CN104446377A - Temperature stable microwave dielectric ceramic LiZn2B3O7 and its preparation method - Google Patents
Temperature stable microwave dielectric ceramic LiZn2B3O7 and its preparation method Download PDFInfo
- Publication number
- CN104446377A CN104446377A CN201410704024.5A CN201410704024A CN104446377A CN 104446377 A CN104446377 A CN 104446377A CN 201410704024 A CN201410704024 A CN 201410704024A CN 104446377 A CN104446377 A CN 104446377A
- Authority
- CN
- China
- Prior art keywords
- hours
- microwave dielectric
- dielectric ceramic
- lizn
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 229910013391 LizN Inorganic materials 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 6
- 238000000498 ball milling Methods 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims abstract description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract description 3
- 239000002994 raw material Substances 0.000 claims abstract description 3
- 239000008187 granular material Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000000748 compression moulding Methods 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 229910010293 ceramic material Inorganic materials 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 239000011575 calcium Substances 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910011687 LiCu Inorganic materials 0.000 description 2
- 229910015243 LiMg Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000010344 co-firing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052861 titanite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Insulating Materials (AREA)
Abstract
本发明公开了一种温度稳定型超低介电常数微波介电陶瓷LiZn2B3O7及其制备方法。(1)将纯度为99.9%(重量百分比)以上的Li2CO3、ZnO和H3BO3的原始粉末按LiZn2B3O7的组成称量配料;(2)将步骤(1)原料湿式球磨混合12小时,球磨介质为无水乙醇,烘干后在800℃大气气氛中预烧6小时;(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在850~890℃大气气氛中烧结4小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,聚乙烯醇的添加量占粉末总质量的3%。本发明制备的陶瓷烧结良好,介电常数达到5.5~5.9,其品质因数Qf值高达121000-147000GHz,谐振频率温度系数小,在工业上有着极大的应用价值。The invention discloses a temperature stable ultra-low dielectric constant microwave dielectric ceramic LiZn 2 B 3 O 7 and a preparation method thereof. (1) Weigh the original powder of Li 2 CO 3 , ZnO and H 3 BO 3 with a purity of 99.9% (weight percent) or more according to the composition of LiZn 2 B 3 O 7 ; (2) Mix the raw materials in step (1) Wet ball milling and mixing for 12 hours, the ball milling medium is anhydrous ethanol, and after drying, it is pre-fired in the atmosphere at 800°C for 6 hours; (3) After adding a binder to the powder prepared in step (2) and granulating, then Compression molding, and finally sintering in the atmosphere at 850-890°C for 4 hours; the binder uses a polyvinyl alcohol solution with a mass concentration of 5%, and the amount of polyvinyl alcohol added accounts for 3% of the total mass of the powder. The ceramic prepared by the invention is well sintered, the dielectric constant reaches 5.5-5.9, its quality factor Qf value is as high as 121000-147000 GHz, and the temperature coefficient of resonance frequency is small, so it has great application value in industry.
Description
技术领域 technical field
本发明涉及介电陶瓷材料,特别是涉及用于制造微波频率使用的陶瓷基板、谐振器与滤波器等微波元器件的介电陶瓷材料及其制备方法。 The invention relates to a dielectric ceramic material, in particular to a dielectric ceramic material for manufacturing microwave components such as ceramic substrates, resonators and filters used in microwave frequencies and a preparation method thereof.
背景技术 Background technique
微波介电陶瓷是指应用于微波频段(主要是UHF和SHF频段)电路中作为介质材料并完成一种或多种功能的陶瓷,在现代通讯中被广泛用作谐振器、滤波器、介质基片和介质导波回路等元器件,是现代通信技术的关键基础材料,已在便携式移动电话、汽车电话、无绳电话、电视卫星接受器和军事雷达等方面有着十分重要的应用,在现代通讯工具的小型化、集成化过程中正发挥着越来越大的作用。 Microwave dielectric ceramics refer to ceramics that are used as dielectric materials in circuits in the microwave frequency band (mainly UHF and SHF bands) and perform one or more functions. They are widely used as resonators, filters, and dielectric substrates in modern communications. Components such as chips and dielectric waveguide circuits are the key basic materials of modern communication technology. They have been used in portable mobile phones, car phones, cordless phones, TV satellite receivers and military radars. They are used in modern communication tools. It is playing an increasingly important role in the process of miniaturization and integration.
应用于微波频段的介电陶瓷,应满足如下介电特性的要求:(1)系列化介电常数εr以适应不同频率及不同应用场合的要求;(2)高的品质因数Q值或低的介电损耗tanδ以降低噪音,一般要求Qf≥3000 GHz;(3) 谐振频率的温度系数τƒ尽可能小以保证器件具有好的热稳定性,一般要求-10 ppm /℃≤τƒ≤+10 ppm/℃。国际上从20世纪30年代末就有人尝试将电介质材料应用于微波技术, 并制备出TiO2微波介质滤波器,但其谐振频率温度系数τƒ太大而无法实用化。上世纪70年代以来,开始了大规模的对介质陶瓷材料的开发工作, 根据相对介电常数εr的大小与使用频段的不同,通常可将已被开发和正在开发的微波介质陶瓷分为4类。 Dielectric ceramics used in the microwave frequency band should meet the following requirements for dielectric properties: (1) Serialized dielectric constant ε r to meet the requirements of different frequencies and different applications; (2) High quality factor Q value or low The dielectric loss tanδ to reduce noise, generally requires Qf≥3000 GHz; (3) The temperature coefficient τ ƒ of the resonant frequency should be as small as possible to ensure good thermal stability of the device, generally requiring -10 ppm /℃≤τ ƒ ≤ +10 ppm/°C. Internationally, since the late 1930s, some people have tried to apply dielectric materials to microwave technology, and prepared TiO 2 microwave dielectric filters, but the temperature coefficient τ ƒ of its resonant frequency is too large to be practical. Since the 1970s, a large-scale development of dielectric ceramic materials has begun. According to the relative permittivity ε r and the frequency band used, the microwave dielectric ceramics that have been developed and are being developed can usually be divided into 4 categories: kind.
(1)超低介电常数微波介电陶瓷,主要代表是Al2O3-TiO2、Y2BaCuO5、MgAl2O4和Mg2SiO4等,其εr≤20,品质因数Q×f≥50000GHz,τƒ≤10 ppm/°C。主要用于微波基板以及高端微波元器件。 (1) Ultra-low dielectric constant microwave dielectric ceramics, mainly represented by Al 2 O 3 -TiO 2 , Y 2 BaCuO 5 , MgAl 2 O 4 and Mg 2 SiO 4 , etc., whose ε r ≤ 20, quality factor Q× f≥50000GHz, τ ƒ ≤10 ppm/°C. Mainly used for microwave substrates and high-end microwave components.
(2)低εr和高Q值的微波介电陶瓷,主要是BaO-MgO-Ta2O5, BaO-ZnO-Ta2O5或BaO-MgO-Nb2O5, BaO-ZnO-Nb2O5系统或它们之间的复合系统MWDC材料。其εr=20~35, Q=(1~2)×104(在f≥10 GHz下), τƒ≈0。主要应用于f≥8 GHz的卫星直播等微波通信机中作为介质谐振器件。 (2) Microwave dielectric ceramics with low ε r and high Q value, mainly BaO-MgO-Ta 2 O 5 , BaO-ZnO-Ta 2 O 5 or BaO-MgO-Nb 2 O 5 , BaO-ZnO-Nb 2 O 5 system or composite system MWDC materials between them. Its ε r =20~35, Q=(1~2)×10 4 (at f≥10 GHz), τ ƒ ≈0. It is mainly used as a dielectric resonator device in microwave communication devices such as satellite broadcasting with f≥8 GHz.
(3)中等εr和Q值的微波介电陶瓷,主要是以BaTi4O9、Ba2Ti9O20和(Zr、Sn)TiO4等为基的MWDC材料,其εr=35~45,Q=(6~9)×103(在f=3~-4GHz下),τƒ≤5 ppm/°C。主要用于4~8 GHz 频率范围内的微波军用雷达及通信系统中作为介质谐振器件。 (3) Microwave dielectric ceramics with medium ε r and Q value, mainly MWDC materials based on BaTi 4 O 9 , Ba 2 Ti 9 O 20 and (Zr, Sn) TiO 4 , whose ε r = 35~ 45, Q=(6~9)×10 3 (at f=3~-4GHz), τ ƒ ≤5 ppm/°C. It is mainly used as a dielectric resonant device in microwave military radar and communication systems in the frequency range of 4-8 GHz.
(4)高εr而Q值较低的微波介电陶瓷,主要用于0.8~4GHz 频率范围内民用移动通讯系统,这也是微波介电陶瓷研究的重点。80年代以来,Kolar、Kato等人相继发现并研究了类钙钛矿钨青铜型BaO—Ln2O3—TiO2系列(Ln=La、 Sm、 Nd或Pr等,简称BLT系)、复合钙钛矿结构CaO—Li2O—Ln2O3—TiO2系列、铅基系列材料、Ca1-xLn2x/3TiO3系等高εr微波介电陶瓷,其中BLT体系的BaO—Nd2O3—TiO2材料介电常数达到90,铅基系列 (Pb,Ca)ZrO3介电常数达到105。 (4) Microwave dielectric ceramics with high ε r and low Q value are mainly used in civil mobile communication systems in the frequency range of 0.8-4GHz, which is also the focus of research on microwave dielectric ceramics. Since the 1980s, Kolar, Kato and others have successively discovered and studied perovskite-like tungsten bronze BaO—Ln 2 O 3 —TiO 2 series (Ln=La, Sm, Nd or Pr, etc., referred to as BLT series), composite calcium Titanite structure CaO—Li 2 O—Ln 2 O 3 —TiO 2 series, lead-based series materials, Ca 1-x Ln 2x/3 TiO 3 series and other high ε r microwave dielectric ceramics, among which BaO—Nd of BLT system The dielectric constant of 2 O 3 —TiO 2 materials reaches 90, and the dielectric constant of lead-based series (Pb, Ca)ZrO 3 reaches 105.
由于微波介电陶瓷的三个性能指标(εr与Q·f 和τƒ)之间是相互制约的关系(见文献:微波介质陶瓷材料介电性能间的制约关系,朱建华,梁 飞,汪小红,吕文中, 电子元件与材料,2005年3月第3期),满足三个性能要求的单相微波介质陶瓷非常少,主要是它们的谐振频率温度系数通常过大或者品质因数偏低而无法实际应用要求。目前对微波介质陶瓷的研究大部分是通过大量实验而得出的经验总结,却没有完整的理论来阐述微观结构与介电性能的关系,因此,在理论上还无法从化合物的组成与结构上预测其谐振频率温度系数和品质因数等微波介电性能,探索与开发近零谐振频率温度系数(-10 ppm /℃≤τƒ≤+10 ppm/℃)与较高品质因数的系列不同介电常数微波介电陶瓷是本领域技术人员一直渴望解决但始终难以获得成功的难题,这在很大程度上限制了微波介电陶瓷与器件的发展。我们对组成LiZn2B3O7、LiMg2B3O7、LiCu2B3O7、LiNi2B3O7的系列化合物进行了微波介电性能的研究,发现它们的烧结温度低于900℃,其中只有LiZn2B3O7有近零谐振频率温度系数与高品质因数。LiMg2B3O7陶瓷的谐振频率温度系数τƒ偏大(分别为+17 ppm/℃)而无法作为实用化的微波介质陶瓷; 而LiCu2B3O7、LiNi2B3O7为半导体,其介电损耗太大而无法作为微波介质陶瓷。 Since the three performance indicators of microwave dielectric ceramics (ε r and Q f and τ ƒ ) are mutually restrictive (see literature: The restrictive relationship between the dielectric properties of microwave dielectric ceramic materials, Zhu Jianhua, Liang Fei, Wang Xiaohong , Lu Wenzhong, Electronic Components and Materials, Issue 3, March 2005), there are very few single-phase microwave dielectric ceramics that meet the three performance requirements, mainly because their resonant frequency temperature coefficient is usually too large or the quality factor is too low to be able to Practical application requirements. At present, most of the research on microwave dielectric ceramics is a summary of experience obtained through a large number of experiments, but there is no complete theory to explain the relationship between microstructure and dielectric properties. Predict its resonant frequency temperature coefficient and quality factor and other microwave dielectric properties, explore and develop a series of different dielectrics with near-zero resonant frequency temperature coefficient (-10 ppm/℃≤τ ƒ ≤+10 ppm/℃) and higher quality factor Constant microwave dielectric ceramics is a difficult problem that those skilled in the art have been eager to solve, but it has always been difficult to achieve success, which limits the development of microwave dielectric ceramics and devices to a large extent. We have studied the microwave dielectric properties of a series of compounds composed of LiZn 2 B 3 O 7 , LiMg 2 B 3 O 7 , LiCu 2 B 3 O 7 , and LiNi 2 B 3 O 7 , and found that their sintering temperature is lower than 900 ℃, of which only LiZn 2 B 3 O 7 has near-zero resonant frequency temperature coefficient and high quality factor. The resonant frequency temperature coefficient τ ƒ of LiMg 2 B 3 O 7 ceramics is too large (respectively +17 ppm/℃) and cannot be used as a practical microwave dielectric ceramic; while LiCu 2 B 3 O 7 and LiNi 2 B 3 O 7 are Semiconductors whose dielectric loss is too large to be used as microwave dielectric ceramics.
发明内容 Contents of the invention
本发明的目的是提供一种具有良好热稳定性与低损耗的超低介电常数微波介电陶瓷材料及其制备方法。 The object of the present invention is to provide an ultra-low dielectric constant microwave dielectric ceramic material with good thermal stability and low loss and a preparation method thereof.
本发明的微波介电陶瓷材料的化学组成为LiZn2B3O7。 The chemical composition of the microwave dielectric ceramic material of the present invention is LiZn 2 B 3 O 7 .
本微波介电陶瓷材料的制备方法步骤为: The preparation method steps of this microwave dielectric ceramic material are:
(1)将纯度为99.9%(重量百分比)以上的Li2CO3、ZnO和H3BO3的原始粉末按LiZn2B3O7的组成称量配料。 (1) The raw powders of Li 2 CO 3 , ZnO and H 3 BO 3 with a purity of more than 99.9% (weight percent) were weighed and prepared according to the composition of LiZn 2 B 3 O 7 .
(2)将步骤(1)原料湿式球磨混合12小时,球磨介质为无水乙醇,烘干后在800℃大气气氛中预烧6小时。 (2) Mix the raw materials in step (1) by wet ball milling for 12 hours. The ball milling medium is anhydrous ethanol. After drying, pre-calcine in an atmosphere at 800°C for 6 hours.
(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在850~890℃大气气氛中烧结4小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,聚乙烯醇添加量占粉末总质量的3%。 (3) Add a binder to the powder prepared in step (2) and granulate it, then press it into shape, and finally sinter it in the air atmosphere at 850-890°C for 4 hours; the binder is used at a mass concentration of 5 % polyvinyl alcohol solution, the amount of polyvinyl alcohol added accounts for 3% of the total mass of the powder.
本发明的优点:LiZn2B3O7陶瓷介电常数达到5.5~5.9,其谐振频率的温度系数τƒ小,温度稳定性好;品质因数Qf值高达121000-147000GHz,可广泛用于各种介质谐振器和滤波器等微波器件的制造,可满足低温共烧技术及微波多层器件的技术需要,在工业上有着极大的应用价值。 Advantages of the present invention: the dielectric constant of LiZn 2 B 3 O 7 ceramics reaches 5.5-5.9, the temperature coefficient τ ƒ of its resonant frequency is small, and the temperature stability is good; the quality factor Qf value is as high as 121000-147000 GHz, and can be widely used in various The manufacture of microwave devices such as dielectric resonators and filters can meet the technical needs of low-temperature co-firing technology and microwave multilayer devices, and has great application value in industry.
具体实施方式 Detailed ways
实施例: Example:
表1示出了构成本发明的不同烧结温度的3个具体实施例及其微波介电性能。其制备方法如上所述,用圆柱介质谐振器法进行微波介电性能的评价。 Table 1 shows three specific examples of different sintering temperatures constituting the present invention and their microwave dielectric properties. The preparation method is as above, and the microwave dielectric performance is evaluated by the cylindrical dielectric resonator method.
本陶瓷可广泛用于各种介质基板、谐振器和滤波器等微波器件的制造,可满足移动通信和卫星通信等系统的技术需要。 The ceramics can be widely used in the manufacture of microwave devices such as various dielectric substrates, resonators and filters, and can meet the technical needs of mobile communication and satellite communication systems.
表1: Table 1:
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410704024.5A CN104446377B (en) | 2014-11-30 | 2014-11-30 | Temperature stable microwave dielectric ceramic LiZn2B3O7 and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410704024.5A CN104446377B (en) | 2014-11-30 | 2014-11-30 | Temperature stable microwave dielectric ceramic LiZn2B3O7 and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104446377A true CN104446377A (en) | 2015-03-25 |
CN104446377B CN104446377B (en) | 2016-08-17 |
Family
ID=52893227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410704024.5A Active CN104446377B (en) | 2014-11-30 | 2014-11-30 | Temperature stable microwave dielectric ceramic LiZn2B3O7 and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104446377B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105439554A (en) * | 2015-12-19 | 2016-03-30 | 桂林理工大学 | A temperature stable low dielectric constant microwave dielectric ceramic Li4Zn3B4O11 and its preparation method |
CN105523757A (en) * | 2016-02-20 | 2016-04-27 | 桂林理工大学 | Temperature-stable microwave dielectric ceramic Li3Zn2B3O8 capable of low-temperature sintering and its preparation method |
CN105523758A (en) * | 2016-02-20 | 2016-04-27 | 桂林理工大学 | Temperature stable ultra-low dielectric constant microwave dielectric ceramic SrZn3B4O10 and its preparation method |
CN105645950A (en) * | 2016-02-20 | 2016-06-08 | 桂林理工大学 | A kind of ultra-low dielectric constant microwave dielectric ceramic Li3ZnB3O7 and its preparation method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103880422A (en) * | 2014-04-06 | 2014-06-25 | 桂林理工大学 | Ultra-low temperature sintered microwave dielectric ceramic Li3Nb3B2O12 and its preparation method |
CN104003720A (en) * | 2014-05-17 | 2014-08-27 | 桂林理工大学 | Low-temperature sinterable microwave dielectric ceramic Li2Zn2W2O9 and its preparation method |
CN104003723A (en) * | 2014-05-24 | 2014-08-27 | 桂林理工大学 | Low-temperature sinterable microwave dielectric ceramic Li3Zn4NbO8 and its preparation method |
CN104045344A (en) * | 2014-06-02 | 2014-09-17 | 桂林理工大学 | Low-temperature sinterable microwave dielectric ceramic Li2Zn3WO7 and its preparation method |
-
2014
- 2014-11-30 CN CN201410704024.5A patent/CN104446377B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103880422A (en) * | 2014-04-06 | 2014-06-25 | 桂林理工大学 | Ultra-low temperature sintered microwave dielectric ceramic Li3Nb3B2O12 and its preparation method |
CN104003720A (en) * | 2014-05-17 | 2014-08-27 | 桂林理工大学 | Low-temperature sinterable microwave dielectric ceramic Li2Zn2W2O9 and its preparation method |
CN104003723A (en) * | 2014-05-24 | 2014-08-27 | 桂林理工大学 | Low-temperature sinterable microwave dielectric ceramic Li3Zn4NbO8 and its preparation method |
CN104045344A (en) * | 2014-06-02 | 2014-09-17 | 桂林理工大学 | Low-temperature sinterable microwave dielectric ceramic Li2Zn3WO7 and its preparation method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105439554A (en) * | 2015-12-19 | 2016-03-30 | 桂林理工大学 | A temperature stable low dielectric constant microwave dielectric ceramic Li4Zn3B4O11 and its preparation method |
CN105523757A (en) * | 2016-02-20 | 2016-04-27 | 桂林理工大学 | Temperature-stable microwave dielectric ceramic Li3Zn2B3O8 capable of low-temperature sintering and its preparation method |
CN105523758A (en) * | 2016-02-20 | 2016-04-27 | 桂林理工大学 | Temperature stable ultra-low dielectric constant microwave dielectric ceramic SrZn3B4O10 and its preparation method |
CN105645950A (en) * | 2016-02-20 | 2016-06-08 | 桂林理工大学 | A kind of ultra-low dielectric constant microwave dielectric ceramic Li3ZnB3O7 and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN104446377B (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104671785B (en) | Temperature-stable high quality factor microwave dielectric ceramic LaEuW2O9 and preparation method thereof | |
CN104671784B (en) | Temperature stable high quality factor microwave dielectric ceramic Nd2La2W3O15 and its preparation method | |
CN104478408B (en) | Ultra-low dielectric constant microwave dielectric ceramic Li3Si2B3O10 and its preparation method | |
CN104446377B (en) | Temperature stable microwave dielectric ceramic LiZn2B3O7 and its preparation method | |
CN104446439B (en) | Low dielectric constant microwave dielectric ceramic In6MgTi5O20 and its preparation method | |
CN104744041A (en) | Temperature stable low dielectric constant microwave dielectric ceramic Li2Cu2Nb8O23 | |
CN104446376B (en) | Ultralow dielectric microwave dielectric ceramic Li2TiB4O9And preparation method thereof | |
CN104478424B (en) | Ultralow dielectric microwave dielectric ceramic Li2Zn3Si2O8And preparation method thereof | |
CN104402410A (en) | Ultra-low dielectric constant microwave dielectric ceramic LaAlMg8O11 and its preparation method | |
CN104370528A (en) | Ultra-low dielectric constant microwave dielectric ceramic Ba2LiB5O10 and its preparation method | |
CN104446448B (en) | A kind of temperature-stable dielectric constant microwave dielectric ceramic and preparation method thereof | |
CN104446381B (en) | Ultralow dielectric microwave dielectric ceramic InAlMg7O10And preparation method thereof | |
CN104649671A (en) | Low loss temperature stable low dielectric constant microwave dielectric ceramic LiZn2Nb7O20 | |
CN104446476A (en) | Fluorine-containing low-dielectric constant microwave dielectric ceramic and preparation method thereof | |
CN104725043A (en) | Ultra-low loss temperature stable low dielectric constant microwave dielectric ceramic LiMgNb5O14 | |
CN104446436B (en) | A kind of low temperature sintering temperature-stable dielectric constant microwave dielectric ceramic | |
CN104402438B (en) | Temperature-stable ultralow dielectric microwave dielectric ceramic Ca 2laBO 5 | |
CN104446441B (en) | A kind of temperature-stable microwave dielectric ceramic NaMgTi 3o 7f and preparation method thereof | |
CN104446473B (en) | A kind of temperature-stable ultra-low loss microwave dielectric ceramic and preparation method thereof | |
CN104310968B (en) | A kind of dielectric constant microwave dielectric ceramic BaIn 2znO 5and preparation method thereof | |
CN104446469B (en) | Ultra-low loss microwave dielectric ceramic Li3V2B3O11 and its preparation method | |
CN104478409B (en) | Temperature stable microwave dielectric ceramic Li2AlB3O7 and its preparation method | |
CN104446374B (en) | Temperature stable ultra-low dielectric constant microwave dielectric ceramic Ca5LaB3O11 | |
CN104310988B (en) | A kind of low dielectric constant microwave dielectric ceramic Ba3In2Zn7O13 and its preparation method | |
CN104387051B (en) | Ultralow dielectric microwave dielectric ceramic NdAlCu9O12And preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180828 Address after: 536000 the Guangxi Zhuang Autonomous Region Beihai Haicheng District Guangxi Beihai Industrial Park New Future Science Park Patentee after: Guangxi New Future Information Industry Co., Ltd. Address before: No. 12, Jian Gong Road, Guilin, the Guangxi Zhuang Autonomous Region Patentee before: Guilin University of Technology |