CN104480636B - 一种聚偏氟乙烯纳米纤维膜材料及其制备方法与应用 - Google Patents
一种聚偏氟乙烯纳米纤维膜材料及其制备方法与应用 Download PDFInfo
- Publication number
- CN104480636B CN104480636B CN201410698087.4A CN201410698087A CN104480636B CN 104480636 B CN104480636 B CN 104480636B CN 201410698087 A CN201410698087 A CN 201410698087A CN 104480636 B CN104480636 B CN 104480636B
- Authority
- CN
- China
- Prior art keywords
- polyvinylidene fluoride
- spinning
- preparation
- membrane material
- kynoar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4318—Fluorine series
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/48—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Abstract
一种聚偏氟乙烯纤维膜材料及其制备方法与应用,涉及材料化工领域,纤维膜材料中聚偏氟乙烯纤维直径为400‑5000nm,平均分子量为30‑60万,纤维膜的孔径分布在1.34‑5.32μm范围内。一种聚偏氟乙烯纤维膜材料的制备方法,包括(1)聚合物纺丝液制备和(2)静电纺丝。一种聚偏氟乙烯纤维膜材料作为吸油材料的应用。本发明提供的聚偏氟乙烯纤维膜材料是采用静电纺丝的方法制备得到的聚偏氟乙烯/改性蒙脱土复合纤维膜材料,纤维膜材料具有优良疏水吸油效果,可作为吸油材料的实用,用于海上或水面溢油的处理、含油废水的处理、过滤材料和石油化工污染控制等领域。
Description
技术领域
本发明属于材料化工领域,特别是一种吸油材料及其制备方法,具体涉及一种聚偏氟乙烯吸油材料及其制备和应用。
背景技术
石油泄漏常常发生在石油开发,运输,存储过程中,导致严重的环境污染。随着人类保护环境的意识日益显著,研究人员已经开发大量的吸附材料用于运输、吸附溢油,理想的吸附剂要求疏水亲油,高度吸油量,成本低廉,最近,超疏水超亲油材料引起了广泛的关注。目前石油吸附材料主要分为三大类:无机矿物材料、天然有机材料、合成有机材料。在石油泄漏清理中,合成有机材料由于其可调的疏水亲油性,相对较低的成本,可被大规模使用。但是每克的吸附剂只能吸附几十克油,在实际使用中有待提高。无机矿物材料具有疏松多孔,价格便宜,吸油速度快等优点,但是部分材料再生困难,饱和吸油能力低等缺点。
传统的含油污水处理方法有重力法、离心法、吸附法、浮选法、膜分离法等,但是许多方法在实际应用中制作步骤繁杂。静电纺丝是目前制备纳米纤维膜最简单最直接的方法,所制备纤维的直径一般在数十到几千纳米,而传统的熔融纺丝、干法纺丝、湿法纺丝制备纤维的直径一般在几十到几百微米,通过静电纺丝制备的纤维材料具有更大的比表面积和孔隙率,因此具有更高的吸附能力。聚偏氟乙烯是一种低表面能的疏水材料,具有优良的柔韧性,耐化学腐蚀性、优良的耐高温色变性和耐氧化等特性,是被公认的优异的膜材料。中国专利CN102764597A采用热致相分离的方法制备了高强度,高孔隙率,高通量,高分离精度的聚偏氟乙烯超滤膜。专利CN101362057A采用热致相分离的方法制备了孔隙率高,孔径分布均匀且强度高的多孔膜。专利CN103469488A采用静电纺制备了一种强度高,兼具高孔隙率,良好浸润性能的聚偏氟乙烯锂离子电池隔膜。专利CN 103801274 A制备了吸油中空多孔的纤维膜,以石墨烯为表面吸附层,聚偏氟乙烯中空纤维多孔膜为基质层,制成膜组件用来进行油水分离,该方法步骤繁杂,效率并不高。本发明采用静电纺丝的方法制备聚偏氟乙烯纳米纤维膜用于吸油材料的研究未见报道。
发明内容
本发明解决的技术问题:针对现有技术的不足,本发明要解决的技术问题是制备一种对不同种类的油都具有较好的吸附性能且具有良好的疏水亲油效果的聚偏氟乙烯纳米纤维膜材料及其制备方法。
本发明的技术方案:一种聚偏氟乙烯纤维膜材料,聚偏氟乙烯纤维直径为400-5000nm,平均分子量为30-60万,纤维膜的孔径分布在1.34-5.32μm范围内。
一种聚偏氟乙烯纤维膜材料的制备方法,制备步骤如下:
(1)聚合物纺丝液制备:将聚偏氟乙烯溶于有机溶剂中,在35℃水浴加热溶解,待溶液澄清后,将蒙脱土超声分散于溶液中得到聚合物纺丝溶液;
其中,有机改性蒙脱土质量为纺丝溶液总质量的1-3%;
(2)静电纺丝:将聚偏氟乙烯/改性蒙脱土纺丝液进行静电纺丝,制得聚偏氟乙烯/改性蒙脱土复合纳米纤维薄膜;
其中,静电纺丝过程中滚筒转速200r/min,纺丝电压10-12kv,纺丝速度0.5-1ml/h,接收距离为11-15cm。
作为优选,步骤(1)中有机溶剂为丙酮和二甲基乙酰胺,丙酮和二甲基乙酰胺的质量比为2:3。
作为优选,步骤(2)静电纺丝的电压为10kv,纺丝速度1ml/h,接收距离为10cm。
一种聚偏氟乙烯纤维膜材料作为吸油材料的应用。
有效效果:本发明提供的聚偏氟乙烯纤维膜材料是采用静电纺丝的方法,首先将聚偏氟乙烯溶于有机溶剂得到纺丝溶液,然后将一定量改性蒙脱土超声分散在纺丝液中,进行静电纺丝制得聚偏氟乙烯纤维膜材料。制备的聚偏氟乙烯/改性蒙脱土复合纤维膜材料具有优良疏水吸油效果,可作为吸油材料的实用,用于海上或水面溢油的处理、含油废水的处理、过滤材料和石油化工污染控制等领域。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
根据本发明提供的制备方法制备聚偏氟乙烯纤维膜材料:
(1)聚合物纺丝溶液的制备:将2gPVDF加入到10.8gDMAC和7.2g丙酮溶液中,35℃水浴加热4h,制得聚偏氟乙烯纺丝液;
(2)静电纺丝:纺丝条件,滚筒转速200r/min,纺丝电压11kv,纺丝速度1ml/h,接收距离11cm,制备得到无改性蒙脱土的聚偏氟乙烯纤维膜,纤维平均直径为251nm,纤维膜的平均孔径在5.30um。
复合纳米纤维膜对二甲基硅油的吸油量为15.945mg/mm2,对大豆油吸油量为19.377mg/mm2,对汽油吸油量为10.198mg/mm2。
实施例2
根据本发明提供的制备方法制备聚偏氟乙烯纤维膜材料:
(1)聚合物纺丝溶液的制备:将2gPVDF加入到10.8gDMAC和7.2g丙酮溶液中,35℃水浴加热4h,称取0.2g改性蒙脱土加入溶液中超声分散机械搅拌12h,制得1%改性蒙脱土的混合纺丝液;
(2)静电纺丝:纺丝条件,滚筒转速200r/min,纺丝电压10kv,纺丝速度0.5ml/h,接收距离10cm,制备得到聚偏氟乙烯/改性蒙脱土复合纳米纤维膜,纤维平均直径为428nm,纤维膜的平均孔径为4.25um。
该聚偏氟乙烯/改性蒙脱土复合纤维膜材料对二甲基硅油吸油量为19.671mg/mm2,对大豆油吸油量为20.660mg/mm2,对汽油吸油量为14.721mg/mm2。
实施例3
根据本发明提供的制备方法制备聚偏氟乙烯纤维膜材料:
(1)聚合物纺丝溶液的制备:将2gPVDF加入到10.8gDMAC和7.2g丙酮溶液中,35℃水浴加热4h,称取0.4g改性蒙脱土加入溶液中超声分散机械搅拌12h,制得2%改性蒙脱土的混合纺丝液;
(2)静电纺丝:纺丝条件,滚筒转速200r/min,纺丝电压12kv,纺丝速度0.6ml/h,接收距离12cm,制备得到聚偏氟乙烯/改性蒙脱土复合纳米纤维膜,纤维平均直径为367nm,纤维膜的平均孔径为2.56um。
该聚偏氟乙烯/改性蒙脱土复合纤维膜材料对二甲基硅油吸油量为23.322mg/mm2,对大豆油吸油量为20.803mg/mm2,对汽油吸油量为15.273mg/mm2。
实施例4
根据本发明提供的制备方法制备聚偏氟乙烯纤维膜材料:
(1)聚合物纺丝溶液的制备:将2gPVDF加入到10.8gDMAC和7.2g丙酮溶液中,35℃水浴加热4h,称取0.6g改性蒙脱土加入溶液中超声分散机械搅拌12h,制得3%改性蒙脱土的混合纺丝液;
(2)静电纺丝:纺丝条件,滚筒转速200r/min,纺丝电压10kv,纺丝速度1ml/h,接收距离10cm,制备得到聚偏氟乙烯/改性蒙脱土复合纳米纤维膜,纤维平均直径为549nm,纤维膜的平均孔径为1.34um。
该聚偏氟乙烯/改性蒙脱土复合纤维膜材料对二甲基硅油单位面积吸油量为23.752mg,对大豆油吸油量为20.983mg/mm2,对汽油吸油量为15.580mg/mm2。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (3)
1.一种聚偏氟乙烯纤维膜材料的制备方法,其特征在于,制备步骤如下:
(1)聚合物纺丝液制备:将聚偏氟乙烯溶于有机溶剂中,在35℃水浴加热溶解,待溶液澄清后,将有机改性蒙脱土超声分散于溶液中得到聚合物纺丝溶液;
其中,有机改性蒙脱土质量为纺丝溶液总质量的1-3%;
(2)静电纺丝:将聚偏氟乙烯/有机改性蒙脱土纺丝液进行静电纺丝,制得聚偏氟乙烯/有机改性蒙脱土复合纳米纤维薄膜;
其中,静电纺丝过程中滚筒转速200r/min,纺丝电压10-12kV ,纺丝速度0.5-1ml/h,接收距离为11-15cm;
制备得到的聚偏氟乙烯纤维直径为400-5000nm,平均分子量为30-60万,纤维膜的孔径分布在1.34-5.32μm范围内。
2.根据权利要求1所述的聚偏氟乙烯纤维膜材料的制备方法,其特征在于:步骤(1)中有机溶剂为丙酮和二甲基乙酰胺,丙酮和二甲基乙酰胺的质量比为2:3。
3.根据权利要求1所述的聚偏氟乙烯纤维膜材料的制备方法,其特征在于:步骤(2)静电纺丝的电压为10kV ,纺丝速度1ml/h,接收距离为10cm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410698087.4A CN104480636B (zh) | 2014-11-28 | 2014-11-28 | 一种聚偏氟乙烯纳米纤维膜材料及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410698087.4A CN104480636B (zh) | 2014-11-28 | 2014-11-28 | 一种聚偏氟乙烯纳米纤维膜材料及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104480636A CN104480636A (zh) | 2015-04-01 |
CN104480636B true CN104480636B (zh) | 2017-12-01 |
Family
ID=52755235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410698087.4A Active CN104480636B (zh) | 2014-11-28 | 2014-11-28 | 一种聚偏氟乙烯纳米纤维膜材料及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104480636B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108442039A (zh) * | 2018-03-06 | 2018-08-24 | 苏州先蚕丝绸有限公司 | 一种丝素蛋白纳米纤维膜的制备方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105080356B (zh) * | 2015-08-04 | 2018-01-19 | 天津工业大学 | 疏水亲油中空纤维复合膜及其制备方法 |
CN105200666B (zh) * | 2015-08-26 | 2017-09-15 | 辽宁石油化工大学 | 一种超疏水/超亲油空心微球状pvdf纳米纤维的制备方法 |
CN107227502A (zh) * | 2016-03-23 | 2017-10-03 | 张国勇 | 一种复合型空气过滤材料的静电纺丝液配方 |
CN106192062A (zh) * | 2016-09-23 | 2016-12-07 | 安徽丰磊制冷工程有限公司 | 一种高性能的静电纺/驻极体复合纤维过滤材料及其制备方法 |
CN106757531B (zh) * | 2016-12-08 | 2019-10-11 | 东南大学 | 一种采用过滤膜制备石墨烯基中空纤维的方法 |
CN106622149A (zh) * | 2016-12-22 | 2017-05-10 | 北京师范大学 | 基于静电纺丝技术制备的具有吸附去除溢油功能的吸附膜 |
CN106917189B (zh) * | 2017-03-03 | 2019-10-29 | 齐鲁工业大学 | 一种孔隙可控的cs/pla油水分离纳米纤维膜及其制备方法 |
CN107447292B (zh) * | 2017-08-10 | 2019-07-16 | 江南大学 | 一种微纳米螺旋多孔纤维的制备方法及其应用 |
CN110359182B (zh) * | 2018-04-09 | 2021-09-28 | 杭州科百特过滤器材有限公司 | 一种聚四氟乙烯纺丝纤维防水透声膜及其制备方法 |
CN110201554A (zh) * | 2019-07-08 | 2019-09-06 | 安徽农业大学 | 一种蒙脱土增强型疏水/超亲油聚氨酯膜材料的制备方法 |
CN113308799A (zh) * | 2021-01-15 | 2021-08-27 | 南京林业大学 | 一种用于水油分离的双层纳米纤维膜及其制备方法 |
CN114713038A (zh) * | 2022-03-30 | 2022-07-08 | 深圳维度新材料有限公司 | 微纳米纤维膜及其制备方法和应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102277648B (zh) * | 2011-05-30 | 2013-08-28 | 中国科学院青岛生物能源与过程研究所 | 无机/有机复合聚酰亚胺基纳米纤维膜及制法和应用 |
CN102247027B (zh) * | 2011-06-20 | 2013-12-11 | 东华大学 | 一种可高效分解生化试剂的防护材料及其制备方法 |
CA2887914A1 (en) * | 2012-10-12 | 2014-04-17 | Gabae Technologies Ulc | High dielectric compositions for particle formation and methods of forming particles using same |
CN103641243B (zh) * | 2013-12-03 | 2015-02-25 | 大连海洋大学 | 去除水体油污用漂浮型光自洁微生物固载膜的制备方法 |
CN103894077B (zh) * | 2014-04-10 | 2016-02-24 | 江南大学 | 一种多维度孔隙结构复合过滤膜及其制备方法 |
-
2014
- 2014-11-28 CN CN201410698087.4A patent/CN104480636B/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108442039A (zh) * | 2018-03-06 | 2018-08-24 | 苏州先蚕丝绸有限公司 | 一种丝素蛋白纳米纤维膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104480636A (zh) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104480636B (zh) | 一种聚偏氟乙烯纳米纤维膜材料及其制备方法与应用 | |
Liu et al. | Waste cigarette filter as nanofibrous membranes for on-demand immiscible oil/water mixtures and emulsions separation | |
Wu et al. | Janus nanofibrous membrane with special micro-nanostructure for highly efficient separation of oil–water emulsion | |
Wang et al. | Ultralight and multifunctional PVDF/SiO2@ GO nanofibrous aerogel for efficient harsh environmental oil-water separation and crude oil absorption | |
Yang et al. | Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation | |
Gong et al. | A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions | |
Gu et al. | Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil-water separation applications | |
Si et al. | Superwetting materials of oil–water emulsion separation | |
Zareei Pour et al. | Superhydrophobic–superoleophilic electrospun nanofibrous membrane modified by the chemical vapor deposition of dimethyl dichlorosilane for efficient oil–water separation | |
Tian et al. | Novel reusable porous polyimide fibers for hot-oil adsorption | |
JP2016515933A (ja) | 吸油中空繊維多孔膜の製造方法 | |
CN103866492A (zh) | 一种高效油水分离复合纤维膜及其制备方法 | |
CN104831415B (zh) | 一种具有油水乳液分离能力的多孔纤维膜及其制备方法 | |
Cheng et al. | In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation | |
Dong et al. | Concus Finn Capillary driven fast viscous oil-spills removal by superhydrophobic cruciate polyester fibers | |
Zhu et al. | Preparation of high strength ultrafine polyvinyl chloride fibrous membrane and its adsorption of cationic dye | |
Li et al. | A versatile hydrogel platform for oil/water separation, dye adsorption, and wastewater purification | |
Chen et al. | A super-hydrophobic and antibiofouling membrane constructed from carbon sphere-welded MnO2 nanowires for ultra-fast separation of emulsion | |
Wang et al. | Pollens derived magnetic porous particles for adsorption of low-density lipoprotein from plasma | |
CN108854596A (zh) | 一种连续油水分离中空纤维膜的制备方法 | |
Hao et al. | In situ reduced graphene oxide-based polyurethane sponge hollow tube for continuous oil removal from water surface | |
Xiao et al. | Bioinspired Janus membrane of polyacrylonitrile/poly (vinylidene fluoride)@ poly (vinylidene fluoride)-methyltriethoxysilane for oil-water separation | |
Dong et al. | Facile fabrication of marine algae-based robust superhydrophobic sponges for efficient oil removal from water | |
Xiang et al. | Eco-friendly WBF/PAN nanofiber composite membrane for efficient separation various surfactant-stabilized oil-in-water emulsions | |
Shen et al. | Hydrophilic SPE/MPTES-PAN electrospun membrane prepared via click chemistry for high efficiency oil–water separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220216 Address after: 215127 No. 12, Range Rover Road, Shengpu, Suzhou Industrial Park, Suzhou, Jiangsu Patentee after: SUZHOU BOHAN HOUSEHOLD PRODUCTS Co.,Ltd. Address before: No. 1800 road 214122 Jiangsu Lihu Binhu District City of Wuxi Province Patentee before: Jiangnan University |