CN104515989A - Three-dimensional holographic imaging method and system for close-range millimeter waves - Google Patents

Three-dimensional holographic imaging method and system for close-range millimeter waves Download PDF

Info

Publication number
CN104515989A
CN104515989A CN201410834094.2A CN201410834094A CN104515989A CN 104515989 A CN104515989 A CN 104515989A CN 201410834094 A CN201410834094 A CN 201410834094A CN 104515989 A CN104515989 A CN 104515989A
Authority
CN
China
Prior art keywords
msub
signals
millimeter wave
mrow
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410834094.2A
Other languages
Chinese (zh)
Inventor
刘艺青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN YITI TERAHERTZ TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN YITI TERAHERTZ TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN YITI TERAHERTZ TECHNOLOGY Co Ltd filed Critical SHENZHEN YITI TERAHERTZ TECHNOLOGY Co Ltd
Priority to CN201410834094.2A priority Critical patent/CN104515989A/en
Publication of CN104515989A publication Critical patent/CN104515989A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9011SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a three-dimensional holographic imaging method and system for close-range millimeter waves. The three-dimensional holographic imaging method comprises the following steps: sending continuous millimeter wave signals; measuring echo signals in a three-dimensional domain formed by using time, an angle of circumference and a Z-axis direction; carrying out Fourier transform on the maximized echo signal, and then utilizing a phase fixation method to realize conversion of the echo signals from a time domain to a frequency domain; carrying out motion compensation on the echo signals in the frequency domain by utilizing cylindrical Fourier transform and bilinear interpolation operation to obtain target scattering strength signals reconstructed under a rectangular coordinate system, and carrying out three-dimensional holographic imaging according to the reconstructed target scattering strength signals. According to the three-dimensional holographic imaging method and the three-dimensional holographic imaging system for the close-range millimeter waves disclosed by the invention, the echo signals are measured in the three-dimensional domain formed by the time, the angle of circumference and the Z-axis direction, the three-dimensional holographic imaging is carried out according to the reconstructed target scattering strength signals, and the motion compensation is not carried out in the continuous wave signal imaging process, so that better three-dimensional holographic imaging is realized for target objects.

Description

Close-range millimeter wave three-dimensional holographic imaging method and system
Technical Field
The invention relates to an imaging method and system, in particular to a close-range millimeter wave three-dimensional holographic imaging method and system.
Background
The integration of frequency modulated continuous wave signals and different wavelength signal imaging technologies promotes the formation of a broadband, effective, low-consumption and high-quality imaging system, and particularly in the application of a safety detection system, the uninterrupted motion influence of the antenna array continuously transmitting and receiving the frequency modulated continuous wave signals can not be ignored any more, so that the conventional discontinuous method in the synthetic aperture imaging algorithm needs to be optimized and improved in the frequency modulated continuous wave imaging processing, and the conventional algorithms, such as a wave number domain algorithm, a frequency scaling algorithm, a range Doppler algorithm and the like, are all focused on the optimization of frequency modulated continuous wave aperture imaging data. The existing image imaging processing method focuses on the optimization of imaging data, and does not consider the influence of movement in the signal transmission process, so that the imaging effect of electromagnetic wave signal detection is seriously influenced.
Disclosure of Invention
The technical problem solved by the invention is as follows: a close-range millimeter wave three-dimensional holographic imaging method and a close-range millimeter wave three-dimensional holographic imaging system are constructed, and the technical problems that the influence of motion is not considered in the continuous wave signal imaging process and the imaging effect is poor in the prior art are solved.
The technical scheme of the invention is as follows: the method for three-dimensional holographic imaging by using the millimeter waves in the short distance comprises the following steps:
and (3) transmitting millimeter wave signals: transmitting continuous millimeter wave signals along the surface of an object to be imaged, wherein the continuous millimeter wave signals comprise continuous wave millimeter wave detection signals and continuous wave millimeter wave reference signals;
acquiring a sampling signal: measuring echo signals in a three-dimensional domain formed by time, a circumferential angle and a Z-axis direction;
signal conversion: maximizing the received echo signals by using the reference signals, performing Fourier transform on the maximized echo signals, and converting the time domain of the echo signals into the frequency domain by using a phase fixing method;
reconstructing an echo signal: and performing motion compensation on the frequency domain echo signal by utilizing cylindrical Fourier transform and bilinear interpolation operation to obtain a reconstructed target scattering intensity signal under a rectangular coordinate system, and performing three-dimensional holographic imaging according to the reconstructed target scattering intensity signal.
The further technical scheme of the invention is as follows: and transmitting continuous millimeter wave signals around the surface of the object to be imaged.
The further technical scheme of the invention is as follows: and transmitting continuous millimeter wave signals around opposite sides respectively.
The further technical scheme of the invention is as follows: the bilinear interpolation operation comprises the interpolation operation of non-uniform sampling and uniform sampling of echo signals in a three-dimensional space wave number domain.
The further technical scheme of the invention is as follows: for non-uniform sampling in the spatial wavenumber domain, performing a difference operation in the spatial wavenumber domain that is excessive toward uniform sampling.
The technical scheme of the invention is as follows: the method comprises the steps of constructing a short-distance millimeter wave three-dimensional holographic imaging system, wherein the short-distance millimeter wave three-dimensional holographic imaging system comprises a millimeter wave signal emission source, a signal sampling module for acquiring sampling signals, a signal conversion module for performing signal conversion, a reconstruction module for reconstructing echo signals and an imaging module, wherein the millimeter wave signal emission source emits continuous millimeter wave signals which comprise continuous wave millimeter wave detection signals and continuous wave millimeter wave reference signals, and the signal sampling module measures the echo signals in a three-dimensional domain formed by time, a circumferential angle and a Z-axis direction; the signal conversion module maximizes the received echo signal by using a reference signal, performs Fourier transform on the maximized echo signal, and realizes the conversion from the time domain to the frequency domain of the echo signal by using a phase fixing method; the reconstruction module performs motion compensation on the frequency domain echo signals by utilizing cylindrical Fourier transform and bilinear interpolation operation to obtain reconstructed target scattering intensity signals under a rectangular coordinate system, and the imaging module performs three-dimensional holographic imaging according to the reconstructed target scattering intensity signals.
The further technical scheme of the invention is as follows: the electromagnetic wave emission source is a plurality of, and a plurality of electromagnetic wave emission sources are arranged into an array.
The further technical scheme of the invention is as follows: and the electromagnetic wave emission source transmits continuous wave radar signals around the surface of the object to be imaged.
The further technical scheme of the invention is as follows: the number of the electromagnetic wave emission sources is at least two, and the electromagnetic wave emission sources respectively transmit continuous wave radar signals in a surrounding mode in opposite directions.
The further technical scheme of the invention is as follows: the reconstruction module carries out interpolation operation of non-uniform sampling and uniform sampling on the echo signals in the three-dimensional space wave number domain.
The invention has the technical effects that: a method and a system for constructing a close-range millimeter wave three-dimensional holographic imaging method comprise the following steps: transmitting continuous millimeter wave signals along the surface of an object to be imaged, wherein the continuous millimeter wave signals comprise continuous wave millimeter wave detection signals and continuous wave millimeter wave reference signals; measuring echo signals in a three-dimensional domain formed by time, a circumferential angle and a Z-axis direction; maximizing the received echo signals by using the reference signals, performing Fourier transform on the maximized echo signals, and converting the time domain of the echo signals into the frequency domain by using a phase fixing method; and performing motion compensation on the frequency domain echo signal by utilizing cylindrical Fourier transform and bilinear interpolation operation to obtain a reconstructed target scattering intensity signal under a rectangular coordinate system, and performing three-dimensional holographic imaging according to the reconstructed target scattering intensity signal. The invention relates to a close-range millimeter wave three-dimensional holographic imaging method and a close-range millimeter wave three-dimensional holographic imaging system.
Drawings
FIG. 1 is a model of an imaging system of the present invention.
Fig. 2 is a block diagram of the imaging system of the present invention.
Detailed Description
The technical solution of the present invention is further illustrated below with reference to specific examples.
Referring to fig. 1, the embodiment of the present invention is: the method for three-dimensional holographic imaging by using the millimeter waves in the short distance comprises the following steps: defining the imaged object region as (X)0,Y0,Z0)=(R0cosθ,R0sin θ, Z) cylinder, in which R0To require the radius of the imaged area, θ is the angle in the cylindrical coordinate system, θ ∈ [0,2 π ∈]The length of the antenna array, i.e. the synthetic aperture length along the Z-axis, is LZThe aperture center position Z ═ ZCOf the plane of (a). During imaging, the antenna array rotates around the imaged object or part of the imaged object to form a synthetic aperture in the circumferential theta direction. The sampling position is (R, theta, Z), and the arbitrary imaging position P of the objectnHas the coordinates of (x)n,yn,zn) Corresponding to a scattering intensity of σ (x)n,yn,zn)。
The millimeter wave signal emission source 1 emits continuous millimeter wave signals along the surface of an object to be imaged, and the continuous millimeter wave signals comprise continuous wave millimeter wave detection signals and continuous wave millimeter wave reference signals. In a specific embodiment, the object to be imaged is regarded as a column, and when the continuous millimeter wave signal is transmitted along the surface of the object to be imaged, the millimeter wave signal transmitting head can rotate around the object to be imaged for a circle, and the continuous millimeter wave signal is transmitted simultaneously in the surrounding process. The millimeter wave signal transmitting head can rotate around a certain radian as long as the millimeter wave signal transmitted by the millimeter wave signal transmitting head covers an object to be imaged.
The specific implementation process is as follows: transmitting a millimeter wave signal as p (t),wherein f is0Is the fundamental frequency, t is the time variable within a single signal emission period, K is the rate at which the frequency of the emitted signal is swept, let us assume that the emission time of the millimeter wave signal is τ and the reception time is τ + τdIn which τ isdIs a two-way delay time, the instantaneous distance between the antenna element and the target object ranges from R (τ) to R (τ + τ)d) In the meantime. The two-way delay time may be expressed as
<math> <mrow> <msub> <mi>&tau;</mi> <mi>d</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>+</mo> <msub> <mi>&tau;</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Where, c is the speed of light,
<math> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>cos</mi> <mi>&theta;</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>sin</mi> <mi>&theta;</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>Z</mi> <mo>-</mo> <msub> <mi>Z</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
τ=nTθ+mTzv+t=τnm+t, (3)
n is the number of array elements, m is the number of samples along the elevation view direction, TθIs the signal transmission period in the azimuth domain along the arcuate array elements.
Acquiring a sampling signal: the signal sampling module 2 measures echo signals in a three-dimensional domain formed by time, a circumferential angle and a Z-axis direction. If the distance between the antenna array and the target is very short, (1) can be approximated as:
<math> <mrow> <msub> <mi>&tau;</mi> <mi>d</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>R</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
the radiation pattern of the millimeter waves is constant over the focused target area, and a single-point target object P is measured in the (t, theta, z) domainnThe echo signal of a point is
SR(t,θ,z)=σ(xn,yn,zn)·p(t-τd) (5)
The signal conversion module 3 maximizes the received echo signal by using the reference signal, performs fourier transform on the maximized echo signal, and realizes the conversion from the time domain to the frequency domain of the echo signal by using a phase fixing method.
The specific implementation process is as follows: in a synthetic aperture system for dechirped reception, in order to reduce the sampling requirement and the data transmission rate, the received signal can be maximized by using a reference signal, which is assumed to have a delay time τiThe echo signal may then be represented as:
SF(t,θ,z)=σ(xn,yn,zn)·exp[-j2πf0di)]exp[-j2πK(τdi)(t-τi)] (6)
f=K(t-τi) Substituting it into the formula (6) to obtain
SF(f,θ,z)=σ(xn,yn,zn)exp[-j2πK(f+f0)(τdc)] (7)
Substituting the formula (3) into the formula (7) to obtain
<math> <mrow> <msub> <mi>S</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&theta;</mi> <mo>,</mo> <mi>z</mi> <mo>;</mo> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>&tau;</mi> <mi>m</mi> </msub> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>&sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>[</mo> <mo>-</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <msub> <mrow> <mi>f</mi> <mo>+</mo> <mi>f</mi> </mrow> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>&tau;</mi> <mi>m</mi> </msub> <mo>+</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>c</mi> </mfrac> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein <math> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>c&tau;</mi> <mi>i</mi> </msub> <mn>2</mn> </mfrac> </mrow> </math>
With spatial variable zm(zm=vτm=vmTy) Performing one-dimensional Fourier transform on the formula (8) to obtain
<math> <mrow> <msub> <mi>S</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&theta;</mi> <mo>,</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>;</mo> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>v</mi> </mfrac> <msub> <mi>S</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mi>&theta;</mi> <mo>;</mo> <msub> <mi>z</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>jk</mi> <mi>z</mi> </msub> <msub> <mi>z</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>dz</mi> <mi>m</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
Estimating the formula (9) by a fixed phase method, taking an extreme value after partial derivation, and simultaneously combining the formula (8) and taking
<math> <mrow> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>+</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> <mo>,</mo> <msub> <mi>R</mi> <mi>xy</mi> </msub> <mo>=</mo> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>cos</mi> <mi>&theta;</mi> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>sin</mi> <mi>&theta;</mi> <mo>-</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> </mrow> </math> Finally obtain
<math> <mrow> <msub> <mi>S</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>,</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>;</mo> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>v</mi> </mfrac> <mi>&sigma;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mo>[</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>z</mi> <mo>+</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>v</mi> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>-</mo> <mi>vt</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>r</mi> </msub> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>R</mi> <mi>xy</mi> </msub> <msqrt> <msubsup> <mrow> <mn>4</mn> <mi>k</mi> </mrow> <mi>r</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>k</mi> <mi>z</mi> <mn>2</mn> </msubsup> </msqrt> <mo>]</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
When the detected object is large in volume, t ═ f/K +2R is definedi/c,
k xy = 4 k r 2 - k z 2
The signal model can be expressed as
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>S</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>,</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>v</mi> </mfrac> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mo>[</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <mfrac> <mi>f</mi> <mi>K</mi> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <mfrac> <msub> <mrow> <mn>2</mn> <mi>R</mi> </mrow> <mi>i</mi> </msub> <mi>c</mi> </mfrac> <mo>-</mo> <mn>2</mn> <msub> <mi>k</mi> <mi>r</mi> </msub> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>}</mo> <mo>&times;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <munder> <mo>&Integral;</mo> <mi>x</mi> </munder> <munder> <mo>&Integral;</mo> <mi>y</mi> </munder> <mi>J</mi> </mrow> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>h</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>xy</mi> </msub> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mi>dxdy</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, <math> <mrow> <msub> <mi>J</mi> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Integral;</mo> <mi>z</mi> </munder> <mi>&sigma;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mrow> <mo>(</mo> <msub> <mi>jk</mi> <mi>z</mi> </msub> <mi>z</mi> <mo>)</mo> </mrow> <mi>dz</mi> </mrow> </math>
<math> <mrow> <msub> <mi>h</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>xy</mi> </msub> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>[</mo> <mi>j</mi> <msub> <mi>k</mi> <mi>xy</mi> </msub> <msqrt> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>cos</mi> <mi>&theta;</mi> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>sin</mi> <mi>&theta;</mi> <mo>-</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>]</mo> </mrow> </math>
the reconstruction module 4 performs motion compensation on the frequency domain echo signal by utilizing cylindrical Fourier transform and bilinear interpolation operation to obtain a reconstructed target scattering intensity signal under a rectangular coordinate system, and the imaging module 5 performs three-dimensional holographic imaging according to the reconstructed target scattering intensity signal.
The method is derived based on Parseval theorem and by utilizing Fourier property derivation of a circular symmetric function:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>S</mi> <mi>F</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>,</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>v</mi> </mfrac> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>j</mi> <mo>[</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <mfrac> <mi>f</mi> <mi>K</mi> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <mfrac> <msub> <mrow> <mn>2</mn> <mi>R</mi> </mrow> <mi>i</mi> </msub> <mi>c</mi> </mfrac> <mo>-</mo> <msub> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>r</mi> </msub> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>}</mo> <mo>&times;</mo> </mtd> </mtr> <mtr> <mtd> <munder> <mo>&Integral;</mo> <msub> <mi>k</mi> <mi>xy</mi> </msub> </munder> <msub> <mi>k</mi> <mi>xy</mi> </msub> <mo>[</mo> <msub> <mi>J</mi> <msub> <mi>k</mi> <mi>xy</mi> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>xy</mi> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>,</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <msub> <mi>k</mi> <mi>xy</mi> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>xy</mi> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>]</mo> <msub> <mi>dk</mi> <mi>xy</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
can be derived
<math> <mrow> <msub> <mi>J</mi> <msub> <mi>k</mi> <mi>xy</mi> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>xy</mi> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>,</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>v</mi> <mo>*</mo> <msub> <mi>IFFT</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </msub> <mo>{</mo> <mfrac> <mrow> <msub> <mi>FFT</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </msub> <mo>{</mo> <msub> <mi>S</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>,</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>;</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mi>exp</mi> <mo>[</mo> <mi>j&Phi;</mi> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>,</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>;</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <msub> <mi>FFT</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </msub> <mo>[</mo> <msub> <mi>H</mi> <msub> <mi>k</mi> <mi>xy</mi> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>xy</mi> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mfrac> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein
<math> <mrow> <msub> <mi>H</mi> <msub> <mi>k</mi> <mi>xy</mi> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>xy</mi> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>[</mo> <msub> <mi>jk</mi> <mi>xy</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>cos</mi> <mi>&theta;</mi> <mo>]</mo> </mrow> </math>
<math> <mrow> <mi>&Phi;</mi> <mrow> <mo>(</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mo>,</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>;</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <msub> <mi>&tau;</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <mfrac> <mi>f</mi> <mi>K</mi> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mi>z</mi> </msub> <mi>v</mi> <mfrac> <msub> <mrow> <mn>2</mn> <mi>R</mi> </mrow> <mi>i</mi> </msub> <mi>c</mi> </mfrac> <mo>-</mo> <msub> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>r</mi> </msub> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
For formula (14), kzz0Representing the original position of the array, kznIndicating the phase change corresponding to the elevation range shift due to the motion of the nth antenna element,representing the spatially invariant values due to the motion of the array during one scan time,and 2krRiConstant change variables representing azimuth and distance.
For the non-uniform sampling in the space wave number domain, the difference operation of uniform sampling transition is required to be carried out in the space wave number domain, and the number of cylindrical samples isConverted into J (k) by an interpolation algorithmx,ky,kz) Wherein k isx=kxy cosθ,ky=kxysin θ, σ (x, y, z) and J (k)x,ky,kz) A Fourier transform pair is formed, and three-dimensional inverse Fourier transform is carried out to finally obtain the target scattering intensity of reconstruction in a rectangular coordinate system
σ(x,y,z)=v∫∫∫J(kx,ky,kz)exp[j(kxx-kyy+kzz)]dkxdkydkz (15)
And obtaining a target scattering intensity signal reconstructed under a rectangular coordinate system, and performing three-dimensional holographic imaging by the imaging module 5 according to the reconstructed target scattering intensity signal.
The specific implementation mode of the invention is as follows: the method comprises the steps of constructing a short-distance millimeter wave three-dimensional holographic imaging system, wherein the short-distance millimeter wave three-dimensional holographic imaging system comprises a millimeter wave signal emission source 1, a signal sampling module 2 for acquiring sampling signals, a signal conversion module 3 for performing signal conversion, a reconstruction module 4 for reconstructing echo signals and an imaging module 5, the millimeter wave signal emission source 1 emits continuous millimeter wave signals, the continuous millimeter wave signals comprise continuous wave millimeter wave detection signals and continuous wave millimeter wave reference signals, and the signal sampling module 2 measures echo signals in a three-dimensional domain formed by time, a circumferential angle and a Z-axis direction; the signal conversion module 3 maximizes the received echo signal by using the reference signal, performs fourier transform on the maximized echo signal, and realizes the conversion from the time domain to the frequency domain of the echo signal by using a phase fixing method; the reconstruction module 4 performs motion compensation on the frequency domain echo signal by using cylindrical Fourier transform and bilinear interpolation operation to obtain a reconstructed target scattering intensity signal under a rectangular coordinate system, and the imaging module 5 performs three-dimensional holographic imaging according to the reconstructed target scattering intensity signal.
The invention has the technical effects that: a method and a system for constructing a close-range millimeter wave three-dimensional holographic imaging method comprise the following steps: transmitting continuous millimeter wave signals, wherein the continuous millimeter wave signals comprise continuous wave millimeter wave detection signals and continuous wave millimeter wave reference signals; measuring echo signals in a three-dimensional domain formed by time, a circumferential angle and a Z-axis direction; maximizing the received echo signals by using the reference signals, performing Fourier transform on the maximized echo signals, and converting the time domain of the echo signals into the frequency domain by using a phase fixing method; and performing motion compensation on the frequency domain echo signal by utilizing cylindrical Fourier transform and bilinear interpolation operation to obtain a reconstructed target scattering intensity signal under a rectangular coordinate system, and performing three-dimensional holographic imaging according to the reconstructed target scattering intensity signal. The invention relates to a close-range millimeter wave three-dimensional holographic imaging method and a close-range millimeter wave three-dimensional holographic imaging system.
The foregoing is a more detailed description of the invention in connection with specific preferred embodiments and it is not intended that the invention be limited to these specific details. For those skilled in the art to which the invention pertains, several simple deductions or substitutions can be made without departing from the spirit of the invention, and all shall be considered as belonging to the protection scope of the invention.

Claims (10)

1. A close-range millimeter wave three-dimensional holographic imaging method comprises the following steps:
and (3) transmitting millimeter wave signals: transmitting continuous millimeter wave signals along the surface of an object to be imaged, wherein the continuous millimeter wave signals comprise continuous wave millimeter wave detection signals and continuous wave millimeter wave reference signals;
acquiring a sampling signal: measuring echo signals in a three-dimensional domain formed by time, a circumferential angle and a Z-axis direction;
signal conversion: maximizing the received echo signals by using the reference signals, performing Fourier transform on the maximized echo signals, and converting the time domain of the echo signals into the frequency domain by using a phase fixing method;
reconstructing echo signals and imaging: and performing motion compensation on the frequency domain echo signal by utilizing cylindrical Fourier transform and bilinear interpolation operation to obtain a reconstructed target scattering intensity signal under a rectangular coordinate system, and performing three-dimensional holographic imaging according to the reconstructed target scattering intensity signal.
2. The close-range millimeter wave three-dimensional holographic imaging method of claim 1, wherein continuous millimeter wave signals are transmitted around along the surface of the object to be imaged.
3. The close-range millimeter wave three-dimensional holographic imaging method according to claim 1, wherein continuous millimeter wave signals are respectively transmitted around in opposite directions.
4. The close-range millimeter wave three-dimensional holographic imaging method according to claim 1, wherein the bilinear interpolation operation comprises an interpolation operation of non-uniform sampling and uniform sampling for echo signals in a three-dimensional space wavenumber domain.
5. The close-range millimeter wave three-dimensional holographic imaging method according to claim 4, wherein for the non-uniform sampling in the spatial wavenumber domain, further comprising performing a difference operation to the uniform sampling transition in the spatial wavenumber domain.
6. A close-range millimeter wave three-dimensional holographic imaging system is characterized by comprising a millimeter wave signal emission source, a signal sampling module for acquiring sampling signals, a signal conversion module for performing signal conversion, a reconstruction module for reconstructing echo signals and an imaging module, wherein the millimeter wave signal emission source emits continuous millimeter wave signals along the surface of an object to be imaged, the continuous millimeter wave signals comprise continuous wave millimeter wave detection signals and continuous wave millimeter wave reference signals, and the signal sampling module measures echo signals in a three-dimensional domain formed by time, a circumferential angle and a Z-axis direction; the signal conversion module maximizes the received echo signal by using a reference signal, performs Fourier transform on the maximized echo signal, and realizes the conversion from the time domain to the frequency domain of the echo signal by using a phase fixing method; the reconstruction module performs motion compensation on the frequency domain echo signals by utilizing cylindrical Fourier transform and bilinear interpolation operation to obtain reconstructed target scattering intensity signals under a rectangular coordinate system, and the imaging module performs three-dimensional holographic imaging according to the reconstructed target scattering intensity signals.
7. The close-range millimeter wave three-dimensional holographic imaging system according to claim 6, wherein the electromagnetic wave emission source is plural, and the plural electromagnetic wave emission sources are arranged in an array.
8. The close-range millimeter wave three-dimensional holographic imaging system according to claim 6, wherein the electromagnetic wave emission source transmits a continuous wave radar signal around along the surface of the object to be imaged.
9. The close-range millimeter wave three-dimensional holographic imaging system according to claim 6, wherein the number of the electromagnetic wave emission sources is at least two, and the electromagnetic wave emission sources respectively transmit continuous wave radar signals around in opposite directions.
10. The close-range millimeter wave three-dimensional holographic imaging system according to claim 6, further comprising the reconstruction module performing non-uniform sampling and uniform sampling interpolation operations on the echo signals in the three-dimensional space wavenumber domain.
CN201410834094.2A 2014-12-25 2014-12-25 Three-dimensional holographic imaging method and system for close-range millimeter waves Pending CN104515989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410834094.2A CN104515989A (en) 2014-12-25 2014-12-25 Three-dimensional holographic imaging method and system for close-range millimeter waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410834094.2A CN104515989A (en) 2014-12-25 2014-12-25 Three-dimensional holographic imaging method and system for close-range millimeter waves

Publications (1)

Publication Number Publication Date
CN104515989A true CN104515989A (en) 2015-04-15

Family

ID=52791579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410834094.2A Pending CN104515989A (en) 2014-12-25 2014-12-25 Three-dimensional holographic imaging method and system for close-range millimeter waves

Country Status (1)

Country Link
CN (1) CN104515989A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548092A (en) * 2015-12-25 2016-05-04 华中科技大学 Method for detecting atomic structure on basis of photoelectron holographic imaging
CN106338732A (en) * 2016-08-23 2017-01-18 华讯方舟科技有限公司 Millimeter wave 3D holographic imaging method and millimeter wave 3D holographic imaging system
CN107563958A (en) * 2017-08-23 2018-01-09 广州视源电子科技股份有限公司 Holographic image conversion method and system
CN108227029A (en) * 2017-12-26 2018-06-29 北京无线电计量测试研究所 A kind of mm-wave imaging compensation method, equipment and readable computer storage medium
CN112130167A (en) * 2020-07-03 2020-12-25 北京中电科卫星导航系统有限公司 Mobile millimeter wave human body security inspection system
CN112764026A (en) * 2020-12-01 2021-05-07 北京无线电计量测试研究所 Channel type close-range active millimeter wave motion compensation and three-dimensional imaging method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806893A (en) * 2010-03-25 2010-08-18 北京航空航天大学 Self-adaption two-dimensional interpolation method for synthetic aperture radar point target imaging quality assessment
CN102565793A (en) * 2011-12-30 2012-07-11 北京华航无线电测量研究所 Millimeter-wave imaging system for omni-directional scanning of single antenna array
EP2660623A2 (en) * 2012-09-03 2013-11-06 Institute of Electronics, Chinese Academy of Sciences Imaging method and device in SAB mobile bistatic SAR
CN103630895A (en) * 2013-12-12 2014-03-12 北京无线电计量测试研究所 Imaging method for millimeter wave close-range three-dimensional imaging system
CN103630884A (en) * 2013-12-23 2014-03-12 北京无线电计量测试研究所 Calibration method for millimeter-wave antenna array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806893A (en) * 2010-03-25 2010-08-18 北京航空航天大学 Self-adaption two-dimensional interpolation method for synthetic aperture radar point target imaging quality assessment
CN102565793A (en) * 2011-12-30 2012-07-11 北京华航无线电测量研究所 Millimeter-wave imaging system for omni-directional scanning of single antenna array
EP2660623A2 (en) * 2012-09-03 2013-11-06 Institute of Electronics, Chinese Academy of Sciences Imaging method and device in SAB mobile bistatic SAR
CN103630895A (en) * 2013-12-12 2014-03-12 北京无线电计量测试研究所 Imaging method for millimeter wave close-range three-dimensional imaging system
CN103630884A (en) * 2013-12-23 2014-03-12 北京无线电计量测试研究所 Calibration method for millimeter-wave antenna array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B.L.REN ET.AL: "《MODIFIED CYLINDRICAL HOLOGRAPHIC ALGORITHM FOR THREE-DIMENSIONAL MILLIMETER-WAVE IMAGING》", 《PROGRESS IN ELECTROMAGNETICS RESEARCH》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548092A (en) * 2015-12-25 2016-05-04 华中科技大学 Method for detecting atomic structure on basis of photoelectron holographic imaging
CN105548092B (en) * 2015-12-25 2018-02-23 华中科技大学 A kind of method based on Photoelectron holography imaging detection atomic structure
CN106338732A (en) * 2016-08-23 2017-01-18 华讯方舟科技有限公司 Millimeter wave 3D holographic imaging method and millimeter wave 3D holographic imaging system
WO2018036373A1 (en) * 2016-08-23 2018-03-01 华讯方舟科技有限公司 Millimeter-wave three-dimensional holographic imaging method and system
CN106338732B (en) * 2016-08-23 2019-02-26 华讯方舟科技有限公司 A kind of millimeter wave three-dimensional holographic imaging method and system
US11209538B2 (en) 2016-08-23 2021-12-28 Shenzhen Institute Of Terahertz And Innovation Millimeter-wave three-dimensional holographic imaging method and system
CN107563958A (en) * 2017-08-23 2018-01-09 广州视源电子科技股份有限公司 Holographic image conversion method and system
CN108227029A (en) * 2017-12-26 2018-06-29 北京无线电计量测试研究所 A kind of mm-wave imaging compensation method, equipment and readable computer storage medium
CN112130167A (en) * 2020-07-03 2020-12-25 北京中电科卫星导航系统有限公司 Mobile millimeter wave human body security inspection system
CN112764026A (en) * 2020-12-01 2021-05-07 北京无线电计量测试研究所 Channel type close-range active millimeter wave motion compensation and three-dimensional imaging method and system
CN112764026B (en) * 2020-12-01 2023-11-14 北京无线电计量测试研究所 Channel type short-distance active millimeter wave motion compensation and three-dimensional imaging method and system

Similar Documents

Publication Publication Date Title
CN104515989A (en) Three-dimensional holographic imaging method and system for close-range millimeter waves
US10795009B2 (en) Digital beamforming for radar sensing using wireless communication chipset
US11079470B2 (en) Radar modulation for radar sensing using a wireless communication chipset
Wang et al. Nonuniform frequency diverse array for range-angle imaging of targets
US10782390B2 (en) Full-duplex operation for radar sensing using wireless communication chipset
CN108107431B (en) Rapid implementation method for cylindrical scanning SAR three-dimensional imaging
Sheen et al. Near field imaging at microwave and millimeter wave frequencies
CN112162326B (en) Holographic imaging security inspection system and security inspection method
Li et al. Efficient near-field imaging using cylindrical MIMO arrays
Yanik et al. Millimeter-wave near-field imaging with two-dimensional SAR data
CN106855619B (en) A method of obtaining the resolution ratio of MIMO imaging radar system all directions
Setsu et al. Super-Resolution Doppler Velocity Estimation by Kernel-Based Range–$\tau $ Point Conversions for UWB Short-Range Radars
CN105334540A (en) Active microwave holographic security check instrument system
CN104569971A (en) Close-range three-dimensional holographic imaging method and system
JP6939981B2 (en) Object detection device and object detection method
AU2018313118A1 (en) Sensor array imaging device
CN104765034A (en) Close-range terahertz three-dimensional holographic imaging method and close-range terahertz three-dimensional holographic imaging system
CN104569999A (en) Near-distance infrared three-dimensional holographic imaging method and system
Hu et al. A Fast Wavenumber Domain 3D Near-Field Imaging Algorithm for Cross MIMO Array
JP5268655B2 (en) Radar system and method for determining distance, radial velocity or azimuth using the radar system
Zhao et al. 0.14 THz imaging system for security and surveillance
Nazlı et al. Application of the generalized pencil of function method to time reversal imaging
Yonel et al. Phaseless Multi-Static Synthetic Aperture Radar Imaging
Kidera et al. Experimental study of shadow region imaging algorithm with multiple scattered waves for UWB radars
Ando et al. K-and Doppler velocity decomposition-based range points’ migration for 3-D localization with millimeter wave radar

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150415

RJ01 Rejection of invention patent application after publication