CN104504457A - 产水气井产能预测方法 - Google Patents

产水气井产能预测方法 Download PDF

Info

Publication number
CN104504457A
CN104504457A CN201410724775.3A CN201410724775A CN104504457A CN 104504457 A CN104504457 A CN 104504457A CN 201410724775 A CN201410724775 A CN 201410724775A CN 104504457 A CN104504457 A CN 104504457A
Authority
CN
China
Prior art keywords
water
gas
wgr
relative permeability
gas well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410724775.3A
Other languages
English (en)
Other versions
CN104504457B (zh
Inventor
杨树合
王连敏
石占中
余贝贝
马小明
董萍
梁锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute Of Petroleum Exploration & Development Dagang Oil Field Of Cnpc
Original Assignee
Research Institute Of Petroleum Exploration & Development Dagang Oil Field Of Cnpc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute Of Petroleum Exploration & Development Dagang Oil Field Of Cnpc filed Critical Research Institute Of Petroleum Exploration & Development Dagang Oil Field Of Cnpc
Priority to CN201410724775.3A priority Critical patent/CN104504457B/zh
Publication of CN104504457A publication Critical patent/CN104504457A/zh
Application granted granted Critical
Publication of CN104504457B publication Critical patent/CN104504457B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种产水气井产能预测方法,所述预测方法通过建立产水气井生产时的水气比与井底附近含水饱和度的变化关系,再由相渗曲线确定不同含水饱和度下的气相有效渗透率,进而对气井见水后的二项式产能方程系数进行修正,得到修正后的不同水气比下的二项式产能方程。本发明所述的预测方法计算简单,且符合实际情况,更能有效指导气田开发。

Description

产水气井产能预测方法
技术领域
本发明属于石油产能预测的技术领域,具体地说,本发明涉及一种产水气井产能预测方法。
背景技术
气井产能评价是气藏工程研究中一项非常重要的工作,是编制气田开发规划部署、进行开发方案设计、开发动态分析、气井配产及开发方案调整的重要依据。
早在20世纪20年代,美国矿业局的Pierce和Rawlinest就提出了常规回压试井测试法确定气井的产能,在全球得到了广泛的应用。1955年Cullendert针对低渗透气藏的情况,提出了等时试井的测试方法,极大地提高了气藏产能测试的效率,为了进一步缩短测试时间,1959年katzt等人提出了修正等时试井的测试方法和资料分析方法,这对产能测试作了极大的改进,在全球得到广泛的应用。在20世纪60年代,产能测试资料的分析方法有了极大的改进,先后提出了指数式分析方法和二项式分析方法,并进一步提出了压力平方表述法和AL-Hussainy等人提出的真实气体拟压力表述法,使得气井产能试井资料分析更科学、合理、严谨,保证了气井产能评价结果的可靠性。
但是现有技术中的产能预测方法概括起来包括智能算法、产能指数法、测试法和基于渗流理论方法等。以上预测方法中渗流理论的产能预测方法理论基础牢固,其模型以流体渗流理论为基础推导得出,充分地考虑了流体性质等因素,但其没有仔细考虑水气比的影响,从而往往导致预测与实际产能出现较大偏离,预测精度还有待进一步提高。
发明内容
为了解决现有技术中的上述技术问题,本发明的目的在于提供一种产水气井产能预测方法。
为了实现上述目的,本发明采用了以下技术方案:
本发明提供一种产水气井产能预测方法,所述预测方法包括以下步骤:利用气井分流率的定义式得到气水相对渗透率与生产水气比的变化关系式;对油田天然岩心取圆柱状岩样开展岩心驱替实验,得到多个样品一系列含水饱和度Sw,气相相对渗透率Krg,水相相对渗透率Krw,将多个样品的气水相渗曲线做归一化处理,回归出气相相对渗透率与不同含水饱和度下的气水相对渗透率的关系式;两者结合可得气相相对渗透率与水气比的关系,即可得到由水气比修正的产水气井二项式产能方程。
具体来说:
1.无水气井产能方程
利用气井试井资料确定气井产能,拟稳定流动状态的气井无水生产时的产能方程为:
P R 2 - P wf 2 = Aq + Bq 2 - - - ( 7 )
其中系数A、B的表达式分别为
A = 1.291 × 10 - 3 T μ ‾ Z ‾ K rg ( S wi ) h [ ln 0.472 r e r w + S ] - - - ( 8 )
B = 2.282 × 10 - 21 βγ g Z ‾ T r w h 2 - - - ( 9 )
式中:
PR为地层压力,MPa;Pwf为井底流压,MPa;q为产气量,104m3/d;T为气藏温度,K:为平均天然气粘度,mPa·s;为平均天然气偏差因子,无因次;为地层束缚水饱和度下的气相相对渗透率,10-3μm2;h为气藏地层厚度,m;re为气井供给半径,m;rw为井筒半径,m;S为表皮系数,无因次。
2.产水气井产能方程的修正
二项式产能方程的系数A为层流系数,B为紊流系数。由定义式可知系数A与气相相对渗透率有关,是一个随含水饱和度变化而变化的值,而B值受含水饱和度变化的影响较小,基本上可以考虑为定值,因此只需对系数A进行修正。
带水生产的气井的二项式产能方程系数A’表达式为
A ′ = 1.291 × 10 - 3 T μ ‾ Z ‾ K rg ( S w ) h [ ln 0.472 r e r w + S t ] - - - ( 10 )
对于底水锥进或凝析水在井底的聚集,只是在生产井井底附近一个较小区域内有较高的含水饱和度,在外围的大部分区域内,气相的饱和度仍接近原始状况,这时可用等效表皮系数的方法来修正井底附近的表皮系数。生产井附近含水饱和度上升所产生的等效表皮系数可以用式(11)进行定量表示
S b = ( K rg ( swi ) K rg ( sw ) - 1 ) ln ( r b r w ) - - - ( 11 )
式中:Sb为等效表皮系数;rb为水侵带半径,m。
这样,考虑生产井附近含水饱和度上升所产生的综合表皮系数St可以表示为:
St=S+Sb   (12)
虽然水侵带半径的确定比较麻烦(可以通过试井解释获得较准确的值),但是根据文献调研表明,伤害内圈半径大于6m后,随着水侵带半径继续增大,气井产能变化不明显。为了快速评价产水对气井产能影响,一般可取rb为6左右的一个定值。
将(8)、(10)式两式相除,得
A ′ A = K rg ( S wi ) [ ln ( 0.472 r e r w ) + S t ] K rg ( S w ) [ ln ( 0.472 r e r w ) + S ] - - - ( 13 )
A ′ = K rg ( S wi ) K rg ( S w ) × [ ln ( 0.472 r e r w ) + S t ] [ ln ( 0.472 r e r w ) + S ] × A - - - ( 14 )
式中只需确定气相相对渗透率随含水饱和度的变化值,其余参数均可由试井分析获得。分析产水气井的生产能力可用生产水气比来定量分析,只要知道不同水气比下的气相相对渗透率随饱和度的变化关系,即可得到修正后的二项式产能方程系数。
(1)气水相对渗透率与生产水气比的关系
气井的水气比定义为:每产出标准状态下104m3天然气生产的水量m3,井底分流率的定义为:井底产出自由水量占井底流动条件总流体产量的比值,因此真正来自孔隙的自由水应该扣除凝析水。因此,气井的分流率的定义式为:
f w = WGR - R wgr ( WGR - R wgr ) + 10000 × B g ( p wf ) - - - ( 15 )
式中:
WGR为生产水气比,m3/104m3;Rwgr为凝析水气比,m3/104m3;fw为含水分流率,无因次;Bg(Pwf)为气体体积系数,无因次。
水的分流率的另一种定义为地层中任意一点的水流量与总流量的比值,则不同气相渗透率下的分流率的计算式为:
f w = 1 1 + μ w ( p ) K rg ( S w ) μ g ( p ) K rw ( S w ) - - - ( 16 )
式中:fw为含水率,无因次;Krg为气相相对渗透率,无因次;Krw为水相相对渗透率,无因次;μg为气相粘度,mPa.s;μw为水相粘度,mPa.s。
联立(15)式与(16)式,则可得到不同井底流压下,气水相对渗透率与生产水气比的变化关系。不同地层压力下的油水粘度和不同井底流压下的气体体积系数均可由经验公式计算得出。
K rg ( S w ) K rw ( S w ) = 10000 × B g ( p wf ) μ g ( p ) ( WGR - R wgr ) μ w ( p ) - - - ( 17 )
(2)产能方程系数修正
利用气水两相相对渗透率曲线的归一化处理方法,对生产层位的多个样品的气水相渗曲线做归一化处理,处理后的气相相对渗透率与含水饱和度的关系满足回归关系式: K rg ( Sw ) = a ln ( K rg ( S w ) K rw ( S w ) ) + b , a、b为曲线的回归系数。
结合气水相对渗透率与生产水气比的变化关系式(17),可得气相相对渗透率与水气比WGR的关系,结合A’计算式,可得产水气井二项式产能方程的修正系数A’与WGR的关系式:
A ′ = K rg ( S wi ) a ln ( 10000 × B g ( p wf ) μ g ( p ) ( WGR - R wgr ) μ w ( p ) ) + b [ ln ( 0.472 r e r w ) + S t ] [ ln ( 0472 r e r w ) + S ] A - - - ( 18 )
气井产出的水由两部分组成,一部分是在高温、高压下以水蒸汽的形态存在,随着天然气采出而采出凝析水;另一部分则是由于气层外部水体的侵入,形成气水两相流动而产生。对于水淹气藏,外部侵入水体远大于凝析水量,因此凝析水量可以不予考虑,即Rwgr=0。
与现有技术相比,本发明所述的减震器与弹簧的固定方法具有以下有益效果:
本文发明所述方法通过建立产水气井生产时的水气比与井底附近含水饱和度的变化关系,再由相渗曲线确定不同含水饱和度下的气相有效渗透率,进而对气井见水后的二项式产能方程系数进行修正,得到修正后的不同水气比下的二项式产能方程,所述方法较符合实际情况,更能有效指导气田开发。
附图说明
图1为不同水气比下气相渗透率随压力的变化关系图;
图2为W1井初期无水生产时的IPR曲线;
图3水气比10m3/104m3时的IPR曲线;
图4目前实际数据计算的IPR曲线
具体实施方式
以下将结合具体实施例对本发明所述的产水气井产能修正方法做进一步的阐述,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解;需要声明的是在具体实施例的描述都是示例性的,而并不意味对本发明保护范围的限制,本发明的权利范围以限定的权利要求为准。
实施例1
下面通过气田某气井产水前后的产能变化来描述本发明所述的产水气井产能计算方法,所述方法主要包括以下步骤:
W1井是一口典型的带边水的凝析气井,1999年6月正式投入生产,生产层位奥陶系,从2001年9月开始见水后水气比逐步增加至5m3/104m3,日产气、油量明显下降。
由试井分析获得W1井不产水时表皮系数为1.2,气井供给半径569米,井筒半径0.102米。PVT参数见表1,相渗数据见表2。根据回压试井资料得W1井初期无水生产时的二项式产能方程为利用表2相渗数据回归得到气相相对渗透率与气水相对渗透率的关系式:
K rg ( Sw ) = 0.034 ln ( K rg ( S w ) K rw ( S w ) ) + 0.0974 - - - ( 19 )
结合公式(11)、(17)可得不同水气比、不同压力下气相相对渗透率及等效表皮系数,计算结果见表3、图1所示,可见当生产水气比为5m3/104m3时,气相相对渗透率大幅降低,仅为无水的20%。
表1 W1井PVT参数
目前W1井水气比WGR=10m3/104m3,在此条件下利用本文推导的公式计算的IPR曲线如图2所示,与无水条件的IPR曲线附图3对比,可知在水气比为10m3/104m3时的无阻流量约为无水情况下无阻流量的30%。
表2 W1井平均气水相渗曲线数据
Sw Krw Krg Krg/Krw
0.2063 0 1
0.224 0.0076 0.9037 118.63
0.2702 0.0078 0.7020 90.32
0.3303 0.0045 0.5176 113.9
0.4042 0.0151 0.3913 25.968
0.4499 0.0255 0.3333 13.085
0.499 0.0291 0.2822 9.7059
0.5481 0.0361 0.2344 6.496
0.6042 0.0602 0.1868 3.1023
0.6673 0.0809 0.1391 1.7185
0.7339 0.1154 0.0914 0.7925
0.762 0.1531 0.0676 0.4416
0.8076 0.1977 0.0301 0.1524
0.8251 0.2251 0.0233 0.1037
0.8546 0.3039 0.0000 0
表3 不同生产水气比,不同压力下的气相相对渗透率及等效表皮系数
目前W1井地层压力为20MPa,则不考虑水的影响时,无阻流量为17.88万方,在考虑水的影响下,利用修正后的方程计算无阻流量为5.36万方。
选择目前W1井具有代表性的生产数据点利用一点法得到W1井的二项式产能方程则在目前压力20MPa的情况下,如图4所示,由现场实际生产资料得到的无阻流量为5.68万方,与修正后的无阻流量十分接近,误差为5.6%。实际产气量为2万方左右,在目前井底流压15MPa的条件下,气井最小携液流量为1.8万方,目前气井产量大于最小携液流量,气井能够正常携液生产。这也是W1井9月进行排水采气的工艺措施后,能够平稳生产至2010年10月30日的原因,说明本文推导的公式对产水气井的产能计算比较可靠。可见,采用本实施例所述的方法推导的产水气井产能修正计算公式,能较准确预测未来气井在不同水气比下的无阻流量,由此能够为现场配产提供依据,并且能对目前产水气井的生产制度的合理性进行评价,对实现产水气井的平稳生产有重要指导作用,为气田开发方案制定以及下步措施和调整方案编制提供更符合生产实际的理论依据。
对于本领域的普通技术人员而言,具体实施例只是结合对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其他场合的,均在本发明的保护范围之内。

Claims (2)

1.一种产水气井产能预测方法,其特征在于:包括以下步骤:利用气井分流率的定义式得到气水相对渗透率与生产水气比的变化关系式;对油田天然岩心取圆柱状岩样开展岩心驱替实验,得到多个样品一系列含水饱和度Sw,气相相对渗透率Krg,水相相对渗透率Krw,将多个样品的气水相渗曲线做归一化处理,回归出气相相对渗透率与不同含水饱和度下的气水相对渗透率的关系式;两者结合可得气相相对渗透率与水气比的关系,即可得到由水气比修正的产水气井二项式产能方程。
2.根据权利要求1所述的产水气井产能预测方法,其特征在于:已知气井无水条件下的二项式产能方程为则产水气井二项式产能方程中与不同含水饱和度下的气相相对渗透率有关的参数A′的表达式为:
A ′ = K rg ( S wi ) K rg ( S w ) × [ 1 n ( 0.472 r e r w ) + S t ] [ 1 n ( 0.472 r e r w ) + S ] × A - - - ( 1 )
根据水的分流率定义:
f w = WGR - R wgr ( WGR - R wgr ) + 10000 × B g ( p wf ) - - - ( 2 ) .
f w = 1 1 + μ w ( p ) K rg ( S w ) μ g ( p ) K rw ( S w ) - - - ( 3 )
联立(2)式与(3)式,则可得到不同井底流压下,气水相对渗透率与生产水气比的变化关系:
K rg ( S w ) K rw ( S w ) = 10000 × B g ( p wf ) μ g ( p ) ( WGR - R wgr ) μ w ( p ) - - - ( 4 )
利用气水两相相对渗透率曲线的归一化处理方法,对生产层位的多个样品的气水相渗曲线做归一化处理,处理后的气相相对渗透率与含水饱和度的关系满足回归关系式:
K rg ( Sw ) = a 1 n ( K rg ( S w ) K rw ( S w ) ) + b - - - ( 5 )
将关系式(4)、(5)结合可得气相相对渗透率与水气比WGR的关系,结合A′计算式(1),可得产水气井二项式产能方程的修正系数A′与WGR的关系式:
A ′ = K rg ( S wi ) a 1 n ( 10000 × B g ( p wf ) μ g ( p ) ( WGR - R wgr ) μ w ( p ) ) + b [ 1 n ( 0.472 r e r w ) + S t ] [ 1 n ( 0.472 r e r w ) + S ] A - - - ( 6 ) ;
其中,A为层流系数,为地层束缚水饱和度下的气相相对渗透率,10-3μm2;re为气井供给半径,m;rw为井筒半径,m;S为表皮系数,无因次;St为综合表皮系数,无因次;WGR为生产水气比,m3/104m3;Rwgr为凝析水气比,m3/104m3;Bg(Pwf)为气体体积系数,无因次;μg(p)为气相粘度,mPa.s;μw(p)为水相粘度,mPa.s;a、b为曲线的回归系数。
CN201410724775.3A 2014-12-04 2014-12-04 产水气井产能预测方法 Expired - Fee Related CN104504457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410724775.3A CN104504457B (zh) 2014-12-04 2014-12-04 产水气井产能预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410724775.3A CN104504457B (zh) 2014-12-04 2014-12-04 产水气井产能预测方法

Publications (2)

Publication Number Publication Date
CN104504457A true CN104504457A (zh) 2015-04-08
CN104504457B CN104504457B (zh) 2018-08-10

Family

ID=52945852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410724775.3A Expired - Fee Related CN104504457B (zh) 2014-12-04 2014-12-04 产水气井产能预测方法

Country Status (1)

Country Link
CN (1) CN104504457B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104847341A (zh) * 2015-04-07 2015-08-19 中国石油大港油田勘探开发研究院 地下储气库井合理产能预测修正方法
CN106779140A (zh) * 2016-11-15 2017-05-31 红有软件股份有限公司 一种非常规天然气煤层气井产能分析及产量预测的方法
CN107045671A (zh) * 2017-03-22 2017-08-15 重庆科技学院 产水气井积液风险预测方法
CN107676085A (zh) * 2017-09-29 2018-02-09 中国石油集团川庆钻探工程有限公司 一种海相页岩气水平井测井产能预测方法
CN107965308A (zh) * 2017-10-11 2018-04-27 中国石油天然气股份有限公司 单井产水量的确定方法和装置
CN109815516A (zh) * 2018-09-10 2019-05-28 中国石油天然气股份有限公司 对页岩气井产能进行预测的方法及装置
CN111005715A (zh) * 2018-10-08 2020-04-14 中国石油天然气股份有限公司 确定气井产量的方法、装置及存储介质
CN111199010A (zh) * 2018-11-20 2020-05-26 中国石油化工股份有限公司 基于修正等时试井的致密气藏气井产能计算方法及装置
CN111852463A (zh) * 2019-04-30 2020-10-30 中国石油天然气股份有限公司 气井产能评价方法及设备
CN112036097A (zh) * 2020-09-11 2020-12-04 重庆科技学院 一种水锁气井的产能计算方法
CN112328953A (zh) * 2019-09-16 2021-02-05 中国石油天然气股份有限公司 气井的水侵识别方法、装置、设备及可读存储介质
CN112392464A (zh) * 2020-12-11 2021-02-23 中国石油天然气集团有限公司 一种基于常规测井资料计算储层产水率的方法
CN112926275A (zh) * 2021-01-19 2021-06-08 中国石油天然气集团有限公司 一种构建致密砂岩储层产水率预测模型的方法
CN113047815A (zh) * 2021-04-02 2021-06-29 西南石油大学 一种气井合理配产方法
CN113406307A (zh) * 2021-07-21 2021-09-17 吉林大学 一种泥质砂岩储层电阻率指数与相对渗透率的转换方法
EP3783357A4 (en) * 2018-04-17 2022-01-26 Jiangsu Bide Science and Technology Co., Ltd. METHOD AND SYSTEM FOR DETECTING CRACK DAMAGE TO TRAIN COMPONENTS BASED ON LAMB WAVE IMAGE
CN114991724A (zh) * 2022-06-17 2022-09-02 中海石油(中国)有限公司 一种致密气井产能预测方法及系统
CN115126473A (zh) * 2022-06-29 2022-09-30 重庆科技学院 一种页岩气井标准化测试产量的计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吕栋梁等: ""气井产水时产能方程的确定"", 《岩性油气藏》 *
杨树合等: ""产水气井产能方程改进"", 《中国石油和化工标准与质量》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104847341B (zh) * 2015-04-07 2018-01-09 中国石油大港油田勘探开发研究院 地下储气库井合理产能预测修正方法
CN104847341A (zh) * 2015-04-07 2015-08-19 中国石油大港油田勘探开发研究院 地下储气库井合理产能预测修正方法
CN106779140A (zh) * 2016-11-15 2017-05-31 红有软件股份有限公司 一种非常规天然气煤层气井产能分析及产量预测的方法
CN107045671A (zh) * 2017-03-22 2017-08-15 重庆科技学院 产水气井积液风险预测方法
CN107676085A (zh) * 2017-09-29 2018-02-09 中国石油集团川庆钻探工程有限公司 一种海相页岩气水平井测井产能预测方法
CN107965308B (zh) * 2017-10-11 2020-12-01 中国石油天然气股份有限公司 单井产水量的确定方法和装置
CN107965308A (zh) * 2017-10-11 2018-04-27 中国石油天然气股份有限公司 单井产水量的确定方法和装置
EP3783357A4 (en) * 2018-04-17 2022-01-26 Jiangsu Bide Science and Technology Co., Ltd. METHOD AND SYSTEM FOR DETECTING CRACK DAMAGE TO TRAIN COMPONENTS BASED ON LAMB WAVE IMAGE
CN109815516A (zh) * 2018-09-10 2019-05-28 中国石油天然气股份有限公司 对页岩气井产能进行预测的方法及装置
CN111005715A (zh) * 2018-10-08 2020-04-14 中国石油天然气股份有限公司 确定气井产量的方法、装置及存储介质
CN111005715B (zh) * 2018-10-08 2023-02-28 中国石油天然气股份有限公司 确定气井产量的方法、装置及存储介质
CN111199010A (zh) * 2018-11-20 2020-05-26 中国石油化工股份有限公司 基于修正等时试井的致密气藏气井产能计算方法及装置
CN111199010B (zh) * 2018-11-20 2023-03-31 中国石油化工股份有限公司 基于修正等时试井的致密气藏气井产能计算方法及装置
CN111852463A (zh) * 2019-04-30 2020-10-30 中国石油天然气股份有限公司 气井产能评价方法及设备
CN111852463B (zh) * 2019-04-30 2023-08-25 中国石油天然气股份有限公司 气井产能评价方法及设备
CN112328953A (zh) * 2019-09-16 2021-02-05 中国石油天然气股份有限公司 气井的水侵识别方法、装置、设备及可读存储介质
CN112328953B (zh) * 2019-09-16 2023-12-22 中国石油天然气股份有限公司 气井的水侵识别方法、装置、设备及可读存储介质
CN112036097B (zh) * 2020-09-11 2022-05-31 重庆科技学院 一种水锁气井的产能计算方法
CN112036097A (zh) * 2020-09-11 2020-12-04 重庆科技学院 一种水锁气井的产能计算方法
CN112392464A (zh) * 2020-12-11 2021-02-23 中国石油天然气集团有限公司 一种基于常规测井资料计算储层产水率的方法
CN112926275A (zh) * 2021-01-19 2021-06-08 中国石油天然气集团有限公司 一种构建致密砂岩储层产水率预测模型的方法
CN113047815A (zh) * 2021-04-02 2021-06-29 西南石油大学 一种气井合理配产方法
CN113406307A (zh) * 2021-07-21 2021-09-17 吉林大学 一种泥质砂岩储层电阻率指数与相对渗透率的转换方法
CN114991724A (zh) * 2022-06-17 2022-09-02 中海石油(中国)有限公司 一种致密气井产能预测方法及系统
CN114991724B (zh) * 2022-06-17 2024-01-02 中海石油(中国)有限公司 一种致密气井产能预测方法及系统
CN115126473A (zh) * 2022-06-29 2022-09-30 重庆科技学院 一种页岩气井标准化测试产量的计算方法
CN115126473B (zh) * 2022-06-29 2023-08-15 重庆科技学院 一种页岩气井标准化测试产量的计算方法

Also Published As

Publication number Publication date
CN104504457B (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
CN104504457A (zh) 产水气井产能预测方法
Cipolla et al. Stimulated reservoir volume: a misapplied concept?
CN102720485B (zh) 一种中高含水油田含水上升率的预测方法
CN107301306A (zh) 用于致密砂岩气藏压裂水平井的动态无阻流量预测方法
Can et al. Simple tools for forecasting waterflood performance
CN106484933A (zh) 一种用于确定页岩气井井控动态储量的方法及系统
CN106651610A (zh) 一种浅层超低渗砂岩油藏注水开发动态分析方法
CN102041995A (zh) 复杂油藏水淹状况监测系统
CN103821485A (zh) 预测水驱油田含水上升率变化的方法
Lei et al. Rate decline curves analysis of a vertical fractured well with fracture face damage
CN107676064A (zh) 一种水驱油藏含水率预测方法及其预测装置
CN104847341A (zh) 地下储气库井合理产能预测修正方法
CN103590824A (zh) 经过多段压裂改造后的致密气藏水平井的产能计算方法
CN103075142B (zh) 一种注水开发油田堵水油井选井方法
CN103912248A (zh) 水驱油田预测含水率方法
CN105696985B (zh) 四注九采井网条件下复合驱高效驱油方法的确定方法及复合驱高效驱油方法
CN106547930A (zh) 考虑致密气藏渗流机理的泄气半径计算方法
CN104634713A (zh) 特高含水期油水相渗比值曲线非线性关系表征方法
CN104405374A (zh) 一种致密气藏储层应力敏感性的测量方法
Ignatyev et al. Multistage hydraulic fracturing in horizontal wells as a method for the effective development of gas-condensate fields in the arctic region
CN106909757A (zh) 一种低渗透油藏超前注水地层合理压力水平确定方法
Ibrahim et al. A new look at reserves estimation of unconventional gas reservoirs
CN110969307B (zh) 一种特高含水期油藏累产油量预测方法
CN104632150B (zh) 海上油田不同井组合理产液量确定的方法
Wei et al. Production decline behavior analysis of a vertical well with a natural water influx/waterflood

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180810

Termination date: 20181204

CF01 Termination of patent right due to non-payment of annual fee