选在400-1180μm。
更优选地,颚板的基体是高锰钢,经水韧处理后的基体组织为奥氏体;优选地,该梯度复合涂层被施加于高锰钢表面。
本发明提供一种表面具有耐磨涂层的鄂板的制备方法,包括如下步骤:
1)先准备一钒板,优选的,其中钒的纯度应控制在99.7-99.9%;更优选地,所述钒板的厚度控制在0.2-3mm;优选地,所述钒板先被加以表面处理;
2)按照颚板尺寸制作颚板模具,根据颚板的工作受力状况,其主要磨损的部位是颚板与物料接触的工作表面,据此将钒板固定在颚板模具表面,然后在钒板上固定外部碳源,使其与钒板紧密结合;优选地,用聚苯乙烯泡沫塑料制作颚板模具;
3)按照颚板尺寸制作砂型,并将颚板模具置于砂型型腔中;优选地,用CO2水玻璃硬化砂、覆膜砂、自硬树脂砂或潮模砂制作砂型;
4)将高锰钢基材冶炼为钢液;优选地,温度控制在1500-1560℃;
5)将上述钢液浇入上述放置有钒板和外部碳源的砂型内,待钢液冷却凝固后,取出铸件,清砂处理,获得颚板基体为高锰钢基体,颚板与物料接触的工作表面为高锰钢与钒板的复合体;优选地,采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板和外部碳源的砂型内;优选地,浇注温度控制在1500-1560℃,浇注时间为20-60秒为宜;更优选地,一分钟后,在冒口补浇;优选地,室温冷却;
6)将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,最后随炉冷却至室温,从而在颚板表面形成耐磨涂层,而颚板基体仍为高锰钢。
其中,耐磨涂层为V2C致密陶瓷层。
优选地,通过控制步骤6)中保温时间、保温温度获得该V2C致密陶瓷层;优选地,V2C致密陶瓷层为准单晶相,所述准单晶相是指,介于多晶相与单晶相之间,相较于多晶相,晶向一致性高、晶界明显减少,并且原子排列比较有序的显微组织。
本发明还提供一种表面具有梯度复合涂层的颚板的制备方法,包括如下步骤:
1)先准备一钒板,优选的,其中钒的纯度应控制在99.7-99.9%;更优选地,所述钒板的厚度控制在0.2-3mm;优选地,所述钒板先被加以表面处理;
2)按照颚板尺寸制作颚板模具,根据颚板的工作受力状况,其主要磨损的部位是颚板与物料接触的工作表面,据此将钒板固定在颚板模具表面,然后在钒板上固定外部碳源,使其与钒板紧密结合;优选地,用聚苯乙烯泡沫塑料制作颚板模具;
3)按照颚板尺寸制作砂型,并将颚板模具置于砂型型腔中;优选地,用CO2水玻璃硬化砂、覆膜砂、自硬树脂砂或潮模砂制作砂型;
4)将钢基材冶炼为钢液;优选地,温度控制在1500-1560℃;
5)将上述钢液浇入上述放置有钒板和外部碳源的砂型内,待钢液冷却凝固后,取出铸件,清砂处理,获得颚板基体为钢基体,颚板与物料接触的工作表面为钢与钒板的复合体;优选地,采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板和外部碳源的砂型内;优选地,浇注温度控制在1500-1560℃,浇注时间为20-60秒为宜;更优选地,一分钟后,在冒口补浇;优选地,室温冷却;
6)将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,最后随炉冷却至室温,从而在颚板表面形成梯度复合涂层,而颚板基体仍为高锰钢;
7)所得的表面具有梯度复合涂层的颚板,经水韧处理后得到单一的奥氏体组织。
优选地,钒板厚度为0.2-3mm;若小于0.2mm,则钒板在浇注复合过程中就已经完全反应,不能获得V2C组织,直接生成弥散分布V8C7;超过3mm则导致扩散距离增大,反应动力不足。
优选地,通过严格控制步骤6)中保温温度与时间的关系,获得所述准单晶相V2C致密陶瓷层。该陶瓷层呈现出较为明显的准单晶组织,光学显微镜下表现为晶界减少,影响断裂韧性的位错也相应减少,代之亚晶界增多,有效提高该陶瓷层的抗裂能力。
优选地,通过控制步骤6)中保温时间、保温温度获得该梯度复合涂层即碳化物涂层,所述碳化物涂层包括依次呈梯度分布的准单晶相V2C致密陶瓷层、微米V8C7致密陶瓷层、V8C7与基体的融合层。
更优选地,上述步骤6)中保温温度、保温时间以及最终能够获得的梯度复合涂层的总厚度符合如下公式,
L=kTlogt1/2+b0
其中:
L——梯度复合涂层的总厚度(μm),
k——是常数,取值为0-1,k≠0,
T——保温温度(K),
t——保温时间(s),
b0——初始厚度(μm),即钢液浇注后与钒板之间形成的复合层的厚度。
综上,所述梯度复合涂层,包括V2C致密陶瓷层,硬度高。所述V2C致密陶瓷层为准单晶相,所述准单晶相是指,原子的排列不像一般单晶那样具有相同的晶格,但仍具有严格的顺序,呈现出几何排列;晶向一致性高、晶界明显减少,并且原子排列比较有序。准单晶相介于多晶相与单晶相之间,相较于多晶相,准单晶相的晶界明显减少,位错密度低,有较多亚晶界,因此硬度有明显提升;而较之单晶相,其对制备方式要求更低,且组织更为稳定。
优选地,在步骤1)中,表面处理的步骤如下:
第一步酸洗,选用300ml/L的盐酸或60ml/L的磷酸或120ml/L的双氧水,后流水冲洗;
第二步酸洗,选用300ml/L的氢氟酸或200ml/L的硫酸或240ml/L的双氧水,后流水冲洗;
第三步表面打磨,选用800-1200目的Al2O3砂纸,最后用酒精超声清洗。
更优选地,步骤2)中的外部碳源为石墨纸或石墨粉;优选地,所述石墨纸为三级以上,纯度为85-99%,厚度为0.1-0.35mm;优选地,所述石墨粉选择粒度在600-1000目,纯度为85-99%。
优选地,步骤6)中,升温至1000-1160℃,升温速度控制在7℃/min,保温时间为6.5-11.5h,优选8-10h。
优选地,所选钢基体为高锰钢。
优选地,保护气为氩气或氮气,气体流量为5-8ml/min。
其中,保温温度应严格控制在上述范围内,温度高于1160℃,反应过程中的液相过多,而使得V2C转变成为V8C7,而不能获得准单晶相V2C;但是温度低于1000℃,则V的溶解度太低,反应无法正向进行。同样的,保温时间也应该保持一个合理的区间,时间超过11.5h,几乎所有的V2C会转变为V8C7,而低于6.5h,则反应获得的V2C太少,涂层厚度难以保证,最佳的应该保持在8-10h。
更优选地,具有碳化物涂层的鄂板复合体被进一步热处理以获得更合适的基体组织,热处理工序为:经水韧处理后得到单一的奥氏体组织,热处理工序为:1小时升温到300-400℃,然后按每小时50-80℃的速度升温到1000-1050℃,使高锰钢充分进行奥氏体化,保温2-3小时,然后将其淬入水中进行水韧处理总计处理时间为13-14小时。
所述颚板以高锰钢为基体,所选高锰钢基体为ZGMn13-1、ZGMn13-2、ZGMn13-3、ZGMn13-4或ZGMn13-5,见国标GB/T5680-1998,经水韧处理后得到单一的奥氏体组织。
本发明通过铸造尤其是消失模真空吸铸获得合金钢基体+钒的鄂板复合体后,引入外部碳源,以加热扩散的方式可直接在鄂板与物料接触的工作表面形成碳化物涂层,碳化物涂层与基体之间为冶金结合,结合力很强,克服了现有硬质颗粒与金属基体间非冶金结合,结合力很弱,颗粒容易脱落的问题,大幅度提高了涂层的力学性能。并且该方法操作简单,无需复杂设备,获得的鄂板性能良好。不同的热处理方式,使鄂板具有不同的力学性能,满足了实际生产的要求。由于V2C致密陶瓷层的形成,该陶瓷层呈现出较为明显的准单晶组织,光学显微镜下表现为晶界减少,影响断裂韧性的位错也相应减少,代之亚晶界增多,有效提高该陶瓷层的抗裂能力。颚板与物料接触的工作表面具有较高的硬度HRC50-63,相对耐磨性是基体的12-20倍。所述相对耐磨性的定义为:以基体材料为标准试样,在相同磨料粒度,相同载荷,圆盘以相同转速转动相同圈数后,被测涂层产生磨损量与标准试样产生磨损量的比值称为涂层的相对耐磨性,因此也简称为涂层的相对耐磨性是基体的几倍,下述相同参数的检测标准与之相同。
这是由于其中的V2C致密陶瓷层为准单晶组织,化学稳定性和耐磨性好,具有低摩擦系数、高硬度、低表面能以及低传热性。而与之相对的微米V8C7陶瓷层的硬度只能达到HRC45-55,其相对耐磨性是基体的6-10倍。
附图说明
图1颚板制备工艺图;
图2热处理后的颚板以及试样截取的局部放大图。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
其中,制作砂型时可采用CO2水玻璃硬化砂、覆膜砂、自硬树脂砂或潮模砂中的任一种。
实施例1:颚板的制备方法,包括如下步骤:
1、先准备一钒板1,其中钒的纯度应控制在99.7%。所述钒板1应该先被加以表面处理,步骤如下:
第一步酸洗,选用300ml/L的盐酸,后流水冲洗;
第二步酸洗,选用300ml/L的氢氟酸,后流水冲洗;
第三步表面打磨,选用800目的Al2O3砂纸,最后用酒精超声清洗。所述钒板1的厚度控制在0.2mm。
2、按照颚板2尺寸,用聚苯乙烯泡沫塑料制作颚板模具3,根据颚板2的工作受力状况,其主要磨损的部位是颚板2与物料接触的工作表面,据此将钒板1固定在颚板模具3表面,然后在钒板1上固定外部碳源4,外部碳源4为石墨纸,所述石墨纸为三级以上,纯度85%,厚度为0.1mm,使其与钒板1紧密结合(图1)。
3、按照颚板2尺寸,用CO2水玻璃硬化砂制作砂型5,并将颚板模具3置于砂型型腔中。
4、将高锰钢基材冶炼为钢液,温度控制在1500℃,所选高锰钢基体为ZGMn13-1。
5、采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板1和石墨纸的砂型5内,浇注温度控制在1500℃,浇注时间为20秒为宜,一分钟后,在冒口补浇,室温冷却后,待钢液冷却凝固后,取出铸件,获得颚板基体为ZGMn13-1,颚板与物料接触的工作表面为ZGMn13-1与钒板1的复合体。
6、将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,升温至1000℃,升温速度控制在7℃/min,保温时间为6.5h,最后随炉冷却至室温,从而在颚板表面形成梯度复合涂层,而颚板基体仍为ZGMn13-1。所述保护气为氩气,气体流量为5ml/min。
7、所得的表面具有梯度复合涂层的颚板,经水韧处理后得到单一的奥氏体组织,热处理工序为:1小时升温到300℃,然后按每小时50℃的速度升温到1000℃,使高锰钢充分进行奥氏体化,保温2小时,然后将其淬入水中进行水韧处理总计处理时间为13小时。
如图2所示,所得梯度复合涂层包括V2C致密陶瓷层6,为准单晶相,其晶粒尺寸为20μm;沿涂层纵向剖面,其厚度为9μm,其中V2C的体积分数为90%。
进一步的,还包括位于上述准单晶V2C致密陶瓷层6之下的微米V8C7致密陶瓷层7,沿涂层纵向剖面,其厚度为17μm,V8C7的体积分数为75%,其晶粒尺寸为5μm。
更进一步的,还包括位于上述准单晶V2C致密陶瓷层6以及微米V8C7致密陶瓷层7之下的V8C7与基体的融合层8,沿涂层纵向剖面,其厚度为124μm,其中V8C7的体积分数为20%,其晶粒尺寸为5μm。此时,所述碳化物涂层为复合涂层,由所述准单晶V2C致密陶瓷层6、微米V8C7致密陶瓷层7及V8C7与基体的融合层8构成,且依次呈梯度分布,其总厚度为150μm。所述颚板基体为奥氏体。颚板与物料接触的工作表面具有较高的硬度HRC50,相对耐磨性是基体的12倍。
实施例2:颚板的制备方法,包括如下步骤:
1、先准备一钒板1,其中钒的纯度应控制在99.8%。所述钒板1应该先被加以表面处理,步骤如下:
第一步酸洗,60ml/L的磷酸,后流水冲洗;
第二步酸洗,200ml/L的硫酸,后流水冲洗;
第三步表面打磨,选用1000目的Al2O3砂纸,最后用酒精超声清洗。所述钒板1的厚度控制在1mm。
2、按照颚板2尺寸,用聚苯乙烯泡沫塑料制作颚板模具3,根据颚板2的工作受力状况,其主要磨损的部位是颚板2与物料接触的工作表面,据此将钒板1固定在颚板模具3表面,然后在钒板1上固定外部碳源4,外部碳源4为石墨纸,所述石墨纸为三级以上,纯度99%,厚度为0.2mm,使其与钒板1紧密结合(图1)。
3、按照颚板2尺寸,用覆膜砂制作砂型5,并将颚板模具3置于砂型5型腔中。
4、将高锰钢基材冶炼为钢液,温度控制在1510℃,所选高锰钢基体为ZGMn13-2。
5、采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板1和石墨纸的砂型5内,浇注温度控制在1510℃,浇注时间为30秒为宜,一分钟后,在冒口补浇,室温冷却后,待钢液冷却凝固后,取出铸件,获得颚板基体为ZGMn13-2,颚板与物料接触的工作表面为ZGMn13-2与钒板1的复合体。
6、将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,升温至1050℃,升温速度控制在7℃/min,保温时间为7.5h最后随炉冷却至室温,从而在颚板表面形成梯度复合涂层,而颚板基体仍为ZGMn13-2。所述保护气为氩气,气体流量为6ml/min。
7、所得的表面具有梯度复合涂层的颚板,经水韧处理后得到单一的奥氏体组织,热处理工序为:1小时升温到350℃,然后按每小时60℃的速度升温到1000℃,使高锰钢充分进行奥氏体化,保温2小时,然后将其淬入水中进行水韧处理总计处理时间为13小时。
所述梯度复合涂层包括V2C致密陶瓷层6,为准单晶相,其晶粒尺寸为22μm;沿涂层纵向剖面,其厚度为12μm;其中V2C的体积分数为80%。
进一步的,还包括位于上述准单晶V2C致密陶瓷层6之下的微米V8C7致密陶瓷层7,沿涂层纵向剖面,其厚度为52μm,V8C7的体积分数为78%,其晶粒尺寸为7μm。
更进一步地,还包括位于上述准单晶V2C致密陶瓷层6以及微米V8C7致密陶瓷层7之下的V8C7与基体的融合层8,沿涂层纵向剖面,其厚度为399μm,其中V8C7的体积分数为60%,其晶粒尺寸为15μm。此时,所述碳化物涂层为复合涂层,由所述准单晶V2C致密陶瓷层6、微米V8C7致密陶瓷层7及V8C7与基体的融合层8构成,且依次呈梯度分布,其总厚度为463μm。所述颚板基体为奥氏体。颚板与物料接触的工作表面具有较高的硬度HRC56,相对耐磨性是基体的16倍。
实施例3:颚板的制备方法,包括如下步骤:
1、先准备一钒板1,其中钒的纯度应控制在99.8%。所述钒板1应该先被加以表面处理,步骤如下:
第一步酸洗,120ml/L的双氧水,后流水冲洗;
第二步酸洗,240ml/L的双氧水,后流水冲洗;
第三步表面打磨,选用1000目的Al2O3砂纸,最后用酒精超声清洗。所述钒板1的厚度控制在0.35mm。
2、按照颚板2尺寸,用聚苯乙烯泡沫塑料制作颚板模具,根据颚板2的工作受力状况,其主要磨损的部位是颚板2与物料接触的工作表面,据此将钒板1固定在颚板模具3表面,然后在钒板1上固定外部碳源4,外部碳源4为石墨纸,所述石墨纸为三级以上,纯度95%,厚度为0.35mm,使其与钒板1紧密结合(图1)。
3、按照颚板2尺寸,用自硬树脂砂制作砂型5,并将颚板模具3置于砂型5型腔中。
4、将高锰钢基材冶炼为钢液,温度控制在1520℃,所选高锰钢基体为ZGMn13-3。
5、采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板1和石墨纸的砂型5内,浇注温度控制在1520℃,浇注时间为40秒为宜,一分钟后,在冒口补浇,室温冷却后,待钢液冷却凝固后,取出铸件,获得颚板基体为ZGMn13-3,颚板与物料接触的工作表面为ZGMn13-3与钒板的复合体。
6、将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,升温至1080℃,升温速度控制在7℃/min,保温时间为9.5h,最后随炉冷却至室温,从而在颚板表面形成梯度复合涂层,而颚板基体仍为ZGMn13-3。所述保护气为氩气,气体流量为6ml/min。
7、所得的表面具有梯度复合涂层的颚板,经水韧处理后得到单一的奥氏体组织,热处理工序为:1小时升温到400℃,然后按每小时80℃的速度升温到1050℃,使高锰钢充分进行奥氏体化,保温3小时,然后将其淬入水中进行水韧处理总计处理时间为13小时。
所述梯度复合涂层包括V2C致密陶瓷层6,为准单晶相,其晶粒尺寸为25μm;沿涂层纵向剖面,其厚度为14μm;其中V2C的体积分数为95%。
进一步的,包括位于上述准单晶V2C致密陶瓷层6之下的微米V8C7致密陶瓷层7,沿涂层纵向剖面,其厚度为57μm,V8C7的体积分数为80%,其晶粒尺寸为10μm。
更进一步的,还可以包括位于上述准单晶V2C致密陶瓷层6以及微米V8C7致密陶瓷层7之下的V8C7与基体的融合层8,沿涂层纵向剖面,其厚度为669μm,其中V8C7的体积分数为75%,其晶粒尺寸为15μm。此时,所述碳化物涂层为复合涂层,由所述准单晶V2C致密陶瓷层6、微米V8C7致密陶瓷层7及V8C7与基体的融合层8构成,且依次呈梯度分布,其总厚度为740μm。所述颚板基体为奥氏体。颚板与物料接触的工作表面具有较高的硬度HRC60,相对耐磨性是基体的18倍。
实施例4:颚板的制备方法,包括如下步骤:
1、先准备一钒板1,其中钒的纯度应控制在99.9%。所述钒板1应该先被加以表面处理,步骤如下:
第一步酸洗,选用60ml/L的磷酸,后流水冲洗;
第二步酸洗,200ml/L的硫酸,后流水冲洗;
第三步表面打磨,选用1200目的Al2O3砂纸,最后用酒精超声清洗。所述钒板1的厚度控制在3mm。
2、按照颚板2尺寸,用聚苯乙烯泡沫塑料制作颚板模具3,根据颚板2的工作受力状况,其主要磨损的部位是颚板2与物料接触的工作表面,据此将钒板1固定在颚板模具3表面,然后在钒板1上固定外部碳源4,外部碳源4为石墨粉,所述石墨粉选择粒度在600目,纯度为85%,使其与钒板1紧密结合(图1)。
3、按照颚板2尺寸,用潮模砂制作砂型5,并将颚板模具3置于砂型5型腔中。
4、将高锰钢基材冶炼为钢液,温度控制在1530℃,所选高锰钢基体为ZGMn13-4。
5、采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板1和石墨粉的砂型5内,浇注温度控制在1530℃,浇注时间为50秒为宜,一分钟后,在冒口补浇,室温冷却后,待钢液冷却凝固后,取出铸件,获得颚板基体为ZGMn13-4,颚板与物料接触的工作表面为ZGMn13-4与钒板的复合体。
6、将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,升温至1160℃,升温速度控制在7℃/min,保温时间为11.5h,最后随炉冷却至室温,从而在颚板表面形成梯度复合涂层,而颚板基体仍为ZGMn13-4。所述保护气为氩气,气体流量为6ml/min。
7、所得的表面具有梯度复合涂层的颚板,经水韧处理后得到单一的奥氏体组织,热处理工序为:1小时升温到350℃,然后按每小时70℃的速度升温到1020℃,使高锰钢充分进行奥氏体化,保温3小时,然后将其淬入水中进行水韧处理总计处理时间为14小时。
所述梯度复合涂层包括V2C致密陶瓷层6,为准单晶相,其晶粒尺寸为50μm,沿涂层纵向剖面,其厚度为23μm,其中V2C的体积分数为95%。
进一步的,还包括位于上述准单晶V2C致密陶瓷层6之下的微米V8C7致密陶瓷层7,沿涂层纵向剖面,其厚度为88μm,V8C7的体积分数为80%,其晶粒尺寸为15μm。
更进一步的,还包括位于上述准单晶V2C致密陶瓷层6以及微米V8C7致密陶瓷层7之下的V8C7与基体的融合层8,沿涂层纵向剖面,其厚度为1071μm,其中V8C7的体积分数为55%,其晶粒尺寸为20μm。此时,所述碳化物涂层为复合涂层,由所述准单晶V2C致密陶瓷层6、微米V8C7致密陶瓷层7及V8C7与基体的融合层8构成,且依次呈梯度分布,其总厚度为1182μm。所述颚板基体为奥氏体。颚板与物料接触的工作表面具有较高的硬度HRC63,相对耐磨性是基体的20倍。
实施例5:颚板的制备方法,包括如下步骤:
1、先准备一钒板1,其中钒的纯度应控制在99.7%。所述钒板1应该先被加以表面处理,步骤如下:
第一步酸洗,选用300ml/L的盐酸,后流水冲洗;
第二步酸洗,240ml/L的双氧水,后流水冲洗;
第三步表面打磨,选用800目的Al2O3砂纸,最后用酒精超声清洗。所述钒板1的厚度控制在0.2mm。
2、按照颚板2尺寸,用聚苯乙烯泡沫塑料制作颚板模具3,根据颚板2的工作受力状况,其主要磨损的部位是颚板2与物料接触的工作表面,据此将钒板1固定在颚板模具3表面,然后在钒板1上固定外部碳源4,外部碳源4为石墨粉,所述石墨粉选择粒度在800目,纯度为89%,使其与钒板1紧密结合(图1)。
3、按照颚板2尺寸,用CO2水玻璃硬化砂制作砂型5,并将颚板模具3置于砂型5型腔中。
4、将高锰钢基材冶炼为钢液,温度控制在1540℃,所选高锰钢基体为ZGMn13-5。
5、采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板1和石墨粉的砂型5内,浇注温度控制在1540℃,浇注时间为60秒为宜,一分钟后,在冒口补浇,室温冷却后,待钢液冷却凝固后,取出铸件,获得颚板基体为ZGMn13-5,颚板与物料接触的工作表面为ZGMn13-5与钒板1的复合体。
6、将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,升温至1150℃,升温速度控制在7℃/min,保温时间为8.5h,最后随炉冷却至室温,从而在颚板表面形成梯度复合涂层,而颚板基体仍为ZGMn13-5。所述保护气为氮气,气体流量为7ml/min。
7、所得的表面具有梯度复合涂层的颚板,经水韧处理后得到单一的奥氏体组织,热处理工序为:1小时升温到400℃,然后按每小时80℃的速度升温到1050℃,使高锰钢充分进行奥氏体化,保温3小时,然后将其淬入水中进行水韧处理总计处理时间为13小时。
所述梯度复合涂层包括V2C致密陶瓷层6,为准单晶相,其晶粒尺寸为42μm;沿涂层纵向剖面,其厚度为22μm;其中V2C的体积分数为80%。
进一步的,还包括位于上述准单晶V2C致密陶瓷层6之下的微米V8C7致密密陶瓷层7,沿涂层纵向剖面,其厚度为77μm,V8C7的体积分数为78%,其晶粒尺寸为14μm。
更进一步的,还包括位于上述准单晶V2C致密陶瓷层6以及微米V8C7致密陶瓷层7之下的V8C7与基体的融合层8,沿涂层纵向剖面,其厚度为1007μm,其中V8C7的体积分数为60%,其晶粒尺寸为15μm。此时,所述碳化物涂层为复合涂层,由所述准单晶V2C致密陶瓷层6、微米V8C7致密陶瓷层7及V8C7与基体的融合层8构成,且依次呈梯度分布,其总厚度为1106μm,。所述颚板基体为奥氏体。颚板与物料接触的工作表面具有较高的硬度HRC54,相对耐磨性是基体的15倍。
实施例6:颚板的制备方法,包括如下步骤:
1、先准备一钒板1,其中钒的纯度应控制在99.9%。所述钒板1应该先被加以表面处理,步骤如下:
第一步酸洗,选用120ml/L的双氧水,后流水冲洗;
第二步酸洗,240ml/L的双氧水,后流水冲洗;
第三步表面打磨,选用1200目的Al2O3砂纸,最后用酒精超声清洗。所述钒板1的厚度控制在1.5mm。
2、按照颚板2尺寸,用聚苯乙烯泡沫塑料制作颚板模具,根据颚板2的工作受力状况,其主要磨损的部位是颚板2与物料接触的工作表面,据此将钒板1固定在颚板模具3表面,然后在钒板1上固定外部碳源4,外部碳源4为石墨粉,所述石墨粉选择粒度在1000目,纯度为99%,使其与钒板1紧密结合(图1)。
3、按照颚板2尺寸,用覆膜砂制作砂型5,并将颚板模具置于砂型5型腔中。
4、将高锰钢基材冶炼为钢液,温度控制在1560℃,所选高锰钢基体为ZGMn13-1。
5、采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板1和石墨粉的砂型5内,浇注温度控制在1560℃,浇注时间为20秒为宜,一分钟后,在冒口补浇,室温冷却后,待钢液冷却凝固后,取出铸件,获得颚板基体为ZGMn13-1,颚板与物料接触的工作表面为ZGMn13-1与钒板的复合体。
6、将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,升温至1100℃,升温速度控制在7℃/min,保温时间为10.5h,最后随炉冷却至室温,从而在颚板表面形成梯度复合涂层,而颚板基体仍为ZGMn13-1。所述保护气为氮气,气体流量为8ml/min。
7、所得的表面具有梯度复合涂层的颚板,经水韧处理后得到单一的奥氏体组织,热处理工序为:1小时升温到300℃,然后按每小时50℃的速度升温到1000℃,使高锰钢充分进行奥氏体化,保温3小时,然后将其淬入水中进行水韧处理总计处理时间为14小时。
所述梯度复合涂层包括V2C致密陶瓷层6,为准单晶相,其晶粒尺寸为36μm;沿涂层纵向剖面,其厚度为20μm;其中V2C的体积分数为95%。
进一步的,还包括位于上述准单晶V2C致密陶瓷层6之下的微米V8C7致密陶瓷层7,沿涂层纵向剖面,其厚度为72μm,V8C7的体积分数为90%,其晶粒尺寸为12μm。
更进一步的,还包括位于上述准单晶V2C致密陶瓷层6以及微米V8C7致密陶瓷层7之下的V8C7与基体的融合层8,沿涂层纵向剖面,其厚度为995μm,其中V8C7的体积分数为85%,其晶粒尺寸为15μm。此时,所述碳化物涂层为复合涂层,由所述准单晶V2C致密陶瓷层6、微米V8C7致密陶瓷层7及V8C7与基体的融合层8构成,且依次呈梯度分布,其总厚度为1087μm。所述颚板基体为奥氏体。颚板与物料接触的工作表面具有较高的硬度HRC52,相对耐磨性是基体的14倍。
对比例1,其制备方法如下:用激光熔覆法直接将V8C7碳化钒颗粒熔覆在颚板的工作面,得到涂层,厚度为30μm,体积分数为80%,硬度HRC40,耐磨性是基体的3.2倍。
对比例中激光表面改性技术生产成本高,生产效率低,工艺参数不易控制,且使用过程中使用粘接剂将导致气孔和夹渣;且复合层中未出现准单晶V2C致密陶瓷层和微米V8C7致密陶瓷层,复合层厚度和V8C7含量较小,V8C7晶粒尺寸较大;同时,复合过程仅仅是对外加硬质碳化钒颗粒间的间隙进行铸渗和对外加颗粒进行熔融、烧结,硬质碳化钒颗粒与金属基体间非冶金结合,结合力很弱,颗粒容易脱落或存在氧化、夹杂问题,因此,其力学性能较差。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (21)
1.一种颚板,在其表面具有耐磨涂层,其特征在于:所述耐磨涂层为V2C致密陶瓷层。
2.如权利要求1所述的鄂板,其特征在于:V2C致密陶瓷层为准单晶相,所述准单晶相是指,介于多晶相与单晶相之间,相较于多晶相,晶向一致性高、晶界明显减少,并且原子排列比较有序的显微组织。
3.如权利要求1或2所述的鄂板,其特征在于:沿V2C致密陶瓷层纵向剖面,其厚度为9-23μm,优选为12-20μm,更优选为15-20μm;优选地,其中V2C的体积分数大于80%,优选大于90%;优选地,V2C晶粒尺寸为20-50μm,优选为30-50μm。
4.一种鄂板,在其表面具有梯度复合涂层,其特征在于:所述梯度复合涂层为碳化物涂层,包括依次呈梯度分布的V2C致密陶瓷层、微米V8C7致密陶瓷层、V8C7与基体的融合层。
5.如权利要求4所述的鄂板,其特征在于:V2C致密陶瓷层为准单晶相,所述准单晶相是指,介于多晶相与单晶相之间,相较于多晶相,晶向一致性高、晶界明显减少,并且原子排列比较有序的显微组织。
6.如权利要求4或5所述的鄂板,其特征在于:沿V2C致密陶瓷层纵向剖面,其厚度为9-23μm,优选为12-20μm,更优选为15-20μm;优选地,其中V2C的体积分数大于80%,优选大于90%;优选地,V2C晶粒尺寸为20-50μm,优选为30-50μm。
7.如权利要求4-6之一所述的鄂板其特征在于:沿微米V8C7致密陶瓷层纵向剖面,其厚度为17-88μm,优选为40-80μm,更优选为60-80μm;优选地,V8C7的体积分数大于70%,优选大于75%;优选地,V8C7的晶粒尺寸为5-15μm,优选为6-15μm,更优选为8-15μm。
8.如权利要求4-7之一所述的鄂板,其特征在于:沿V8C7与基体的融合层纵向剖面,其厚度为124μm-1071μm,优选300-1050μm;优选地,其中V8C7的体积分数为20%-85%,优选为50%-85%;优选地,V8C7的晶粒尺寸为5-20μm,优选为10-20μm。
9.如权利要求4-8之一所述的鄂板,其特征在于:梯度复合涂层总厚度为150-1182μm,优选在400-1180μm。
10.如权利要求4-9之一所述的鄂板,其特征在于:所述颚板的基体是高锰钢,经水韧处理后的基体组织为奥氏体;优选地,该梯度复合涂层被施加于高锰钢表面。
11.一种如权利要求1-3之一所述颚板的制备方法,其特征在于,颚板表面具有耐磨涂层,包括如下步骤:
1)先准备一钒板,优选的,其中钒的纯度应控制在99.7-99.9%;更优选地,所述钒板的厚度控制在0.2-3mm;优选地,所述钒板先被加以表面处理;
2)按照颚板尺寸制作颚板模具,根据颚板的工作受力状况,其主要磨损的部位是颚板与物料接触的工作表面,据此将钒板固定在颚板模具表面,然后在钒板上固定外部碳源,使其与钒板紧密结合;优选地,用聚苯乙烯泡沫塑料制作颚板模具;
3)按照颚板尺寸制作砂型,并将颚板模具置于砂型型腔中;优选地,用CO2水玻璃硬化砂、覆膜砂、自硬树脂砂或潮模砂制作砂型;
4)将高锰钢基材冶炼为钢液;优选地,温度控制在1500-1560℃以上;
5)将上述钢液浇入上述放置有钒板和外部碳源的砂型内,待钢液冷却凝固后,取出铸件,清砂处理,获得颚板基体为高锰钢基体,颚板与物料接触的工作表面为高锰钢与钒板的复合体;优选地,采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板和外部碳源的砂型内;优选地,浇注温度控制在1500-1560℃,浇注时间为20-60秒为宜;更优选地,一分钟后,在冒口补浇;优选地,室温冷却;
6)将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,最后随炉冷却至室温,从而在颚板表面形成耐磨涂层,而颚板基体仍为高锰钢;
其中,耐磨涂层为V2C致密陶瓷层。
12.如权利要求11所述的鄂板的制备方法,其特征在于:V2C致密陶瓷层为准单晶相,所述准单晶相是指,介于多晶相与单晶相之间,相较于多晶相,晶向一致性高、晶界明显减少,并且原子排列比较有序的显微组织;优选地,通过控制步骤6)中保温时间、保温温度获得该V2C致密陶瓷层。
13.一种如权利要求4-10之一所述鄂板的制备方法,其特征在于包括如下步骤:
1)先准备一钒板,优选的,其中钒的纯度应控制在99.7-99.9%;更优选地,所述钒板的厚度控制在0.2-3mm;优选地,所述钒板先被加以表面处理;
2)按照颚板尺寸制作颚板模具,根据颚板的工作受力状况,其主要磨损的部位是颚板与物料接触的工作表面,据此将钒板固定在颚板模具表面,然后在钒板上固定外部碳源,使其与钒板紧密结合;优选地,用聚苯乙烯泡沫塑料制作颚板模具;
3)按照颚板尺寸制作砂型,并将颚板模具置于砂型型腔中;优选地,用CO2水玻璃硬化砂、覆膜砂、自硬树脂砂或潮模砂制作砂型;
4)将钢基材冶炼为钢液;优选地,温度控制在1500-1560℃;
5)将上述钢液浇入上述放置有钒板和外部碳源的砂型内,待钢液冷却凝固后,取出铸件,清砂处理,获得颚板基体为钢基体,颚板与物料接触的工作表面为钢与钒板的复合体;优选地,采用消失模真空吸铸工艺,将上述钢液浇入上述放置有钒板和外部碳源的砂型内;优选地,浇注温度控制在1500-1560℃,浇注时间为20-60秒为宜;更优选地,一分钟后,在冒口补浇;优选地,室温冷却;
6)将浇铸完得到的颚板复合体放入具有保护气氛的保温炉内保温,最后随炉冷却至室温,从而在颚板表面形成梯度复合涂层,而颚板基体仍为高锰钢;
7)所得的表面具有梯度复合涂层的颚板,经水韧处理后得到单一的奥氏体组织。
14.如权利要求13所述的鄂板的制备方法,其特征在于:通过控制步骤6)中保温时间、保温温度获得该梯度复合涂层即碳化物涂层,所述碳化物涂层包括依次呈梯度分布的准单晶相V2C致密陶瓷层、微米V8C7致密陶瓷层、V8C7与基体的融合层。
15.如权利要求14所述的鄂板的制备方法,其特征在于:在步骤6)中保温温度、保温时间以及最终能够获得的梯度复合涂层的总厚度符合如下公式,
L=kTlogt1/2+b0
其中:
L——梯度复合涂层的总厚度(μm),
k——是常数,取值为0-1,k≠0,
T——保温温度(K),
t——保温时间(s),
b0——初始厚度(μm),即钢液浇注后与钒板之间形成的复合层的厚度。
16.如权利要求13-15之一所述的鄂板的制备方法,其特征在于:所述步骤1)中,表面处理的步骤如下:
第一步酸洗,选用300ml/L的盐酸或60ml/L的磷酸或120ml/L的双氧水,后流水冲洗;
第二步酸洗,选用300ml/L的氢氟酸或200ml/L的硫酸或240ml/L的双氧水,后流水冲洗;
第三步表面打磨,选用800-1200目的Al2O3砂纸,最后用酒精超声清洗。
17.如权利要求13-16之一所述的鄂板的制备方法,其特征在于:所述步骤2)中的外部碳源为石墨纸或石墨粉;优选地,所述石墨纸为三级以上,纯度为85-99%,厚度为0.1-0.35mm;优选地,所述石墨粉选择粒度在600-1000目,纯度为85-99%。
18.如权利要求13-17之一所述的鄂板的制备方法,其特征在于:所述步骤6)中,升温至1000-1160℃,升温速度控制在7℃/min,保温时间为6.5-11.5h,优选8-10h。
19.如权利要求13-18之一所述的鄂板的制备方法,其特征在于:所选钢基体为高锰钢。
20.如权利要求13-19之一所述的鄂板的制备方法,其特征在于:所述保护气为氩气或氮气,气体流量为5-8ml/min。
21.如权利要求13-20之一所述的鄂板的制备方法,其特征在于:所述步骤7)中的热处理工序为:经水韧处理后得到单一的奥氏体组织,具体热处理工序为:1小时升温到300-400℃,然后按每小时50-80℃的速度升温到1000-1050℃,使高锰钢充分进行奥氏体化,保温2-3小时,然后将其淬入水中进行水韧处理总计处理时间为13-14小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410657993.XA CN104525299B (zh) | 2014-11-18 | 2014-11-18 | 颚板及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410657993.XA CN104525299B (zh) | 2014-11-18 | 2014-11-18 | 颚板及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104525299A true CN104525299A (zh) | 2015-04-22 |
CN104525299B CN104525299B (zh) | 2017-01-11 |
Family
ID=52841032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410657993.XA Active CN104525299B (zh) | 2014-11-18 | 2014-11-18 | 颚板及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104525299B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111495469A (zh) * | 2020-04-26 | 2020-08-07 | 四川宇广能科技有限公司 | 一种颚板 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080020879A1 (en) * | 2006-07-18 | 2008-01-24 | Tsubakimoto Chain Co. | Chain for use in automobile engine |
CN101412101A (zh) * | 2008-12-03 | 2009-04-22 | 西安建筑科技大学 | 一种柱状硬质相复合耐磨颚板的制备方法 |
CN101811076A (zh) * | 2010-03-25 | 2010-08-25 | 河南科技大学 | 一种复合齿板及其铸造方法 |
CN101921961A (zh) * | 2010-04-06 | 2010-12-22 | 淮阴工学院 | 一种镶铸硬质合金棒的颚式破碎机齿板及其消失模铸造方法 |
-
2014
- 2014-11-18 CN CN201410657993.XA patent/CN104525299B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080020879A1 (en) * | 2006-07-18 | 2008-01-24 | Tsubakimoto Chain Co. | Chain for use in automobile engine |
CN101412101A (zh) * | 2008-12-03 | 2009-04-22 | 西安建筑科技大学 | 一种柱状硬质相复合耐磨颚板的制备方法 |
CN101811076A (zh) * | 2010-03-25 | 2010-08-25 | 河南科技大学 | 一种复合齿板及其铸造方法 |
CN101921961A (zh) * | 2010-04-06 | 2010-12-22 | 淮阴工学院 | 一种镶铸硬质合金棒的颚式破碎机齿板及其消失模铸造方法 |
Non-Patent Citations (4)
Title |
---|
材产: "特殊准单晶物质", 《军民两用技术与产品》 * |
王亮亮等: "原位合成碳化钛颗粒束增强铸铁基复合材料的磨损性能", 《材料热处理学报》 * |
王亮亮等: "原位生成TiCp/Fe表面梯度复合材料组织及形成机理研究", 《材料热处理技术》 * |
高跃岗: "《原位VCp/Fe复合材料中VC生成条件及材料耐蚀耐磨性能研究》", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111495469A (zh) * | 2020-04-26 | 2020-08-07 | 四川宇广能科技有限公司 | 一种颚板 |
CN111495469B (zh) * | 2020-04-26 | 2023-08-15 | 四川宇广能科技有限公司 | 一种颚板 |
Also Published As
Publication number | Publication date |
---|---|
CN104525299B (zh) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104525315A (zh) | 锤头及其制备方法 | |
CN104533992B (zh) | 刹车盘及其制备方法 | |
CN104525716B (zh) | 冷冲模具及其制备方法 | |
CN104533993B (zh) | 刹车盘及其制备方法 | |
CN104525593B (zh) | 拉丝模具及其制备方法 | |
CN104525900B (zh) | 耐磨碳化物涂层及其制备方法 | |
CN104527150B (zh) | 耐磨涂层及其制备方法 | |
CN104525913B (zh) | 护轨及其制备方法 | |
CN104525909B (zh) | 耐磨管及其制备方法 | |
CN104525573A (zh) | 轧辊及其制备方法 | |
CN104532234A (zh) | 耐磨碳化物涂层及其制备方法 | |
CN104525681B (zh) | 冷冲模具及其制备方法 | |
CN104525299A (zh) | 颚板及其制备方法 | |
CN104525859A (zh) | 破碎壁与轧臼壁及其制备方法 | |
CN104525912A (zh) | 衬板及其制备方法 | |
CN104525860A (zh) | 发动机挺柱及其制备方法 | |
CN104525861B (zh) | 发动机凸轮及其制备方法 | |
CN104525910B (zh) | 耐磨管及其制备方法 | |
CN104525898B (zh) | 导卫板及其制备方法 | |
CN104525887A (zh) | 磨辊及其制备方法 | |
CN104532899B (zh) | 铲齿及其制备方法 | |
CN104525862A (zh) | 旋流器及其制备方法 | |
CN104532694B (zh) | 护轨及其制备方法 | |
CN104525888A (zh) | 导卫辊及其制备方法 | |
CN104588616B (zh) | 拉丝模具及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |