CN104475008B - 一种高温co2吸附材料及其在吸附增强型产氢反应中的应用方法 - Google Patents

一种高温co2吸附材料及其在吸附增强型产氢反应中的应用方法 Download PDF

Info

Publication number
CN104475008B
CN104475008B CN201410788415.XA CN201410788415A CN104475008B CN 104475008 B CN104475008 B CN 104475008B CN 201410788415 A CN201410788415 A CN 201410788415A CN 104475008 B CN104475008 B CN 104475008B
Authority
CN
China
Prior art keywords
adsorbing material
temperature
adsorbing
alkali metal
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410788415.XA
Other languages
English (en)
Other versions
CN104475008A (zh
Inventor
王强
郑倩雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Forestry University
Original Assignee
Beijing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Forestry University filed Critical Beijing Forestry University
Priority to CN201410788415.XA priority Critical patent/CN104475008B/zh
Publication of CN104475008A publication Critical patent/CN104475008A/zh
Application granted granted Critical
Publication of CN104475008B publication Critical patent/CN104475008B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种高温CO2吸附材料,其化学组成为M2‑xNxTi2O5,其中M和N均为碱金属K+、Li+、Na+、或Cs+,x为0‑2。本发明还提供了上述高温CO2吸附材料在吸附增强型产氢反应中的应用方法,包括将该吸附材料和产氢催化剂联合使用于产氢反应,在产氢反应发生的同时在线吸附产物中的CO2。该材料吸附CO2饱和后,通过变温或变压的方式使吸附材料再生并循环使用。由于该CO2吸附材料具有优越的热稳定性和循环使用性,在吸附增强型产氢反应工艺中具有潜在广泛应用。

Description

一种高温CO2吸附材料及其在吸附增强型产氢反应中的应用 方法
技术领域
本专利提供一种高温CO2吸附材料和上述CO2吸附材料在吸附增强型产氢反应中的应用方法。
背景技术
众所周知,到目前为止化石燃料仍是世界上主要的燃料及能量来源,以其能量释放多,使用方便而被大量开发。截止2010年,化石燃料占一次能源的87%,虽然各国一直致力于新能源的开发,但新能源由于其成本过高、难于工业化而仍处于研究与开发阶段,化石燃料仍是目前能源消费的主体。正是由于人类社会对能源消耗的增大,对石油、煤炭、天然气的过度依赖,导致了由于其燃烧所产生的各种不可忽视的环境问题。随着温室效应对全球气候影响越来越显著,世界上越来越多的国家开始关注温室气体排放的问题,温室气体中CO2的排放量最大,被认为是引起全球变暖的主要原因,有短期内改变现有气候条件的可能。而化石燃料燃烧正是CO2的主要来源,当CO2大量产生而进入大气时,则会导致温室效应的加剧,这不仅仅是气候和全球环境问题,更是影响人类生存空间、社会和经济发展的严肃问题。
现阶段,CO2捕获技术主要分为燃烧前捕获、燃烧后捕获和纯氧燃烧捕获,目前对于CO2捕集方法主要有溶液吸收、固体材料吸附和膜技术等。溶液的吸收受温度制约,而膜普遍成本较高,所以固体材料吸附表现出巨大的优势。固体吸附材料根据吸附温度的不同可分为低温吸附材料、中温吸附材料和高温吸附材料。低温吸附材料主要有分子筛(zeolites)、活性炭(active carbon)、金属有机框架材料(MOFs)等。这类多孔材料一般为物理吸附,吸附温度较低,随着温度的升高其吸附效果降低明显,所以适用的区间较窄并且吸附的选择性也较差。而一般烟道尾气温度相对较高(100℃以上),其CO2含量较低(小于15%)这些都为工艺增加了技术难题。中温吸附温度介于200-400℃,吸附材料一般为传统的MgAl类水滑石衍生吸附材料。高温吸附温度介于400-750℃之间,吸附材料一般为CaO、碱金属锆酸盐、碱金属硅酸盐等。
关于CaO其作为一种高温吸附材料,相比于其它吸附材料来说具有高吸附量和低制备成本等优势,并且CaO循环吸附CO2技术在实际工业操作中也较为简单,因此得到广泛关注。但其在长时间、高温条件下CO2吸-脱附循环过程中会产生严重的烧结现象,且其抗磨性有待进一步提高。另外,水蒸气与CaO反应会生成氢氧化物,从而破坏CaO表面孔隙的分布,减少孔隙的数量,从而降低CO2的吸附效率。关于碱金属锆酸盐、碱金属硅酸盐对CO2的吸附已被进行过广泛的研究。其吸附机理可以用双壳机理(double-shell mechanism)进行解释。以Li4SiO4为例,反应初始阶段,CO2分子运动至Li4SiO4颗粒表面,并与之反应生成Li2SiO3和Li2CO3。随着反应进行,Li2SiO3和Li2CO3连接在一起,在Li4SiO4颗粒表面形成致密的两层结构,Li2SiO3在中间,Li2CO3在外层。双壳形成后,空气中的CO2可以扩散穿过Li2CO3层,在Li2SiO3层与与Li+和O2-反应。同时,未反应的Li4SiO4反应生成Li+和O2-不断补充,Li+和O2-也可以扩散穿过Li2SiO3层。脱附过程则与之相反。对于碱金属锆酸盐,其主要问题是吸脱附动力学慢且容易在高 温条件下烧结。对于碱金属硅酸盐,虽然其吸附动力学相比有所提高,但其长时间CO2吸脱附过程中的化学和机械稳定性还有待进一步探究。
现阶段,关于高温CO2吸附材料,多关注于碱金属锆酸盐、碱金属硅酸盐,目前还没有碱金属钛酸盐在CO2吸附、存储方面的研究报道。本发明的发明人研究发现,一类碱金属钛酸盐材料具有和碱金属锆酸盐、碱金属硅酸盐类似的CO2吸附特性,可以作为高温CO2吸附材料。碱金属钛酸盐作为一种高温CO2吸附材料具有较高的热稳定性和循环使用性,能在温度高达850℃条件下保持其结构和性能不变,因此具有良好的发展前景。其化学组成为M2- xNxTi2O5,其中M和N均为碱金属K+、Li+、Na+、或Cs+,x为0-2。对该高温CO2吸附材料,当x为0或者2时,为含一种碱金属的高温CO2吸附材料。当0<x<2时,为含两种碱金属的高温CO2吸附材料。
在应用于吸附增强型产氢反应中,如果CO2能被固态吸附剂去除,吸附平衡将被打破,反应中会产生更多的氢,与此同时,纯净的CO2将被更好的收集、存储并进一步的应用。
发明内容
本发明的发明人经过研究发现,一类碱金属钛酸盐材料具有和碱金属锆酸盐、碱金属硅酸盐类似的CO2吸附特性,基于这个发现发明了本专利。本发明的目的在于提供一种的高温CO2吸附材料,以及利用该吸附材料在吸附增强型产氢反应条件下捕集CO2的应用方法。主要技术方案如下:
一种的高温CO2吸附材料,其化学组成为M2-xNxTi2O5,其中M和N均为碱金属K+、Li+、Na+、或Cs+,x为0-2。
对该高温CO2吸附材料,当x为0或者2时,为含一种碱金属的高温CO2吸附材料。当0<x<2时,为含两种碱金属的高温CO2吸附材料。
对该高温CO2吸附材料,其比表面积为0.5-30m2/g。
对该高温CO2吸附材料,其可以在200-850℃温度区间内吸附CO2
对该高温CO2吸附材料,其具有较高的CO2脱附动力学,可在10min内实现CO2的完全脱附。
该高温CO2吸附材料在吸附增强型产氢反应工艺中具有广泛的应用前景,其应用方法包括如下特点:
1)该吸附材料和产氢催化剂联合使用于产氢反应,在产氢反应发生的同时在线吸附产物中的CO2
2)该材料吸附CO2饱和后,通过变温或变压的方式使吸附材料再生并循环使用。
3)该吸附材料具有较高的热稳定性和循环使用性,能在温度高达950℃条件下保持其结构和性能不变。
附图说明
图1.K2Ti2O5的X射线衍射谱图
图2.K2Ti2O5在不同温度条件下CO2吸附性能
图3.K2Ti2O5在750℃条件下的CO2吸-脱附循环性能
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案做进一步描述,但是本发明的保护范围并不限于这些实施例。凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。
实例1:固相法制备M2Ti2O5(M=K+、Li+、Na+或Cs+)的具体步骤。
采用固相法制备M2Ti2O5,按比例称取一定量固态M2CO3及一定量固态TiO2,将两者放入玛瑙研钵中混合均匀并研磨成细小粉末,之后将混合好的粉末放入100ml瓷坩埚中,并放置于马弗炉中高温850℃烧制10h,冷却至室温后取出,之后再次放入玛瑙研钵中研磨至细小粉末。
实例2:固相法制备M2-xNxTi2O5(M和N均为碱金属K+、Li+、Na+、或Cs+,x为0-2)的具体步骤。
采用固相法制备M2-xNxTi2O5,按比例称取一定量固态M2CO3、N2CO3及一定量固态TiO2,将三者放入玛瑙研钵中混合均匀并研磨成细小粉末,之后将混合好的粉末放入100ml瓷坩埚中,并放置于马弗炉中高温850℃烧制10h,冷却至室温后取出,之后再次放入玛瑙研钵中研磨至细小粉末。
实例3:实例1中制备的K2Ti2O5在不同温度条件下CO2吸附性能。
通过实例1的制备方法制备出的K2Ti2O5在不同温度条件下CO2吸附性能表明,K2Ti2O5对CO2吸附性能随着温度的升高而增加,温度达到750℃时,其CO2吸附容量最大。具体实验数据如下:K2Ti2O5在200℃时吸附增加量为0.62wt.%,在300℃时吸附增加量为1.58wt.%,在350℃时,吸附量为1.67wt.%,在700℃时,吸附量达到5wt.%,当温度继续升高至750℃时,其吸附性能可达6wt.%。
实例4:实例1中制备的含一种碱金属的吸附材料K2Ti2O5、Na2Ti2O5、Li2Ti2O5、Cs2Ti2O5在750℃下的CO2吸附性能。
K2Ti2O5在750℃时吸附两个小时后,吸附量为6.40wt.%;Na2Ti2O5在750℃时吸附两个小时后,吸附量为2.83wt.%;Cs2Ti2O5在750℃下,吸附CO2两小时后,吸附量达到2.35wt.%;而Li2Ti2O5在750℃下吸附效果不明显。
实例5:实例2中制备的含有两种碱金属的吸附材料K1Li1Ti2O5、K1Na1Ti2O5、K1Cs1Ti2O5、Na1Li1Ti2O5在750℃下的CO2吸附性能。
K1Li1Ti2O5在750℃时吸附两个小时后,吸附量为1.23wt.%。K1Na1Ti2O5在750℃下,吸附CO2两小时,吸附量达到0.90wt.%,而K1Cs1Ti2O5和Na1Li1Ti2O5在750℃下吸附效果不明显。
实例6:实例1中制备的K2Ti2O5在750℃条件下CO2吸-脱附循环性能。
实例1中制备的K2Ti2O5在750℃条件下CO2吸-脱附循环表明,在开始的几个循环中,其吸附性能随循环次数的增加而增加。在经过大约6个循环之后,可以看到其吸附量从3.85wt.%增加至7.2wt.%,之后则稳定地维持在7.2wt.%左右,经过20个循坏后,其吸附性能仍十分稳定,表明K2Ti2O5即使在高温条件下在CO2吸附方面仍具有很好的稳定性,在吸附增强型产氢反应工艺中具有很好的发展潜力。

Claims (4)

1.一种碱金属钛酸盐作为高温CO2吸附材料的应用,该碱金属钛酸盐的化学组成为M2- xNxTi2O5,其中M和N均为碱金属K+、Li+、Na+、或Cs+,x为0-2。
2.根据权利要求1所述的应用,所述高温CO2吸附材料的比表面积为0.5-30m2/g。
3.根据权利要求1所述的应用,所述高温CO2吸附材料具有较高的热稳定性和循环使用性,能在温度高达850℃条件下保持其结构和性能不变。
4.一种碱金属钛酸盐作为高温CO2吸附材料在吸附增强型产氢反应中的应用,该碱金属钛酸盐的化学组成为M2-xNxTi2O5,其中M和N均为碱金属K+、Li+、Na+、或Cs+,x为0-2,其中将该吸附材料和产氢催化剂联合使用于产氢反应,在产氢反应发生的同时在线吸附产物中的CO2,该吸附材料吸附CO2饱和后,通过变温或变压的方式使该吸附材料再生并循环使用。
CN201410788415.XA 2014-12-19 2014-12-19 一种高温co2吸附材料及其在吸附增强型产氢反应中的应用方法 Active CN104475008B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410788415.XA CN104475008B (zh) 2014-12-19 2014-12-19 一种高温co2吸附材料及其在吸附增强型产氢反应中的应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410788415.XA CN104475008B (zh) 2014-12-19 2014-12-19 一种高温co2吸附材料及其在吸附增强型产氢反应中的应用方法

Publications (2)

Publication Number Publication Date
CN104475008A CN104475008A (zh) 2015-04-01
CN104475008B true CN104475008B (zh) 2017-02-01

Family

ID=52749692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410788415.XA Active CN104475008B (zh) 2014-12-19 2014-12-19 一种高温co2吸附材料及其在吸附增强型产氢反应中的应用方法

Country Status (1)

Country Link
CN (1) CN104475008B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105214598B (zh) * 2015-10-22 2017-09-01 北京林业大学 一种高性能co2吸附材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313916A (ja) * 2003-04-15 2004-11-11 Bridgestone Corp 二酸化炭素の吸脱着材及び吸脱着装置
KR20090118776A (ko) * 2008-05-14 2009-11-18 포항공과대학교 산학협력단 탄화수소 촉매 개질 반응 시 코크 생성에 의한 촉매비활성화를 막는 첨가제
JP6106952B2 (ja) * 2012-05-29 2017-04-05 栗田工業株式会社 放射性物質吸着材、並びにそれを用いた吸着容器、吸着塔、及び水処理装置
JP5982189B2 (ja) * 2012-06-15 2016-08-31 株式会社三菱ケミカルホールディングス 水分解用光触媒
CN102949983B (zh) * 2012-12-14 2015-01-14 山东轻工业学院 一种Na2Ti3O7吸附剂的制备方法
CN103611490B (zh) * 2013-12-10 2015-10-28 东华理工大学 一种二氧化碳吸附剂及制备方法
CN104043391B (zh) * 2014-07-10 2017-02-15 北京林业大学 一种co2吸附材料及其制备方法

Also Published As

Publication number Publication date
CN104475008A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
Rodríguez-Mosqueda et al. Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes
Li et al. Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture
Rammelberg et al. Hydration and dehydration of salt hydrates and hydroxides for thermal energy storage-kinetics and energy release
Yang et al. Adsorption of CO2 by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation
Lin et al. Energy analysis of CaCO3 calcination with CO2 capture
Duan et al. Ab initio thermodynamic study of the CO2 capture properties of M2CO3 (M= Na, K)-and CaCO3-promoted MgO sorbents towards forming double salts
Xiang et al. CO 2 absorption properties of Ti-and Na-doped porous Li 4 SiO 4 prepared by a sol–gel process
Sanna et al. CO2 capture at high temperature using fly ash-derived sodium silicates
CN105502385B (zh) 一种吸附二氧化碳的玉米秸秆基多孔碳材料及其制备方法
Reddy et al. Influence of the synthesis method on the structure and CO2 adsorption properties of Ca/Zr sorbents
Jo et al. Citrate sol–gel method for the preparation of sodium zirconate for high-temperature CO2 sorption
Wang et al. High-capacity Li4SiO4-based CO2 sorbents via a facile hydration–NaCl doping technique
CN103464099B (zh) 一种变压吸附分离co2用活性炭的制备方法
Sun et al. Evaluation of thermochemical energy storage performance of Fe-/Mn-doped, Zr-stabilized, CaO-based composites under different thermal energy storage modes
Romero‐Ibarra et al. Influence of the K‐, Na‐and K‐Na‐carbonate additions during the CO2 chemisorption on lithium oxosilicate (Li8SiO6)
CN105271178A (zh) 一种将温室气体转化为碳的方法
Alsaman et al. Composite adsorbent materials for desalination and cooling applications: A state of the art
CN102618349A (zh) 一种甲烷化学链燃烧的氧载体及其制备方法
KR101543962B1 (ko) 이산화탄소 흡착제의 제조방법 및 이로부터 제조된 흡착제를 포함하는 이산화탄소 포집모듈
Yang et al. CO2 capture by carbon aerogel–potassium carbonate nanocomposites
Sreenivasulu et al. Thermokinetic investigations of high temperature carbon capture using a coal fly ash doped sorbent
Ma et al. CaO powders from oyster shells for efficient CO2 capture in multiple carbonation cycles
CN104475008B (zh) 一种高温co2吸附材料及其在吸附增强型产氢反应中的应用方法
Puccini et al. Removal of CO2 from flue gas at high temperature using novel porous solids
Han et al. Compressing two-dimensional graphite-nanosheet-supported CaO for optimizing porous structures toward high-volumetric-performance heat storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant