CN104466156B - 锰的醇盐及其与石墨烯复合物、其制备方法和应用 - Google Patents

锰的醇盐及其与石墨烯复合物、其制备方法和应用 Download PDF

Info

Publication number
CN104466156B
CN104466156B CN201410735388.XA CN201410735388A CN104466156B CN 104466156 B CN104466156 B CN 104466156B CN 201410735388 A CN201410735388 A CN 201410735388A CN 104466156 B CN104466156 B CN 104466156B
Authority
CN
China
Prior art keywords
manganese
alkoxide
graphene
potassium permanganate
graphite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410735388.XA
Other languages
English (en)
Other versions
CN104466156A (zh
Inventor
李昱
黄绍专
蔡祎
金俊
张倩
苏宝连
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201410735388.XA priority Critical patent/CN104466156B/zh
Publication of CN104466156A publication Critical patent/CN104466156A/zh
Application granted granted Critical
Publication of CN104466156B publication Critical patent/CN104466156B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锰的醇盐及其与石墨烯复合物及其制备方法和应用,其为纳米片结构或者纳米片与石墨烯薄片的复合结构,所述的锰的醇盐的片状结构的大小为300nm~3μm,为下述制备方法所得产物,包含有以下步骤:1)在有机醇中加入高锰酸钾和氧化石墨,进行超声,配制成高锰酸钾和氧化石墨的醇溶液;2)将步骤1)所得的溶液置于油浴锅中加热,然后在溶液中加入乙二胺;3)将步骤2)所得的溶液加热,恒温反应,得到反应物沉淀;4)将得到的沉淀进行离心清洗后,烘干得到粉末。本发明的有益效果是:本发明首次采用高锰酸钾为氧化剂和锰源,涉及的反应条件简单、重复性高;首次应用于锂离子电池电极,表现出突出的锂离子电池负极材料性能。

Description

锰的醇盐及其与石墨烯复合物、其制备方法和应用
技术领域
本发明涉及锰的醇盐及其与石墨烯复合物及其制备方法和应用,属于无机材料化学制备技术领域。
背景技术
锰的醇盐是一种层状化合物,有锰离子和有机醇类的阴离子螯合而成。这类化合物可以描述为堆叠的氧化锰层被键合的醇化物阴离子隔离开,具有开阔的层间结构。在过去20年,锰的醇盐已经得到了一定的研究,但是人们的视野始终集中在它们的制备和稳定性上面。近年来,人们已经开始将研究中心转移到把锰的醇盐热转化为氧化锰以及磁性能的研究上来。另外,这些研究一直都是利用锰的无机盐为锰的前驱体来合成锰的醇盐。例如,中国科技大学的陈乾旺教授等人利用硫酸锰为锰源,水热反应制备出锰的醇盐,并将其转化成三氧化二锰,研究其性能(Lin Hu,Yukun Sun,Fapei Zhang,Qianwang Chen,Journal of Alloys andCompounds,2013,576,86–92)。
虽然目前关于锰的醇盐的研究众多,但是以高锰酸钾为锰源合成锰的醇盐的方法鲜有报道;并且将锰的醇盐和石墨烯复合来制备电极材料,测试其储锂性能的研究至今无人报道。
因此,利用新颖系统的方法合成锰的醇盐,并研究其潜在的优异储锂性能具有极其重要的意义。
发明内容
本发明所要解决的技术问题是针对目前对层状锰的醇盐的研究不足提供一种层状锰的醇盐及其与石墨烯的复合物的合成方法及应用,该方法合成简单,产量大,应用于制备锂离子电池电极表现出优异的电化学性能。
为实现上述目的,本发明采用的技术方案为:锰的醇盐及其与石墨烯复合物,其为纳米片结构或者纳米片与石墨烯薄片的复合结构,所述的锰的醇盐的片状结构的大小为300nm~3μm,为下述制备方法所得产物,包含有以下步骤:
1)在有机醇中加入高锰酸钾和氧化石墨,进行超声,配制成高锰酸钾和氧化石墨的醇溶液,高锰酸钾的浓度为0.01~0.08mol/L,氧化石墨和高锰酸钾的质量比为0:1~0.2:1;
2)将步骤1)所得的溶液置于油浴锅中加热,然后在溶液中加入乙二胺;
3)将步骤2)所得的溶液加热,恒温反应,得到反应物沉淀;
4)将得到的沉淀进行离心清洗后,烘干得到粉末。
按上述方案,所述有机醇为乙二醇和二乙二醇中的一种或两种的混合,所述氧化石墨为Hummers方法制备而得。
按上述方案,步骤2)所述添加乙二胺的温度为120~150℃,添加乙二胺与有机醇溶液体积比为0:1~0.2:1。
按上述方案,步骤3)所述恒温反应的温度为180~240℃,恒温反应时间为1~5h。
所述的锰的醇盐及其与石墨烯复合物的制备方法,包含有以下步骤:
1)在有机醇中加入高锰酸钾和氧化石墨,进行超声,配制成高锰酸钾和氧化石墨的醇溶液,高锰酸钾的浓度为0.01~0.08mol/L,氧化石墨和高锰酸钾的质量比为0:1~0.2:1;
2)将步骤1)所得的溶液置于油浴锅中加热,然后在溶液中加入乙二胺;
3)将步骤2)所得的溶液加热,恒温反应,得到反应物沉淀;
4)将得到的沉淀进行离心清洗后,烘干得到粉末。
上述制备方法制得的层状锰的醇盐及其与石墨烯的复合物应用于制备锂离子电池的负极,表现出良好的电化学性能。
与现有技术相比,本发明的有益效果是:
(1)本发明使用的高锰酸钾和可溶性有机醇均为常用化学试剂,没有使用其他有毒有害的有机表面活性剂和添加剂。
(2)本发明首次采用高锰酸钾为氧化剂和锰源,涉及的反应条件简单、重复性高。
(3)本发明制备的层状锰的醇盐及其与石墨烯的复合物首次应用于锂离子电池电极,表现出突出的锂离子电池负极材料性能。
附图说明
下面将结合附图对本发明作进一步说明,附图中:
图1是本发明实施例1中制得的层状锰的醇盐的XRD图;
图2是本发明实施例1中制得的层状锰的醇盐的SEM图;
图3是本发明实施例1中制得的层状锰的醇盐的电化学性能图;
图4是本发明实施例2中制得的层状锰的醇盐/石墨烯复合物的XRD图;
图5是本发明实施例2中制得的层状锰的醇盐/石墨烯复合物的SEM图;
图6是本发明实施例2中制得的层状锰的醇盐/石墨烯复合物的电化学性能图;
图7是本发明实施例3中制得的层状锰的醇盐/石墨烯复合物的XRD图;
图8是本发明实施例3中制得的层状锰的醇盐/石墨烯复合物的SEM图;
图9是本发明实施例3中制得的层状锰的醇盐/石墨烯复合物的电化学性能图;
图10是本发明实施例4中制得的层状锰的醇盐/石墨烯复合物的XRD图;
图11是本发明实施例4中制得的层状锰的醇盐/石墨烯复合物的SEM图;
图12是本发明实施例5中制得的层状锰的醇盐的XRD图;
图13是本发明实施例5中制得的层状锰的醇盐的SEM图;
图14为本发明的反应机理图。
具体实施方式
下面结合实施例及附图对本发明做进一步描述,本发明要求保护的范围并不局限于实施例表述的范围:
实施例1
锰的醇盐及其与石墨烯复合物,包括以下步骤:
(1)称取0.002mol(0.316g)高锰酸钾加入到40mL乙二醇中,超声30min,得均匀的深紫色溶液;
(2)将步骤(1)配制的深紫色溶液转入烧瓶并置于油浴锅中,加热到150℃,然后在溶液中注入2mL乙二胺;
(3)将步骤(2)得到的混合溶液继续加热至200℃,在回流冷凝的条件下恒温反应3h;
(4)将得到的沉淀置于离心机上用水和乙醇交替各清洗四次,离心转速为6000r/min,然后将离心得到的产品置于真空干燥箱,在60℃烘干,得到干燥粉末;
本实施例制得的产物经X射线衍射分析确定为层状锰的醇盐,其X射线衍射图见图1;扫描电子显微镜(SEM)分析结果表明,所得产物的形貌为均匀的纳米片,其SEM图见图2。
将本实施例制得的层状锰的醇盐应用于制备锂离子电池的负极,表现出很好的电化学性能:扣式半电池测试的结果显示,在100mA/g的电流密度下,电池的首圈放电比容量高达1160mAh/g,充放电100圈之后,可逆比容量仍有280mAh/g,其电化学性能如图3。
实施例2
锰的醇盐/石墨烯复合物的合成方法,包括以下步骤:
(1)称取0.002mol(0.316g)高锰酸钾和25mg石墨烯加入到50mL乙二醇中,超声30min,得均匀的深紫色溶液;
(2)将步骤(1)配制的深紫色溶液转入烧瓶并置于油浴锅中,加热到120℃,然后在溶液中注入2mL乙二胺;
(3)将步骤(2)得到的混合溶液继续加热至200℃,在回流冷凝的条件下恒温反应3h;
(4)将得到的沉淀置于离心机上用水和乙醇交替各清洗四次,离心转速为6000r/min,然后将离心得到的产品置于真空干燥箱,在60℃烘干,得到干燥粉末;
如图14所示,本发明的反应机理为:在还原性有机醇溶液中(乙二醇或者二乙二醇),MnO4 -很容易被还原成Mn(II);然后,Mn(II)在高温反应中会吸附在氧化石墨烯上面成键,同时氧化石墨烯被还原成石墨烯;最后Mn(II)和有机醇阴离子配位形成锰的醇盐和石墨烯的复合物。
本实施例制得的产物经X射线衍射分析确定为层状锰的醇盐,其X射线衍射图见图4;扫描电子显微镜(SEM)分析结果表明,所得产物的形貌为均匀的纳米片和石墨烯薄片的复合物,其SEM图见图5。从SEM图中可以得知,纳米片的厚度为60~70nm,直径为500~700nm,纳米片表面包覆了一层石墨烯薄片。
将本实施例制得的层状锰的醇盐与石墨烯的复合物应用于制备锂离子电池的负极,表现出很好的电化学性能:扣式半电池测试的结果显示,在100mA/g的电流密度下,电池的首圈放电比容量高达1075mAh/g,充放电80圈之后,可逆比容量仍有420mAh/g,其电化学性能如图6。
实施例3
锰的醇盐/石墨烯复合物的合成方法,包括以下步骤:
(1)称取0.002mol(0.316g)高锰酸钾和40mg氧化石墨加入到40mL乙二醇中,超声30min,得棕黑色溶液;
(2)将步骤(1)配制的棕黑色溶液转入烧瓶并置于油浴锅中,加热到150℃,然后在溶液中注入4mL乙二胺;
(3)将步骤(2)得到的混合溶液继续加热至200℃,在回流冷凝的条件下恒温反应3h;
(4)将得到的沉淀置于离心机上用水和乙醇交替各清洗四次,离心转速为6000r/min,然后将离心得到的产品置于真空干燥箱,在60℃烘干,得到干燥粉末;
本实施例制得的产物经X射线衍射分析确定为层状锰的醇盐,其X射线衍射图见图7;扫描电子显微镜(SEM)分析结果表明,所得产物的形貌为均匀的纳米片与石墨烯薄片的复合物,其SEM图见图8。从SEM图中可以得知,纳米片的厚度为60~70nm,直径为300~400nm,纳米片表面包覆了一层石墨烯薄片。将本实施例制得的层状锰的醇盐与石墨烯的复合物应用于制备锂离子电池的负极,表现出很好的电化学性能:扣式半电池测试的结果显示,在100mA/g的电流密度下,电池的首圈放电比容量高达1220mAh/g,充放电50圈之后,可逆比容量仍有850mAh/g,其电化学性能如图9。
实施例4
锰的醇盐/石墨烯复合物的合成方法,包括以下步骤:
(1)称取0.004mol(0.632g)高锰酸钾和60g氧化石墨加入到80mL二乙二醇中,超声30min,得均匀的棕黑色溶液;
(2)将步骤(1)配制的棕黑色溶液转入烧瓶并置于油浴锅中,加热到150℃,然后在溶液中注入0mL乙二胺;
(3)将步骤(2)得到的混合溶液继续加热至230℃,在回流冷凝的条件下恒温反应5h;
(4)将得到的沉淀置于离心机上用水和乙醇交替各清洗四次,离心转速为6000r/min,然后将离心得到的产品置于真空干燥箱,在60℃烘干,得到干燥粉末;
本实施例制得的产物经X射线衍射分析确定为层状锰的醇盐,其X射线衍射图见图10;扫描电子显微镜(SEM)分析结果表明,所得产物的形貌为纳米薄片与石墨烯薄片的复合物,其SEM图见图11。从SEM图中可以得知,纳米片的厚度为40~50nm,直径为300~400nm,纳米片表面包覆了一层石墨烯薄片。
实施例5
锰的醇盐/石墨烯复合物的合成方法,包括以下步骤:
(1)称取0.002mol(0.316g)高锰酸钾加入到40mL二乙二醇中,超声30min,得均匀的深黑色溶液;
(2)将步骤(1)配制的深黑色溶液转入烧瓶并置于油浴锅中,加热到150℃,然后在溶液中注入2mL乙二胺;
(3)将步骤(2)得到的混合溶液继续加热至210℃,在回流冷凝的条件下恒温反应5h;
(4)将得到的沉淀置于离心机上用水和乙醇交替各清洗四次,离心转速为6000r/min,然后将离心得到的产品置于真空干燥箱,在60℃烘干,得到干燥粉末;
本实施例制得的产物经X射线衍射分析确定为层状锰的醇盐,其X射线衍射图见图12;扫描电子显微镜(SEM)分析结果表明,所得产物的形貌为纳米片组装而成的微米球,其SEM图见图13。从SEM图中可以得知,所得到的微米球的大小为1~1.5μm。
发明涉及的各原料的上下限取值、区间值都能实现本发明,本发明的工艺参数(如温度、时间等)的下限取值以及区间值都能实现本发明,在此不一一列举实施例。

Claims (7)

1.锰的醇盐与石墨烯的复合物,其为纳米片结构或者纳米片与石墨烯薄片的复合结构,所述的锰的醇盐的片状结构的大小为300nm~3μm,为下述制备方法所得产物,包含有以下步骤:
1)在有机醇中加入高锰酸钾和氧化石墨,进行超声,配制成高锰酸钾和氧化石墨的醇溶液,高锰酸钾的浓度为0.01~0.08mol/L,氧化石墨和高锰酸钾的质量比为0:1~0.2:1,且氧化石墨和高锰酸钾的质量比不为0;
2)将步骤1)所得的溶液置于油浴锅中加热,然后在溶液中加入乙二胺;
3)将步骤2)所得的溶液加热,恒温反应,得到反应物沉淀;所述恒温反应的温度为180~240℃,恒温反应时间为1~5h;
4)将得到的沉淀进行离心清洗后,烘干得到粉末。
2.根据权利要求1所述的锰的醇盐与石墨烯的复合物,其特征在于,所述有机醇为乙二醇和二乙二醇中的一种或两种的混合,所述氧化石墨为Hummers方法制备而得。
3.根据权利要求1所述的锰的醇盐与石墨烯的复合物,其特征在于,步骤2)所述添加乙二胺的温度为120~150℃,添加乙二胺与有机醇溶液体积比为0:1~0.2:1,且乙二胺与有机醇溶液体积比不为0。
4.权利要求1所述的锰的醇盐与石墨烯的复合物的制备方法,包含有以下步骤:
1)在有机醇中加入高锰酸钾和氧化石墨,进行超声,配制成高锰酸钾和氧化石墨的醇溶液,高锰酸钾的浓度为0.01~0.08mol/L,氧化石墨和高锰酸钾的质量比为0:1~0.2:1,且氧化石墨和高锰酸钾的质量比不为0;
2)将步骤1)所得的溶液置于油浴锅中加热,然后在溶液中加入乙二胺;
3)将步骤2)所得的溶液加热,恒温反应,得到反应物沉淀;所述恒温反应的温度为180~240℃,恒温反应时间为1~5h;
4)将得到的沉淀进行离心清洗后,烘干得到粉末。
5.根据权利要求4所述的锰的醇盐与石墨烯的复合物的制备方法,其特征在于,所述有机醇为乙二醇和二乙二醇中的一种或两种的混合,所述氧化石墨为Hummers方法制备而得。
6.根据权利要求4所述的锰的醇盐与石墨烯的复合物的制备方法,其特征在于,步骤2)所述添加乙二胺的温度为120~150℃,添加乙二胺与有机醇溶液体积比为0:1~0.2:1,且乙二胺与有机醇溶液体积比不为0。
7.权利要求1所述的锰的醇盐与石墨烯的复合物在锂离子电池负极中的应用。
CN201410735388.XA 2014-12-05 2014-12-05 锰的醇盐及其与石墨烯复合物、其制备方法和应用 Expired - Fee Related CN104466156B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410735388.XA CN104466156B (zh) 2014-12-05 2014-12-05 锰的醇盐及其与石墨烯复合物、其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410735388.XA CN104466156B (zh) 2014-12-05 2014-12-05 锰的醇盐及其与石墨烯复合物、其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104466156A CN104466156A (zh) 2015-03-25
CN104466156B true CN104466156B (zh) 2017-01-11

Family

ID=52911846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410735388.XA Expired - Fee Related CN104466156B (zh) 2014-12-05 2014-12-05 锰的醇盐及其与石墨烯复合物、其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104466156B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082122A (zh) * 2023-01-10 2023-05-09 中南民族大学 钴的醇盐与还原氧化石墨烯的复合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472521A (en) * 1982-12-20 1984-09-18 Stauffer Chemical Company Supported catalyst for polymerization of olefins
CN102145282A (zh) * 2010-05-28 2011-08-10 南京理工大学 石墨烯负载纳米MnOOH复合材料的制备方法
CN103213966A (zh) * 2013-04-17 2013-07-24 天津大学 碳纳米管冷冻干燥体/金属氧化物复合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472521A (en) * 1982-12-20 1984-09-18 Stauffer Chemical Company Supported catalyst for polymerization of olefins
CN102145282A (zh) * 2010-05-28 2011-08-10 南京理工大学 石墨烯负载纳米MnOOH复合材料的制备方法
CN103213966A (zh) * 2013-04-17 2013-07-24 天津大学 碳纳米管冷冻干燥体/金属氧化物复合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Facile synthesis of porous Mn2O3 hierarchical microspheres for lithium battery anode with improved lithium storage properties;Lin Hu等;《Journal of Alloys and Compounds》;20130429;第576卷;全文 *
Ling Liu等.shape-controlled synthesis of manganese oxide nanoplates by a polyol-based precursor route.《Materials Letters》.2010,第64卷891-893. *

Also Published As

Publication number Publication date
CN104466156A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
Zhang et al. MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage
Gu et al. Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes
Wang et al. Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries
Huang et al. Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder
Takashima et al. Characterization of mixed titanium–niobium oxide Ti2Nb10O29 annealed in vacuum as anode material for lithium-ion battery
Hussain et al. Selective combination of highly porous hollow structured bimetallic spinel oxides with improved redox chemistry for electrochemical hybrid capacitor
Zhu et al. Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material
CN104868112B (zh) 碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法
CN104091937B (zh) 钛酸锂包覆经表面处理石墨的负极材料、制法及其应用
Zhao et al. Tuning a compatible interface with LLZTO integrated on cathode material for improving NCM811/LLZTO solid-state battery
Hussain et al. Morphological synergistic behavior on electrochemical performance of battery-type spinel nickel manganese oxides for aqueous hybrid supercapacitors
Wang et al. Composite‐structure material design for high‐energy lithium storage
Zhang et al. Bio-synthesis participated mechanism of mesoporous LiFePO 4/C nanocomposite microspheres for lithium ion battery
Xu et al. Synthesis of core-shell TiO2@ MoS2 composites for lithium-ion battery anodes
CN105870384A (zh) 一种用于锂电池电极的氮掺杂碳纳米管/锰-钴氧化物纳米复合材料
Ma et al. Triphase electrode performance adjustment for rechargeable ion batteries
Chen et al. Integrated design of hierarchical CoSnO3@ NC@ MnO@ NC nanobox as anode material for enhanced lithium storage performance
CN107681147A (zh) 一种固态电解质包覆改性锂离子电池正极材料的制备方法与应用
CN103500667A (zh) CuO-MnO2核壳结构纳米材料及其制备方法
Diao et al. Low-valence bicomponent (FeO) x (MnO) 1− x nanocrystals embedded in amorphous carbon as high-performance anode materials for lithium storage
Wang et al. Synthesis and study of V 2 O 5/rGO nanocomposite as a cathode material for aqueous zinc ion battery
Li et al. In situ growth of a feather‐like MnO2 nanostructure on carbon paper for high‐performance rechargeable sodium‐ion batteries
Wang et al. Synthesis and performance of Li1. 5V3O8 nanosheets as a cathode material for high-rate lithium-ion batteries
Yang et al. Atomic pair distribution function research on Li2MnO3 electrode structure evolution
CN106848246A (zh) 一种三维结构TiO2/石墨烯气凝胶复合物及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170111

Termination date: 20201205