CN104495759B - 窄尺寸分布的硒化镉纳米晶组装体的制备方法 - Google Patents

窄尺寸分布的硒化镉纳米晶组装体的制备方法 Download PDF

Info

Publication number
CN104495759B
CN104495759B CN201410669154.XA CN201410669154A CN104495759B CN 104495759 B CN104495759 B CN 104495759B CN 201410669154 A CN201410669154 A CN 201410669154A CN 104495759 B CN104495759 B CN 104495759B
Authority
CN
China
Prior art keywords
size distribution
crystal assembly
narrow size
cdse
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410669154.XA
Other languages
English (en)
Other versions
CN104495759A (zh
Inventor
封伟
张博
沈永涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201410669154.XA priority Critical patent/CN104495759B/zh
Publication of CN104495759A publication Critical patent/CN104495759A/zh
Application granted granted Critical
Publication of CN104495759B publication Critical patent/CN104495759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种窄尺寸分布的硒化镉纳米晶组装体的制备方法,是将硬脂酸镉与硒粉室温下装入到含有十八烯的容器中,在容器上安装冷凝回流装置;通入惰性气体,升温到200‑300℃,进行反应;反应停止后,降温至室温,控制降温速率5‑30℃/min;将产物分离,收集下层沉淀;再用异丙醇溶液与沉淀混合,继续分离,收集下层沉淀;将沉淀溶于甲苯溶剂中,从而得到窄尺寸分布的CdSe纳米晶组装体。该方法优势在于操作简便,生产周期短,产物稳定性好,成本低廉,CdSe材料窄的禁带宽度,能够吸收更多的光子,提高了光伏转换效率。为其他的有机相纳米晶组装体的制备提供了新的思路,也为纳米材料的商业化应用提供了可能。

Description

窄尺寸分布的硒化镉纳米晶组装体的制备方法
技术领域
本发明属于纳米材料制备技术领域,涉及一种制备窄尺寸分布的硒化镉纳米晶组装体的方法,该组装体可用于制备光伏器件。
背景技术
硒化镉(CdSe)是一种著名的Ⅱ-Ⅵ族半导体纳米晶,主要有纤锌矿晶体相、闪锌矿晶体相。它在纤锌矿晶体相的禁带宽度为1.797eV,在闪锌矿晶体相的禁带宽度为1.712eV。(M,Wang Z,Myalitsin A,et al.Optical imaging of CdSe nanowires with nanoscale resolution,Angewandte Chemie International Edition,2011,50(48):11536-11538.)。硒化镉这种材料的带宽比较窄,相对于其他材料,能吸收更多的光子,使光伏器件的效率得到提升(黄江.有机太阳能电池的电荷转移态等效电路和多重电荷分离界面研究.电子科技大学,2012.)。通常情况下,CdSe是一种n型半导体,而p型CdSe半导体也通过分子束外延技术成功获得(Ohtsuka T,Kawamata J,Zhu Z,et al.p-type CdSe grown by molecular beam epitaxy using a nitrogen plasma source,Applied physics letters,1994,65(4):466-468.)。CdSe纳米晶已经成为纳米材料电子和光学性能研究领域中的经典体系,这主要归功于能够通过较简便的方法得到高质量CdSe纳米晶(Peng ZA,Peng X.Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as precursor,Journal of the American Chemical Society,2001,123(1):183-184.)。由于大多数的器件应用需要控制纳米晶的尺寸和尺寸分布,因此窄分布的CdSe纳米晶目前成为了研究的热点。Yu等人在这一领域取得了明显的进展。他们通过改变反应温度,升温速率,原料配比等反应参数,研究了窄尺寸分布的CdSe纳米晶的生长机理结果表明,低的酸镉摩尔比和高的镉硒摩尔比是形成窄尺寸分布的CdSe纳米晶的关键(Yu K,Ouyang J,Zaman MB,et al.Single-sized CdSe nanocrystals with bandgap photoemission via a noninjection one-pot approach,The Journal of Physical Chemistry C,2009,113(9):3390-3401.)。由于纳米晶具备特殊的光学、电学、磁和催化性质,使之在生物诊断和治疗、能量存储和转换、环境监测和治理和光伏器件等方面有着潜在的应用。但是因为纳米晶的尺寸限制,彻底实现上述应用的商业化几乎是不可能的。为了克服尺寸的限制,实现纳米材料的大规模应用,使纳米晶自组装成大的有序的组装体,并且应用现代制造技术将组装体集成为功能化的器件,被认为由微观材料向介观甚至宏观器件迈进的一条可能途径(孟令镕,彭卿,周和平等.从纳米晶到三维超晶格结构,高等学校化学学报,2011,32(3),429-436.)。研究表明,相对于 纳米晶,纳米晶组装体能有效改善材料的电子迁移率和电荷收集能力,从而在光伏器件的应用方面有着广阔的前景(Yan H,Yu Z,Lu K,et al.Self-Assembly of graphenelike ZnO superstructured nanosheets and their application in hybrid photoconductors,Small,2011,7(24):3472-3478.)。但是相对于水相合成的纳米晶,有机相合成的纳米晶的配体难以调控,较难发生组装。而窄尺寸分布的纳米晶通常就在有机相中合成的,但是还没有报道窄尺寸分布的纳米晶组装体,原因是有机相中配体难以调控,导致纳米晶表面稳定不易组装。为了解决这个问题,我们参考了Yu等人的方法,在有机相中合成出窄尺寸分布的CdSe纳米晶。通过控制降温速率,从而得到窄尺寸分布的CdSe纳米晶组装体。
发明内容
本发明的目的在于克服传统的有机相纳米晶组装的局限性,解决了窄尺寸分布的纳米晶的组装难题。我们开发出一种制备窄尺寸分布的CdSe纳米晶组装体的方法,这一发明也为有机相的组装提供了新的思路。
本发明的技术方案如下:
一种窄尺寸分布的硒化镉纳米晶组装体的制备方法,是将硬脂酸镉与硒粉室温下装入到含有十八烯的容器中,在容器上安装冷凝回流装置;通入惰性气体,升温到200-300℃,进行反应;反应停止后,降温至室温,控制降温速率5-30℃/min;将产物分离,收集下层沉淀;再用异丙醇溶液与沉淀混合,继续分离,收集下层沉淀;将沉淀溶于甲苯溶剂中,从而得到窄尺寸分布的CdSe纳米晶组装体。
所述的硬脂酸镉与硒粉的摩尔比为2~4:1。
所述的硬硬脂酸镉在十八烯中的浓度为10-20mmol/L。
所述的通入惰性气体,先循环抽真空,除去水分和空气,然后升温。
所述的反应时间为10-60min。
所述的分离采用离心机离心分离。
相对于传统的纳米晶组装体制备方法,该方法优势在于操作简便,生产周期短,产物稳定性好,成本低廉,再加上CdSe材料窄的禁带宽度,能够吸收更多的光子,提高了光伏转换效率。这使得制备的产物有望应用到太阳能电池、光探测器等光伏器件上。这种制备方法为其他的有机相纳米晶组装体的制备提供了新的思路,也为纳米材料的商业化应用提供了可能。
附图说明:
图1为实施例1中的窄尺寸分布的CdSe纳米晶组装体的紫外-可见吸收光谱。
图2为实施例1中的窄尺寸分布的CdSe纳米晶组装体的荧光发射光谱。
图3为实施例1中的窄尺寸分布的CdSe纳米晶组装体的扫描电镜照片。
图4为实施例2中的窄尺寸分布的CdSe纳米晶组装体的扫描电镜照片。
图5为实施例3中的窄尺寸分布的CdSe纳米晶组装体的扫描电镜照片。
具体实施方式
下面给出本发明的3个实施例,是对本发明的进一步说明,而不是限制本发明的范围。
实施例1:
将0.20mmol硬脂酸镉与0.05mmol硒粉室温下装入到含有20mL十八烯的三口瓶,使硬脂酸镉浓度为10mmol/L,并给三口瓶安装冷凝回流装置。通入惰性气体,并循环抽真空5次,以除去多余的水分和空气。惰性气体保护下升温到200℃,在200℃使反应60min。停止反应,控制降温速率为5℃/min。将粗产物使用高速离心机10000r/min离心,收集下层沉淀。再用异丙醇溶液与沉淀混合,继续用高速离心机10000r/min离心,收集下层沉淀。将沉淀溶于甲苯溶剂中,从而得到窄尺寸分布的CdSe纳米晶组装体。窄尺寸分布的纳米晶组装体的紫外-可见吸收光谱见图1,在536nm处有一个窄而尖锐的发射峰。这证明我们合成的是纳米晶组装体是由窄尺寸的纳米晶组成的。类似的证明见荧光发射光谱(图2),发射峰半峰宽大约为35nm,证明纳米晶的尺寸比较均一。所得的窄尺寸分布的纳米晶组装体扫描电镜图像如图3所示,该组装体为圆饼状,直径约为1μm,厚度约为0.5μm。
实施例2:
将0.15mmol硬脂酸镉与0.05mmol硒粉室温下装入到含有10mL十八烯的三口瓶,使硬脂酸镉浓度为15mmol/L,并给三口瓶安装冷凝回流装置。通入惰性气体,并循环抽真空5次,以除去多余的水分和空气。惰性气体保护下升温到250℃,在250℃使反应30min。停止反应,控制降温速率为15℃/min。将粗产物使用高速离心机10000r/min离心,收集下层沉淀。再用异丙醇溶液与沉淀混合,继续用高速离心机10000r/min离心,收集下层沉淀。将沉淀溶于甲苯溶剂中,从而得到窄尺寸分布的CdSe纳米晶组装体。所得的窄尺寸分布的纳米晶组装体扫描电镜图像如图4所示,这种组装体前后两面均为等边三角形。
实施例3:
将0.10mmol硬脂酸镉与0.05mmol硒粉室温下装入到含有5mL十八烯的三口瓶,使硬脂酸镉浓度为20mmol/L,并给三口瓶安装冷凝回流装置。通入惰性气体,并循环抽真空5次,以除去多余的水分和空气。惰性气体保护下升温到300℃,在300℃使反应10min。停止反应, 控制降温速率为30℃/min。将粗产物使用高速离心机10000r/min离心,收集下层沉淀。再用异丙醇溶液与沉淀混合,继续用高速离心机10000r/min离心,收集下层沉淀。将沉淀溶于甲苯溶剂中,从而得到窄尺寸分布的CdSe纳米晶组装体。所得的窄尺寸分布的纳米晶组装体扫描电镜图像如图5所示。这种组装体前后两面均为等边三角形。

Claims (4)

1.一种窄尺寸分布的硒化镉纳米晶组装体的制备方法,其特征是将硬脂酸镉与硒粉室温下装入到含有十八烯的容器中,在容器上安装冷凝回流装置;通入惰性气体,升温到200-300℃,进行反应;反应停止后,降温至室温,控制降温速率5-30℃/min;将产物分离,收集下层沉淀;再用异丙醇溶液与沉淀混合,继续分离,收集下层沉淀;将沉淀溶于甲苯溶剂中,从而得到窄尺寸分布的CdSe纳米晶组装体;硬脂酸镉与硒粉的摩尔比为2~4:1;硬硬脂酸镉在十八烯中的浓度为10-20mmol/L。
2.如权利要求1所述的方法,其特征是通入惰性气体,先循环抽真空,除去水分和空气,然后升温。
3.如权利要求1所述的方法,其特征是反应时间为10-60min。
4.如权利要求1所述的方法,其特征是分离采用离心机离心分离。
CN201410669154.XA 2014-11-20 2014-11-20 窄尺寸分布的硒化镉纳米晶组装体的制备方法 Active CN104495759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410669154.XA CN104495759B (zh) 2014-11-20 2014-11-20 窄尺寸分布的硒化镉纳米晶组装体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410669154.XA CN104495759B (zh) 2014-11-20 2014-11-20 窄尺寸分布的硒化镉纳米晶组装体的制备方法

Publications (2)

Publication Number Publication Date
CN104495759A CN104495759A (zh) 2015-04-08
CN104495759B true CN104495759B (zh) 2016-08-24

Family

ID=52937240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410669154.XA Active CN104495759B (zh) 2014-11-20 2014-11-20 窄尺寸分布的硒化镉纳米晶组装体的制备方法

Country Status (1)

Country Link
CN (1) CN104495759B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127631B (zh) * 2019-04-26 2022-06-21 湖北大学 一种蓝光闪锌矿CdSe/CdS核冠结构纳米片的制备方法
CN114196978B (zh) * 2021-11-17 2022-10-28 南京晓庄学院 一种Ru-CdSe异质纳米晶的制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101554999B (zh) * 2009-04-30 2012-02-22 河南大学 一种含碲半导体纳米晶的合成方法
CN101891162A (zh) * 2010-06-07 2010-11-24 河南大学 一种低成本合成ZnxCd1-xSe(0≤x≤1)及其相关核壳结构半导体纳米晶的方法
CN103553001A (zh) * 2013-11-11 2014-02-05 广西科技大学 一锅法合成超小尺寸CdSe纳米晶的方法

Also Published As

Publication number Publication date
CN104495759A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
Fan et al. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications
Zi et al. Nanoengineering of tin monosulfide (SnS)‐based structures for emerging applications
Fan et al. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity
Lin et al. Emerging opportunities for black phosphorus in energy applications
Su et al. Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application
Parize et al. Effects of hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition
Reddy et al. One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: Development of self-powered ultraviolet photodetector
Tan et al. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets
Huang et al. Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays
Yin et al. Single-layer MoS2 phototransistors
Shen et al. Hierarchical saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces
Moulahi et al. ZnO nanoswords and nanopills: Hydrothermal synthesis, characterization and optical properties
Li et al. Template approach to large-area non-layered Ga-group two-dimensional crystals from printed skin of liquid gallium
Steinhagen et al. Solution− liquid− solid synthesis of CuInSe2 nanowires and their implementation in photovoltaic devices
US8067259B2 (en) Method of producing high performance photovoltaic and thermoelectric nanostructured bulk and thin films
Chen et al. Organometallically anisotropic growth of ultralong Sb2Se3 nanowires with highly enhanced photothermal response
Wu et al. Elemental red phosphorus-based photocatalysts for environmental remediation: A review
Peng et al. PbS Quantum Dots/2D Nonlayered CdS x Se1–x Nanosheet Hybrid Nanostructure for High-Performance Broadband Photodetectors
Patel et al. One-dimensional/two-dimensional/three-dimensional dual heterostructure based on MoS2-modified ZnO-heterojunction diode with silicon
Liang et al. Growth of hydrothermally derived CdS-based nanostructures with various crystal features and photoactivated properties
Wang et al. High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials
Rong et al. Bi2Te3 sheet contributing to the formation of flower-like BiOCl composite and its N2 photofixation ability enhancement
Yao et al. Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots
Zhao et al. In situ growth of GeS nanowires with sulfur-rich shell for featured negative photoconductivity
Sun et al. Branched CdO/ZnO core/shell heterogeneous structure and its enhanced photoelectrocatalytic performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant