CN104446376B - Ultralow dielectric microwave dielectric ceramic Li2TiB4O9And preparation method thereof - Google Patents

Ultralow dielectric microwave dielectric ceramic Li2TiB4O9And preparation method thereof Download PDF

Info

Publication number
CN104446376B
CN104446376B CN201410646135.5A CN201410646135A CN104446376B CN 104446376 B CN104446376 B CN 104446376B CN 201410646135 A CN201410646135 A CN 201410646135A CN 104446376 B CN104446376 B CN 104446376B
Authority
CN
China
Prior art keywords
hours
dielectric
microwave
tib
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410646135.5A
Other languages
Chinese (zh)
Other versions
CN104446376A (en
Inventor
郭欢欢
唐莹
苏和平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuyang Shenbang New Material Technology Co Ltd
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201410646135.5A priority Critical patent/CN104446376B/en
Publication of CN104446376A publication Critical patent/CN104446376A/en
Application granted granted Critical
Publication of CN104446376B publication Critical patent/CN104446376B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种可低温烧结的温度稳定型超低介电常数微波介电陶瓷Li2TiB4O9及其制备方法。(1)将纯度为99.9%(重量百分比)以上的Li2CO3、TiO2和H3BO3的原始粉末按Li2TiB4O9的组成称量配料;(2)将步骤(1)原料湿式球磨混合12小时,球磨介质为无水乙醇,烘干后在700℃大气气氛中预烧12小时;(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在800~840℃大气气氛中烧结10小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,聚乙烯醇的添加量占粉末总质量的3%。本发明制备的陶瓷烧结良好,介电常数达到8.3~8.7,其品质因数Qf值高达85000-127000GHz,谐振频率温度系数小,在工业上有着极大的应用价值。The invention discloses a temperature-stable ultra-low dielectric constant microwave dielectric ceramic Li 2 TiB 4 O 9 capable of low-temperature sintering and a preparation method thereof. (1) Weigh the original powder of Li 2 CO 3 , TiO 2 and H 3 BO 3 with a purity of 99.9% (weight percent) or more according to the composition of Li 2 TiB 4 O 9 ; (2) Mix the ingredients in step (1) The raw materials were mixed by wet ball milling for 12 hours, the ball milling medium was anhydrous ethanol, and after drying, they were pre-fired for 12 hours in the atmosphere at 700°C; (3) After adding a binder to the powder prepared in step (2) and granulating, Then press molding, and finally sintering in the atmosphere at 800-840°C for 10 hours; the binder uses a polyvinyl alcohol solution with a mass concentration of 5%, and the amount of polyvinyl alcohol added accounts for 3% of the total mass of the powder. The ceramic prepared by the invention is well sintered, the dielectric constant reaches 8.3-8.7, its quality factor Qf value is as high as 85000-127000 GHz, and the temperature coefficient of resonance frequency is small, so it has great application value in industry.

Description

超低介电常数微波介电陶瓷Li2TiB4O9及其制备方法Ultra-low dielectric constant microwave dielectric ceramic Li2TiB4O9 and its preparation method

技术领域technical field

本发明涉及介电陶瓷材料,特别是涉及用于制造微波频率使用的陶瓷基板、谐振器与滤波器等微波元器件的介电陶瓷材料及其制备方法。The invention relates to a dielectric ceramic material, in particular to a dielectric ceramic material for manufacturing microwave components such as ceramic substrates, resonators and filters used in microwave frequencies and a preparation method thereof.

背景技术Background technique

微波介电陶瓷是指应用于微波频段(主要是UHF和SHF频段)电路中作为介质材料并完成一种或多种功能的陶瓷,在现代通讯中被广泛用作谐振器、滤波器、介质基片和介质导波回路等元器件,是现代通信技术的关键基础材料,已在便携式移动电话、汽车电话、无绳电话、电视卫星接受器和军事雷达等方面有着十分重要的应用,在现代通讯工具的小型化、集成化过程中正发挥着越来越大的作用。Microwave dielectric ceramics refer to ceramics that are used as dielectric materials in circuits in the microwave frequency band (mainly UHF and SHF bands) and perform one or more functions. They are widely used as resonators, filters, and dielectric substrates in modern communications. Components such as chips and dielectric waveguide circuits are the key basic materials of modern communication technology. They have been used in portable mobile phones, car phones, cordless phones, TV satellite receivers and military radars. They are used in modern communication tools. It is playing an increasingly important role in the process of miniaturization and integration.

应用于微波频段的介电陶瓷,应满足如下介电特性的要求:(1)系列化介电常数εr以适应不同频率及不同应用场合的要求;(2)高的品质因数Q值或低的介电损耗tanδ以降低噪音,一般要求Qf≥3000 GHz;(3) 谐振频率的温度系数τƒ尽可能小以保证器件具有好的热稳定性,一般要求-10 ppm /℃≤τƒ≤+10 ppm/℃。国际上从20世纪30年代末就有人尝试将电介质材料应用于微波技术, 并制备出TiO2微波介质滤波器,但其谐振频率温度系数τƒ太大而无法实用化。上世纪70年代以来,开始了大规模的对介质陶瓷材料的开发工作, 根据相对介电常数εr的大小与使用频段的不同,通常可将已被开发和正在开发的微波介质陶瓷分为4类。Dielectric ceramics used in the microwave frequency band should meet the following requirements for dielectric properties: (1) Serialized dielectric constant ε r to meet the requirements of different frequencies and different applications; (2) High quality factor Q value or low The dielectric loss tanδ to reduce noise, generally requires Qf≥3000 GHz; (3) The temperature coefficient τ ƒ of the resonant frequency should be as small as possible to ensure good thermal stability of the device, generally requiring -10 ppm /℃≤τ ƒ ≤ +10 ppm/°C. Internationally, since the late 1930s, some people have tried to apply dielectric materials to microwave technology, and prepared TiO 2 microwave dielectric filters, but the temperature coefficient τ ƒ of its resonant frequency is too large to be practical. Since the 1970s, a large-scale development of dielectric ceramic materials has begun. According to the relative permittivity ε r and the frequency band used, the microwave dielectric ceramics that have been developed and are being developed can usually be divided into 4 categories: kind.

(1)超低介电常数微波介电陶瓷,主要代表是Al2O3-TiO2、Y2BaCuO5、MgAl2O4和Mg2SiO4等,其εr≤20,品质因数Q×f≥50000GHz,τƒ≤10 ppm/°C。主要用于微波基板以及高端微波元器件。(1) Ultra-low dielectric constant microwave dielectric ceramics, mainly represented by Al 2 O 3 -TiO 2 , Y 2 BaCuO 5 , MgAl 2 O 4 and Mg 2 SiO 4 , etc., whose ε r ≤ 20, quality factor Q× f≥50000GHz, τ ƒ ≤10 ppm/°C. Mainly used for microwave substrates and high-end microwave components.

(2)低εr和高Q值的微波介电陶瓷,主要是BaO-MgO-Ta2O5, BaO-ZnO-Ta2O5或BaO-MgO-Nb2O5,BaO-ZnO-Nb2O5系统或它们之间的复合系统MWDC材料。其εr=20~35, Q=(1~2)×104(在f≥10 GHz下), τƒ≈0。主要应用于f≥8 GHz的卫星直播等微波通信机中作为介质谐振器件。(2) Microwave dielectric ceramics with low ε r and high Q value, mainly BaO-MgO-Ta 2 O 5 , BaO-ZnO-Ta 2 O 5 or BaO-MgO-Nb 2 O 5 , BaO-ZnO-Nb 2 O 5 system or composite system MWDC materials between them. Its ε r =20~35, Q=(1~2)×10 4 (at f≥10 GHz), τ ƒ ≈0. It is mainly used as a dielectric resonator device in microwave communication devices such as satellite broadcasting with f≥8 GHz.

(3)中等εr和Q值的微波介电陶瓷,主要是以BaTi4O9、Ba2Ti9O20和(Zr、Sn)TiO4等为基的MWDC材料,其εr=35~45,Q=(6~9)×103(在f=3~-4GHz下),τƒ≤5 ppm/°C。主要用于4~8 GHz 频率范围内的微波军用雷达及通信系统中作为介质谐振器件。(3) Microwave dielectric ceramics with medium ε r and Q value, mainly MWDC materials based on BaTi 4 O 9 , Ba 2 Ti 9 O 20 and (Zr, Sn) TiO 4 , whose ε r = 35~ 45, Q=(6~9)×10 3 (at f=3~-4GHz), τ ƒ ≤5 ppm/°C. It is mainly used as a dielectric resonant device in microwave military radar and communication systems in the frequency range of 4-8 GHz.

(4)高εr而Q值较低的微波介电陶瓷,主要用于0.8~4GHz 频率范围内民用移动通讯系统,这也是微波介电陶瓷研究的重点。80年代以来,Kolar、Kato等人相继发现并研究了类钙钛矿钨青铜型BaO—Ln2O3—TiO2系列(Ln=La、 Sm、 Nd或Pr等,简称BLT系)、复合钙钛矿结构CaO—Li2O—Ln2O3—TiO2系列、铅基系列材料、Ca1-xLn2x/3TiO3系等高εr微波介电陶瓷,其中BLT体系的BaO—Nd2O3—TiO2材料介电常数达到90,铅基系列 (Pb,Ca)ZrO3介电常数达到105。(4) Microwave dielectric ceramics with high ε r and low Q value are mainly used in civil mobile communication systems in the frequency range of 0.8-4GHz, which is also the focus of research on microwave dielectric ceramics. Since the 1980s, Kolar, Kato and others have successively discovered and studied perovskite-like tungsten bronze BaO—Ln 2 O 3 —TiO 2 series (Ln=La, Sm, Nd or Pr, etc., referred to as BLT series), composite calcium Titanite structure CaO—Li 2 O—Ln 2 O 3 —TiO 2 series, lead-based series materials, Ca 1-x Ln 2x/3 TiO 3 series and other high ε r microwave dielectric ceramics, among which BaO—Nd of BLT system The dielectric constant of 2 O 3 —TiO 2 materials reaches 90, and the dielectric constant of lead-based series (Pb, Ca)ZrO 3 reaches 105.

由于微波介电陶瓷的三个性能指标(εr与Q·f 和τƒ)之间是相互制约的关系(见文献:微波介质陶瓷材料介电性能间的制约关系,朱建华,梁飞,汪小红,吕文中,电子元件与材料,2005年3月第3期),满足三个性能要求的单相微波介质陶瓷非常少,主要是它们的谐振频率温度系数通常过大或者品质因数偏低而无法实际应用要求。目前对微波介质陶瓷的研究大部分是通过大量实验而得出的经验总结,却没有完整的理论来阐述微观结构与介电性能的关系,因此,在理论上还无法从化合物的组成与结构上预测其谐振频率温度系数和品质因数等微波介电性能,探索与开发近零谐振频率温度系数(-10 ppm /℃≤τƒ≤+10ppm/℃)与高品质因数的系列不同介电常数微波介电陶瓷是本领域技术人员一直渴望解决但始终难以获得成功的难题,这在很大程度上限制了微波介电陶瓷与器件的发展。Since the three performance indicators of microwave dielectric ceramics (ε r and Q f and τ ƒ ) are mutually restrictive (see literature: The restrictive relationship between the dielectric properties of microwave dielectric ceramic materials, Zhu Jianhua, Liang Fei, Wang Xiaohong , Lu Wenzhong, Electronic Components and Materials, Issue 3, March 2005), there are very few single-phase microwave dielectric ceramics that meet the three performance requirements, mainly because their resonant frequency temperature coefficient is usually too large or the quality factor is too low to be able to Practical application requirements. At present, most of the research on microwave dielectric ceramics is a summary of experience obtained through a large number of experiments, but there is no complete theory to explain the relationship between microstructure and dielectric properties. Predict the microwave dielectric properties such as the resonant frequency temperature coefficient and quality factor, explore and develop a series of microwaves with different dielectric constants with near-zero resonant frequency temperature coefficient (-10 ppm/℃≤τ ƒ ≤+10ppm/℃) and high quality factor Dielectric ceramics is a difficult problem that those skilled in the art have been eager to solve but have been seldom successful, which largely limits the development of microwave dielectric ceramics and devices.

发明内容Contents of the invention

本发明的目的是提供一种具有良好热稳定性与低损耗的超低介电常数微波介电陶瓷材料及其制备方法。The object of the present invention is to provide an ultra-low dielectric constant microwave dielectric ceramic material with good thermal stability and low loss and a preparation method thereof.

本发明的微波介电陶瓷材料的化学组成为Li2TiB4O9The chemical composition of the microwave dielectric ceramic material of the present invention is Li 2 TiB 4 O 9 .

本微波介电陶瓷材料的制备方法步骤为:The preparation method steps of this microwave dielectric ceramic material are:

(1)将纯度为99.9%(重量百分比)以上的Li2CO3、TiO2和H3BO3的原始粉末按Li2TiB4O9的组成称量配料。(1) The raw powders of Li 2 CO 3 , TiO 2 and H 3 BO 3 with a purity of more than 99.9% (weight percent) were weighed and dosed according to the composition of Li 2 TiB 4 O 9 .

(2)将步骤(1)原料湿式球磨混合12小时,球磨介质为无水乙醇,烘干后在700℃大气气氛中预烧12小时。(2) Mix the raw materials in step (1) by wet ball milling for 12 hours. The ball milling medium is anhydrous ethanol. After drying, pre-calcine in the atmosphere at 700°C for 12 hours.

(3)在步骤(2)制得的粉末中添加粘结剂并造粒后,再压制成型,最后在800~840℃大气气氛中烧结10小时;所述的粘结剂采用质量浓度为5%的聚乙烯醇溶液,聚乙烯醇添加量占粉末总质量的3%。(3) Add a binder to the powder prepared in step (2) and granulate it, then press and shape it, and finally sinter it in the atmosphere at 800-840°C for 10 hours; the binder is used at a mass concentration of 5 % polyvinyl alcohol solution, the amount of polyvinyl alcohol added accounts for 3% of the total mass of the powder.

本发明的优点:Li2TiB4O9陶瓷烧结温度低,介电常数达到8.3~8.7,其谐振频率的温度系数τƒ小,温度稳定性好;品质因数Qf值高达85000-127000GHz,可广泛用于各种介质基板、谐振器和滤波器等微波器件的制造,可满足低温共烧技术及微波多层器件的技术需要,在工业上有着极大的应用价值。The advantages of the present invention: Li 2 TiB 4 O 9 ceramics have a low sintering temperature, a dielectric constant of 8.3 to 8.7, a small temperature coefficient τ ƒ of its resonance frequency, and good temperature stability; the quality factor Qf value is as high as 85000-127000 GHz, and can be widely used It is used in the manufacture of microwave devices such as various dielectric substrates, resonators and filters, and can meet the technical needs of low-temperature co-firing technology and microwave multilayer devices, and has great application value in industry.

具体实施方式detailed description

实施例:Example:

表1示出了构成本发明的不同烧结温度的3个具体实施例及其微波介电性能。其制备方法如上所述,用圆柱介质谐振器法进行微波介电性能的评价。Table 1 shows three specific examples of different sintering temperatures constituting the present invention and their microwave dielectric properties. The preparation method is as above, and the microwave dielectric performance is evaluated by the cylindrical dielectric resonator method.

本陶瓷可广泛用于各种介质基板、谐振器和滤波器等微波器件的制造,可满足移动通信和卫星通信等系统的技术需要。The ceramics can be widely used in the manufacture of microwave devices such as various dielectric substrates, resonators and filters, and can meet the technical needs of mobile communication and satellite communication systems.

表1:Table 1:

Claims (1)

1. a low temperature sintering temperature-stable ultralow dielectric microwave dielectric ceramic, is characterized in that described microwave is situated betweenThe chemical composition of electroceramics is: Li2TiB4O9
Preparation method's concrete steps of described microwave dielectric ceramic are:
(1) be 99.9%(percentage by weight by purity) above Li2CO3、TiO2And H3BO3Starting powder press Li2TiB4O9'sComposition weigh batching;
(2) by step (1) raw material wet ball-milling mix 12 hours, ball-milling medium is absolute ethyl alcohol, after oven dry 700 DEG C of pre-burnings 12Hour;
(3) in the powder making in step (2), add after binding agent granulation, more compressing, finally at 800 ~ 840 DEG C of atmosphereSintering 10 hours in atmosphere; Described binding agent adopts the poly-vinyl alcohol solution that mass concentration is 5%, and polyvinyl alcohol addition accounts for3% of powder gross mass.
CN201410646135.5A 2014-11-15 2014-11-15 Ultralow dielectric microwave dielectric ceramic Li2TiB4O9And preparation method thereof Active CN104446376B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410646135.5A CN104446376B (en) 2014-11-15 2014-11-15 Ultralow dielectric microwave dielectric ceramic Li2TiB4O9And preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410646135.5A CN104446376B (en) 2014-11-15 2014-11-15 Ultralow dielectric microwave dielectric ceramic Li2TiB4O9And preparation method thereof

Publications (2)

Publication Number Publication Date
CN104446376A CN104446376A (en) 2015-03-25
CN104446376B true CN104446376B (en) 2016-05-18

Family

ID=52893226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410646135.5A Active CN104446376B (en) 2014-11-15 2014-11-15 Ultralow dielectric microwave dielectric ceramic Li2TiB4O9And preparation method thereof

Country Status (1)

Country Link
CN (1) CN104446376B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105272214A (en) * 2015-11-30 2016-01-27 桂林理工大学 A temperature-stable ultra-low dielectric constant microwave dielectric ceramic Li3NaTiO4 and its preparation method
CN106187162A (en) * 2016-07-24 2016-12-07 桂林理工大学 Temperature stable low dielectric constant microwave dielectric ceramic Li2Ga4Ti3O13
CN106278246A (en) * 2016-07-26 2017-01-04 桂林理工大学 Temperature stable ultra-low dielectric constant microwave dielectric ceramic Li2B4Ti3O13

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609744B2 (en) * 2000-11-06 2011-01-12 日立金属株式会社 Dielectric porcelain composition for microwave
CN100575301C (en) * 2006-08-29 2009-12-30 中国科学院上海硅酸盐研究所 A low-temperature sintered lithium-niobium-titanium composite microwave dielectric ceramic and its preparation method
CN101913859B (en) * 2010-08-13 2012-12-05 桂林理工大学 Li2Zn3Ti4O12 microwave dielectric ceramic material and its low-temperature sintering method
CN102381874B (en) * 2011-07-29 2013-07-24 桂林电子科技大学 Low temperature co-fired microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
CN104446376A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104671785B (en) Temperature-stable high quality factor microwave dielectric ceramic LaEuW2O9 and preparation method thereof
CN104671784A (en) Temperature stable high quality factor microwave dielectric ceramic Nd2La2W3O15 and its preparation method
CN104478408B (en) Ultra-low dielectric constant microwave dielectric ceramic Li3Si2B3O10 and its preparation method
CN104446377B (en) Temperature stable microwave dielectric ceramic LiZn2B3O7 and its preparation method
CN104446439B (en) Low dielectric constant microwave dielectric ceramic In6MgTi5O20 and its preparation method
CN104446376B (en) Ultralow dielectric microwave dielectric ceramic Li2TiB4O9And preparation method thereof
CN104478424B (en) Ultralow dielectric microwave dielectric ceramic Li2Zn3Si2O8And preparation method thereof
CN104370528A (en) Ultra-low dielectric constant microwave dielectric ceramic Ba2LiB5O10 and its preparation method
CN104402410A (en) Ultra-low dielectric constant microwave dielectric ceramic LaAlMg8O11 and its preparation method
CN104446448B (en) A kind of temperature-stable dielectric constant microwave dielectric ceramic and preparation method thereof
CN104446476B (en) A kind of fluorine-containing dielectric constant microwave dielectric ceramic and preparation method thereof
CN107010924A (en) A kind of temperature-stable gallate microwave dielectric ceramic
CN104649671A (en) Low loss temperature stable low dielectric constant microwave dielectric ceramic LiZn2Nb7O20
CN104725043A (en) Ultra-low loss temperature stable low dielectric constant microwave dielectric ceramic LiMgNb5O14
CN104402438B (en) Temperature-stable ultralow dielectric microwave dielectric ceramic Ca 2laBO 5
CN104446469B (en) Ultra-low loss microwave dielectric ceramic Li3V2B3O11 and its preparation method
CN104446441B (en) A kind of temperature-stable microwave dielectric ceramic NaMgTi 3o 7f and preparation method thereof
CN104446374B (en) Temperature stable ultra-low dielectric constant microwave dielectric ceramic Ca5LaB3O11
CN104446436B (en) A kind of low temperature sintering temperature-stable dielectric constant microwave dielectric ceramic
CN104446381B (en) Ultralow dielectric microwave dielectric ceramic InAlMg7O10And preparation method thereof
CN104446473B (en) A kind of temperature-stable ultra-low loss microwave dielectric ceramic and preparation method thereof
CN104478409B (en) Temperature stable microwave dielectric ceramic Li2AlB3O7 and its preparation method
CN106927828A (en) A kind of temperature-stable indate microwave dielectric ceramic
CN104387051B (en) Ultralow dielectric microwave dielectric ceramic NdAlCu9O12And preparation method thereof
CN104387053B (en) Ultralow dielectric microwave dielectric ceramic InLaZn4O7And preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201125

Address after: Room 201, building 5, Bailian innovation and Technology Industrial Park, 16 Xiaguang Avenue, Xingtang sub district office, Linquan County, Fuyang City, Anhui Province

Patentee after: Fuyang Shenbang New Material Technology Co., Ltd

Address before: 541004 the Guangxi Zhuang Autonomous Region Guilin Construction Road No. 12

Patentee before: GUILIN University OF TECHNOLOGY

TR01 Transfer of patent right