CN104501954B - 基于脉冲同步测量技术的光谱特性测试仪 - Google Patents

基于脉冲同步测量技术的光谱特性测试仪 Download PDF

Info

Publication number
CN104501954B
CN104501954B CN201410756105.XA CN201410756105A CN104501954B CN 104501954 B CN104501954 B CN 104501954B CN 201410756105 A CN201410756105 A CN 201410756105A CN 104501954 B CN104501954 B CN 104501954B
Authority
CN
China
Prior art keywords
light
photodetector
spectral characteristic
signal
characteristic tester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410756105.XA
Other languages
English (en)
Other versions
CN104501954A (zh
Inventor
冯国英
姚轲
张弘
周寿桓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201410756105.XA priority Critical patent/CN104501954B/zh
Publication of CN104501954A publication Critical patent/CN104501954A/zh
Priority to US14/790,483 priority patent/US20150308892A1/en
Application granted granted Critical
Publication of CN104501954B publication Critical patent/CN104501954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2889Rapid scan spectrometers; Time resolved spectrometry

Abstract

本发明提供的基于脉冲同步测量技术的光谱特性测试仪,包括同步控制器、脉冲光源、高速采集卡、计算机系统、第一光电探测器、第二光电探测器和测试光路系统;所述同步控制器有四个输出端,其中两个输出端一个与脉冲光源相连,另一个与计算机相连。同步控制器的另外两个输出端分别与高速采集卡的两个通道相连,对应输出的两路信号分别作为两个通道的外触发信号,用于控制高速采集卡采集对应两个通道中的信号;所述高速采集卡的两个通道同时分别与第一光电探测器和第二光电探测器连接。该测试仪可以精确测量宽波长范围、宽脉宽范围的光脉冲信号。

Description

基于脉冲同步测量技术的光谱特性测试仪
技术领域
本发明属于光谱特性测量技术领域,具体涉及一种基于脉冲同步测量技术的光谱特性测试仪。
背景技术
光谱测量技术是一种常用于对物质特性的表征和状态的诊断技术,它被广泛应用在光学、材料学、生物化学、医学等各个领域。随着激光技术的发展,各种脉冲激光器技术以及脉冲激光应用已经非常成熟,然而脉冲激光以及脉冲激光激发材料产生的脉冲光信号的光谱测量仍然是一个需要进一步研究的问题,这包括光脉冲的光谱成分分析、时间特性曲线分析和偏振态分析等。
目前,常用于测量脉冲光谱的技术主要有CCD成像法和波长扫描法。CCD成像法是将分光后的光信号直接照射到线阵CCD上,CCD上不同像素元对应着不同波长,一次性记录每个像素元的信号强度来获取光脉冲的光谱成分。该方法优点是光谱测量速度快,对光源系统的稳定性没有很高的要求,系统装置比较简单,效率高;但成本高,光谱精度与可测量光谱范围难以同时提高,而且光谱精度受CCD器件集成度影响。
上述两种方法中,使用较多的光谱测量方法是波长扫描法。波长扫描法是每次可测量的光波长是单一的,一般是通过转动测试系统中分光元件,使得在每次转动过程中探测器接收到的波长不一样,从而记录得到光脉冲的光谱成分,以实现光谱的扫描测量。该方法成本较低,精度高,其系统的抗噪声和抖动的性能好,且光谱稳定性高;但效率较低,光源输出的光脉冲要求比较稳定。此外,基于波长扫描法的光谱测量技术中最关键的是同步测量技术,目前常用的同步测量技术是锁相技术。它是将电路输出的时钟与其外部的参考时钟保持同步的反馈控制技术,当参考时钟的频率或相位发生改变时,锁相器会检测到这种变化,并且通过其内部的反馈系统来调节输出频率,直到电路输出时钟与参考时钟重新同步。锁相放大器是典型的利用锁相技术来实现脉冲信号采集的器件,在同步测量领域具有非常成熟的应用。它的原理是利用同步技术得到有用的同步脉冲信号,然后对同步脉冲在某时间段内的信号进行积分从而提取出信号强度。这种方法对于脉宽较长的信号是合理的,但对于脉宽较短的信号采集,由于脉冲的占空比非常小,这种方法难以实现。这是因为锁相放大器的最小时间常数基本都在微秒量级及以上,对于微秒以及微妙以上脉宽的脉冲信号,在积分时间段内总能采集到全部或大部分有用同步信号,而纳秒以及纳秒以下脉宽的脉冲信号,如果积分时间长会使得脉冲信号得到一个很大程度的平滑,而出现严重失真。但如果积分时间短,由于锁相放大器没有延时可调和可视化的信号时序图功能,因而可能会出现完全采集不到有用信号的情况。以上这些问题的存在使得光脉冲的光谱特性测量成为一个难题,极大地阻碍了脉冲光源在各个领域中的应用。
发明内容
本发明的目的是针对现有技术的不足,提供一种基于脉冲同步测量技术的光谱特性测试仪,该测试仪可以精确测量宽波长范围、宽脉宽范围的光脉冲信号,特别是对于纳秒级甚至更短脉宽的光脉冲信号也能精确测量。
本发明提供的基于脉冲同步测量技术的光谱特性测试仪,包括同步控制器、脉冲光源、高速采集卡、计算机系统、第一光电探测器、第二光电探测器和测试光路系统;
所述同步控制器有四个输出端,同时输出四路同步信号,每路同步信号之间有一定延时,其中两个输出端中一个与脉冲光源相连,另一个与计算机系统相连,同步控制器的另外两个输出端分别与高速采集卡的两个通道相连;所述高速采集卡的两个通道同时分别与第一光电探测器和第二光电探测器连接;
所述测试光路系统构成如下:包括第一反射镜、起偏器、分束镜、透镜、入射狭缝、第二反射镜、分光器、第三反射镜和出射狭缝;由脉冲光源发出的脉冲光经第一反射镜反射改变传播方向后经过起偏器,入射到分束镜上被分为两束光,一束作为参考光,一束作为有用光;所述参考光入射到第一光电探测器中被转换为参考信号,所述有用光经过位于其光路上的透镜被聚焦后经过入射狭缝,入射到第二反射镜上,经第二反射镜反射到与计算机系统连接的分光器上,经分光器反射后再入射到第三反射镜上,经第三反射镜反射进入出射狭缝,经出射狭缝后入射到第二光电探测器中被转换为有用信号。
上述基于脉冲同步测量技术的光谱特性测试仪,所述同步控制器输出的同步信号的脉宽、频率以及同步信号之间的延时是可调的,最小延时精度为1纳秒。
上述基于脉冲同步测量技术的光谱特性测试仪,所述脉冲光源为脉冲激光光源、脉冲激光泵浦激发的非线性脉冲光源、或电泵浦激发产生的脉冲光源中的一种。
上述基于脉冲同步测量技术的光谱特性测试仪,所述高速采集卡可采集脉冲宽度为亚纳秒及以上的电信号。
上述基于脉冲同步测量技术的光谱特性测试仪,所述分光器由多块光栅集成成光栅组并固定在旋转台上构成,通过计算机系统控制旋转台转动,从而改变第二光电探测器采集到的光波长。
上述基于脉冲同步测量技术的光谱特性测试仪,所述入射狭缝和出射狭缝的宽度可调,其可调宽度根据光脉冲信号强度和实际需要的光谱精度进行调整。
上述基于脉冲同步测量技术的光谱特性测试仪,所述第一和第二光电探测器为光电倍增管、碲化铟(InTe)光电探测器、碲镉汞(MCT)光电探测器、或能量计中的一种,其响应时间小于光脉冲宽度。
本发明所述基于脉冲同步测量技术的光谱特性测试仪中的所有仪器及元件均从市场购买得到。
本发明所述基于脉冲同步测量技术的光谱特性测试仪的工作原理:
所述同步控制器同时输出四路同步信号,每路同步信号之间有一定延时,与脉冲光源相连的输出端输出第一路同步信号,作为脉冲光源的外触发信号,用于控制光脉冲的输出。与高速采集卡的两个通道分别相连的输出端输出第二路和第三路同步信号,分别作为高速采集卡中两个通道的外触发信号,第二路同步信号用于控制高速采集卡采集对应通道中的参考信号,第三路同步信号用于控制高速采集卡采集对应通道中的有用信号,采集时间是同步信号的脉宽。与计算机相连的输出端输出第四路同步信号,用于通知计算机系统读取高速采集卡中的数据。脉冲光源在接收到第一路同步信号后输出光脉冲信号,经分束镜分成两束光,一束作为参考光,另一束作为有用光,参考光入射到与第一光电探测器上,被转换为电信号输出,作为参考信号,被传送到高速采集卡的接收第二路同步信号的通道中。有用光经过分光器后被分成一束单一波长的光,入射到第二光电探测器上,被转换为电信号输出,作为有用信号,被传送到高速采集卡的接收第三路同步信号的通道中。高速采集卡在第二路和第三路同步信号控制下完成参考信号和有用信号的采集。计算机系统在接收到第四路同步信号后,向高速采集卡发出指令,读取数据,处理得到该单一波长的光谱特性。然后计算机系统控制分光器输出下一个波长的光,重复上面工作,从而完成光脉冲的整个光谱特性测量。
与现有技术相比,本发明具有以下有益技术效果:
1、本发明所述基于脉冲同步测量技术的光谱特性测试仪相比现有的基于波长扫描方法的光谱测量技术最小可测量脉冲宽度在微秒或亚微秒量级;该测试仪能准确测量的光脉冲的脉冲宽度范围非常大,最小可测量的脉冲宽度可以达到亚纳秒级脉冲,最大可达到毫秒量级甚至是秒量级。
2、本发明所述基于脉冲同步测量技术的光谱特性测试仪,通过将光脉冲分成参考光和有用信号光,分别用两个光电探测器探测得到参考信号和有用信号。参考信号能实时地表征光脉冲幅度的波动特性,有用信号表征该光脉冲在某单一波长的光谱特性,利用参考信号对得到的光谱特性进行修正(见实施例2),可以得到准确的光谱成分信息,在光脉冲信号不是很稳定的条件下仍然可以准确测量其光谱特性,可以极大缓解常规基于波长扫描方法的光谱测试仪对光源系统稳定性的要求,解决了传统基于波长扫描方法对于光源系统稳定性的过度依赖问题。
3、与现有的光谱测量技术相比,本发明所述基于脉冲同步测量技术的光谱特性测试仪,由于高精度可控同步脉冲的引入,该测试仪可以调节各同步信号之间的延时,最小可调延时精度可到1-2纳秒,同时提供了直观可见的各信号之间的时序图界面,因此可以通过延时的微调,精确将有用信号控制在积分门信号中,以确保信号能准确采集。
4、本发明所述基于脉冲同步测量技术的光谱特性测试仪,与传统的基于波长扫描方法的光谱测试仪相比,它集成了光谱成分测量,光波的时间特性测量等功能;能系统地表征光脉冲的光谱特性。
5、本发明所公开的基于脉冲同步测量技术的光谱特性测试仪,其采用了传统波长扫描方法和积分方法,因而整个系统具有成本较低,抗噪声性能好,稳定性高,精度和灵敏度高等优点,可适用于各种光脉冲光谱特性测试。
6、本发明公开的基于脉冲同步测量技术的光谱特性测试仪,该测试仪将多块光栅集成成光栅组,并固定在一个旋转台构成为分光器,通过旋转台的旋转选择合适的光栅,实现宽波长的光谱测量;可以测量波段范围从紫外、可见、近红外到中红外波段。
附图说明
图1为本发明所述基于脉冲同步测量技术的光谱特性测试仪的结构示意图。
图2为本发明所述的基于脉冲同步测量技术的光谱特性测试仪的工作原理图。
图3为本发明所述基于脉冲同步测量技术的光谱特性测试仪中的同步控制器同步信号的脉冲时序图。
图4为本发明所述的基于脉冲同步测量技术的光谱特性测试仪的光谱测量流程图。
图中,1-同步控制器,2-脉冲光源,3-高速采集卡,4-计算机系统,5-第一光电探测器,6-第一反射镜,7-起偏器,8-分束镜,9-透镜,10-入射狭缝,11-第二反射镜,12-旋转台,13-第三反射镜,14-出射狭缝,15-第二光电探测器,16-光栅组。
具体实施方式
下面结合附图,并通过具体实施例对本发明作进一步详细说明,但它仅用于说明本发明的一些具体的实施方式,而不应理解为对本发明保护范围的任何限定。
实施例1
本实施例所述基于脉冲同步测量技术的光谱特性测试仪,其结构如图1所示:包括同步控制器1、脉冲激光光源2、其脉冲宽度约为125纳秒,重频为1Hz,高速采集卡3可采集脉冲宽度为亚纳秒及以上的电信号、计算机系统4、所述第一光电探测器5为能量计、第二光电探测器15为MCT光电探测器;以及测试光路系统;所述同步控制器型号是VDG6000C,高速采集卡型号为RS1022,能量计为CoherentLabmax。
所述同步控制器1输出的同步信号的脉宽、频率以及同步信号之间的延时是可调的,最小延时精度为1纳秒。同步控制器1有四个输出端,在t1、t3、t5和t7时刻输出4路同步信号,其中两个输出端一个与脉冲光源2相连,对应的第一路同步信号作为脉冲激光光源的外触发信号,控制脉冲激光光源输出光脉冲,另一个输出端与计算机系统相连,对应的第四路同步信号用于通知计算机系统4从高速采集卡中读取光谱数据,以及从同步控制器中读取光脉冲宽度信息。同步控制器的另外两个输出端分别与高速采集卡3的两个通道相连,对应输出第二路同步信号用于控制高速采集卡同步采集对应通道中的参考信号,输出第三路同步信号用于控制高速采集卡采集对应通道中的有用信号,采集时间是同步信号的脉宽。高速采集卡的接收第二路同步信号的通道同时与能量计连接,接收第三路同步信号的通道同时与MCT光电探测器15连接;
所述测试光路系统构成如下:包括第一反射镜6、起偏器7、分束镜8、透镜9、入射狭缝10、第二反射镜11、由多块光栅集成成光栅组16并固定在旋转台12上构成的分光器,第三反射镜13和出射狭缝14;由脉冲激光光源2发出的脉冲光经第一反射镜6反射改变传播方向后经过用于测量脉冲光偏振特性的起偏器7,再入射到分束镜8上,被分束镜分为两束光,一束作为参考光,一束作为有用信号光。所述参考光入射到能量计5中被转换为参考信号,所述有用光经过位于其光路上的透镜9被聚焦后经过入射狭缝10,入射到第二反射镜11上,经第二反射镜反射到固定在旋转台12上的光栅组16的一个光栅上,经此光栅反射后再入射到第三反射镜13上,经第三反射镜反射进入出射狭缝14,经出射狭缝后入射到MCT第二光电探测器15中被转换为有用信号;所述旋转台12与计算机系统连接。
本实施例中所有仪器及元件均从市场购买得到。
实施例2
利用实施例1所述基于脉冲同步测量技术的光谱特性测试仪测量中心波长为2.94μm、脉宽为150ns、重频1Hz的Er2+:YAG激光器输出脉冲的光谱特性。
所述分束镜8对测量波长的透射率和反射率为1:9,第一光电探测器5选用能量计,透镜9的焦距为10cm,第一反射镜6、第二反射镜11和第三反射镜13均对测量波长2.94μm的激光的反射率大于90%,光栅采用120g/mm、闪耀波长为2.5μm的光栅,第二光电探测器15采用MCT光电探测器,响应时间大约是50ns,利用同步控制器1精确控制各个同步信号的时序,第二路同步信号与第一路同步信号之间的延时是25ns,第三路同步信号与第一路同步信号之间的延时是150μs,第四路同步信号与第一路同步信号之间的延时是180μs。
测量方法如下:
测量流程图如图4所示,在按照图1结构固定和连接好各元器件、并设置好各同步信号之间的延时测试参数(主要是各同步信号之间的延时)以后,按以下步骤操作:
第一步,计算机系统4控制旋转台12转动,旋转台带动光栅组16转动,将光栅组16中的光栅转动到对应波长2.94μm处;
第二步,等待外触发信号,触发后计算机系统从高速采集卡3中读取出参考信号、有用信号,以及第二路和第三路同步信号,得到信号时序图,并显示在计算机系统软件界面上;
第三步,观察时序图界面上的参考信号、有用信号和同步信号在时间上的位置,如果参考信号和有用信号没有刚好完全处于第二路和第三路同步信号中则进行第四步操作;
第四步,根据时序图,反馈控制同步控制器1输出的各同步信号之间的延时,重复第二步、第三步和第四步,直至参考信号和有用信号都刚好全部处于第二路和第三路同步信号的时间段内;
第五步,设置光谱测量的起始波长2900nm、终止波长3000nm和波长精度0.1nm,计算机系统4控制旋转台12转动,使其输出的光波长为起始波长,重复第二步操作;
第六步,对第二路和第三路同步信号时间段内的参考信号和有用信号进行积分,得到某单一波长的光谱特性;
第七步,计算机系统4控制旋转台12转动一定角度,转动的角度正好对应光谱测量的波长精度,输出下一个波长的光,并判断该波长是否大于终止波长,如果是,表示扫描已完成,测量过程结束,如果否,重复第四步、第五步和第六步,直至测量过程完成。
为了消除由于光脉冲序列的不稳定性导致测量结果光强的变化,本发明中对所测光信号光强的修正方法如下:
根据图3的同步信号的脉冲时序图,假设光脉冲序列中第k个脉冲的时间特性表示为fsource(t-t1,△tk,k),那么本发明中参考光信号光强和有效光信号光强分别可以表示为:
I reference ( k , λ k ) = α ∫ t 3 t 4 f source ( t - t 3 , Δ t k , k ) dt - - - ( 1 )
I signal ( k , λ k ) = α ∫ t 5 t 6 f source ( t - t 5 , Δ t k , k ) dt - - - ( 2 )
其中λk表示第k个脉冲时测量的波长,它由旋转台的角度决定,t表示时间,△tk表示第k个脉冲的时间脉宽,α表示光脉冲经过分束镜后,反射出来作为参考光的能量比,β表示有用信号光的探测效率,t3和t4分别表示第二路同步信号的上升沿时间和下降沿时间,t5和t6分别表示第三路同步信号的上升沿时间和下降沿时间。为了消除由于光脉冲序列的不稳定性导致测量结果光强的变化,利用参考光能量对有效信号光强进行修正,得到修正后的实际光强,表示如下:
I real ( k , λ k ) = I signal ( k , λ k ) I reference ( k , λ k ) = ( 1 - α ) β ∫ t 5 t 6 f source ( t - t 5 , Δ t k , k ) dt α ∫ t 3 t 4 f source ( t - t 3 , Δ t k , k ) dt - - - ( 3 )

Claims (10)

1.一种基于脉冲同步技术的光谱特性测试仪,包括同步控制器(1)、脉冲光源(2)和测试光路系统;其特征在于还包括高速采集卡(3)、计算机系统(4)、第一光电探测器(5)和第二光电探测器(15);
所述同步控制器(1)有四个输出端,同时输出四路同步信号,每路同步信号之间有一定延时,其中两个输出端中一个与脉冲光源(2)相连,另一个与计算机系统(4)相连,同步控制器的另外两个输出端分别与高速采集卡(3)的两个通道相连;所述高速采集卡的两个通道同时分别与第一光电探测器(5)和第二光电探测器(15)连接;
所述测试光路系统构成如下:包括第一反射镜(6)、起偏器(7)、分束镜(8)、透镜(9)、入射狭缝(10)、第二反射镜(11)、分光器、第三反射镜(13)和出射狭缝(14);由脉冲光源(2)发出的脉冲光经第一反射镜(6)反射改变传播方向后经过起偏器(7),入射到分束镜(8)上被分为两束光,一束作为参考光,一束作为有用光;所述参考光入射到第一光电探测器(5)中被转换为参考信号,所述有用光经过位于其光路上的透镜(9)被聚焦后经过入射狭缝(10),入射到第二反射镜(11)上,经第二反射镜反射到与计算机系统连接的分光器上,经分光器反射后再入射到第三反射镜(13)上,经第三反射镜反射进入出射狭缝(14),经出射狭缝后入射到第二光电探测器(15)中被转换为有用信号。
2.根据权利要求1所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述同步控制器(1)输出的同步信号的脉宽、频率以及同步信号之间的延时是可调的,最小延时精度为1纳秒。
3.根据权利要求1或2所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述脉冲光源(2)为脉冲激光光源、脉冲激光泵浦激发的非线性脉冲光源、或电泵浦激发产生的脉冲光源中的一种。
4.根据权利要求1或2所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述高速采集卡(3)能采集脉冲宽度为亚纳秒及以上的电信号。
5.根据权利要求4所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述高速采集卡(3)能采集脉冲宽度为亚纳秒及以上的电信号。
6.根据权利要求1或2所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述分光器由多块光栅集成成光栅组(16)并固定在旋转台(12)上构成,每块光栅的分光波长范围不同。
7.根据权利要求3所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述分光器由多块光栅集成成光栅组(16)并固定在旋转台(12)上构成,每块光栅的分光波长范围不同。
8.根据权利要求4所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述分光器由多块光栅集成成光栅组(16)并固定在旋转台(12)上构成,每块光栅的分光波长范围不同。
9.根据权利要求1或2所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述入射狭缝(10)和出射狭缝(14)的宽度可调。
10.根据权利要求1或2所述基于脉冲同步技术的光谱特性测试仪,其特征在于所述第一光电探测器(5)和第二光电探测器(15)为光电倍增管、碲化铟光电探测器、碲镉汞光电探测器、或能量计中的一种,其响应时间小于光脉冲宽度。
CN201410756105.XA 2014-12-10 2014-12-10 基于脉冲同步测量技术的光谱特性测试仪 Active CN104501954B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410756105.XA CN104501954B (zh) 2014-12-10 2014-12-10 基于脉冲同步测量技术的光谱特性测试仪
US14/790,483 US20150308892A1 (en) 2014-12-10 2015-07-02 Impulsive synchronization spectrometer based on adjustable time window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410756105.XA CN104501954B (zh) 2014-12-10 2014-12-10 基于脉冲同步测量技术的光谱特性测试仪

Publications (2)

Publication Number Publication Date
CN104501954A CN104501954A (zh) 2015-04-08
CN104501954B true CN104501954B (zh) 2016-06-22

Family

ID=52943376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410756105.XA Active CN104501954B (zh) 2014-12-10 2014-12-10 基于脉冲同步测量技术的光谱特性测试仪

Country Status (2)

Country Link
US (1) US20150308892A1 (zh)
CN (1) CN104501954B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105698932B (zh) * 2016-03-17 2019-07-19 重庆川仪自动化股份有限公司 闪烁式光源的光谱采集系统及光谱采集方法
US11112306B2 (en) * 2017-03-23 2021-09-07 The University Of Hong Kong Real-time optical spectro-temporal analyzer and method
CN107131954B (zh) * 2017-05-16 2019-08-23 中国电子科技集团公司第四十一研究所 一种光栅光谱仪可变分辨带宽实现与调试系统及方法
CN107830938B (zh) * 2017-10-12 2019-06-18 中国科学院上海光学精密机械研究所 脉冲激光器信噪比检测装置
CN110346041A (zh) * 2019-07-16 2019-10-18 昆山书豪仪器科技有限公司 一种光谱仪
CN111006767B (zh) * 2019-12-26 2022-02-11 北京卓立汉光仪器有限公司 一种提高摄谱仪波长准确度的光栅转动方法及装置
CN111158011B (zh) * 2020-01-06 2022-08-05 航天金鹏科技装备(北京)有限公司 一种脉冲激光光斑综合测试系统及光斑测试方法
CN112432707A (zh) * 2020-09-30 2021-03-02 天津大学 红外波段的偏振分孔径和多光谱成像装置
CN112304875A (zh) * 2020-11-09 2021-02-02 中国科学院西安光学精密机械研究所 一种基于光谱法的水质监测系统及方法
CN116067630B (zh) * 2023-03-22 2023-07-25 武汉中科锐择光电科技有限公司 评估低重复频率自发辐射占比装置、系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807993A (en) * 1985-11-19 1989-02-28 Shimadzu Corporation Method and apparatus for measuring light by frequency modulation using a time-variable synchronous rectification signal
CN201476879U (zh) * 2009-09-07 2010-05-19 杭州远方光电信息有限公司 一种同步扫描和采样的快速光谱分析系统
CN103529000A (zh) * 2013-10-17 2014-01-22 中国科学院西安光学精密机械研究所 单光源双波长激光诱导击穿光谱测量装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251008A (en) * 1991-01-11 1993-10-05 Jeol Ltd. Fourier transform spectroscopy and spectrometer
US5245406A (en) * 1991-01-11 1993-09-14 Jeol Ltd. Fourier transform spectroscopy and spectrometer
US5173748A (en) * 1991-12-05 1992-12-22 Eastman Kodak Company Scanning multichannel spectrometry using a charge-coupled device (CCD) in time-delay integration (TDI) mode
JP2001304963A (ja) * 2000-04-21 2001-10-31 Ando Electric Co Ltd 4段式分光器
US6683686B2 (en) * 2000-10-10 2004-01-27 Photonica Pty Ltd Temporally resolved wavelength measurement method and apparatus
CN100406872C (zh) * 2002-11-04 2008-07-30 天津市先石光学技术有限公司 复合光谱测量方法及其光谱检测仪器
US7145713B2 (en) * 2004-07-13 2006-12-05 Montana State University Techniques for recovering optical spectral features using a chirped optical field
DE102008029458B4 (de) * 2008-06-20 2019-02-07 Carl Zeiss Microscopy Gmbh Verfahren zum Aufzeichnen von Impulssignalen
US20130342835A1 (en) * 2012-06-25 2013-12-26 California Institute Of Technology Time resolved laser raman spectroscopy using a single photon avalanche diode array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807993A (en) * 1985-11-19 1989-02-28 Shimadzu Corporation Method and apparatus for measuring light by frequency modulation using a time-variable synchronous rectification signal
CN201476879U (zh) * 2009-09-07 2010-05-19 杭州远方光电信息有限公司 一种同步扫描和采样的快速光谱分析系统
CN103529000A (zh) * 2013-10-17 2014-01-22 中国科学院西安光学精密机械研究所 单光源双波长激光诱导击穿光谱测量装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《瞬态光谱测量中的触发与同步技术》;袁长迎等;《原子与分子物理学报》;20031031;第20卷(第4期);第473-476页 *

Also Published As

Publication number Publication date
CN104501954A (zh) 2015-04-08
US20150308892A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
CN104501954B (zh) 基于脉冲同步测量技术的光谱特性测试仪
KR100793517B1 (ko) 혼탁한 약제학적 시료들의 분광 분석을 위한 방법과 장치
CN102288306B (zh) 一种同时测量激光器输出单脉冲能量和波形的方法
CN103048053B (zh) 单次激光信噪比探测装置
CN103728446A (zh) 光子计数型多通道时间分辨荧光免疫分析系统及计数方法
CN104034703A (zh) 改进的高信噪比低检出限的libs物质成分探测系统及方法
WO2021228187A1 (zh) 脉冲型延时色散光谱测量方法和装置及光谱成像方法和装置
CN103557946A (zh) 一种光学延迟测量方法及装置
CN207515999U (zh) 一种大面积金属介质膜光栅衍射效率测量的装置
CN101750154B (zh) 激光信噪比探测装置
CN103529296B (zh) 一种用于测量梳状谱发生器相位谱的装置及方法
CN102661795B (zh) 泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置
CN108489959A (zh) 一种相干反斯托克斯拉曼光谱扫描装置和方法
CN110146410B (zh) 基于差分吸收法的原子密度及布居数的测量装置及方法
CN105953929A (zh) 一种单发次脉冲宽度和能量测量装置
CN203881516U (zh) 快门式光谱透过率测试仪
CN102494770B (zh) 原子能级精确测量装置
CN101706428A (zh) 碲镉汞材料光学激活深能级上载流子弛豫时间的检测方法
CN208888136U (zh) 一种超短单脉冲时间分辨泵浦探测仪
CN105973829A (zh) 一种带有双红外光检测器的双光束红外分光光度计
CN105527252A (zh) 一种光学元件反射率测量仪
CN102095498B (zh) 一种扫描式高精度傅立叶变换测量光谱的方法
CN209310758U (zh) 用于提高自准直仪测量精度的光源频率调制系统
CN108844631B (zh) 一种消除拉曼散射背景干扰的装置及方法
RU2729950C2 (ru) Системы и способы опроса параметров во множестве мест в образце

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant