CN104445413A - 一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法 - Google Patents

一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法 Download PDF

Info

Publication number
CN104445413A
CN104445413A CN201410753247.0A CN201410753247A CN104445413A CN 104445413 A CN104445413 A CN 104445413A CN 201410753247 A CN201410753247 A CN 201410753247A CN 104445413 A CN104445413 A CN 104445413A
Authority
CN
China
Prior art keywords
preparation
molybdenumdisulphide
nano material
boron
fluorescent nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410753247.0A
Other languages
English (en)
Other versions
CN104445413B (zh
Inventor
冯波
刘小佳
李丽平
高玉蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201410753247.0A priority Critical patent/CN104445413B/zh
Publication of CN104445413A publication Critical patent/CN104445413A/zh
Application granted granted Critical
Publication of CN104445413B publication Critical patent/CN104445413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,属于纳米荧光材料制备技术领域。本发明利用二硫化钼为原料,以硼酸和三聚氰胺分别为硼源、氮源,将其混合超声剥离,在一定温度下将硼、氮与二硫化钼进行掺杂,得到具有荧光的二硫化钼纳米材料。本发明制备的双掺杂材料具有超薄的二维层状结构,且具有强烈的荧光强度,是理想的荧光材料。本发明的制备方法,原料廉价易得,反应条件温和,操作简单,易于控制,重现性好,对环境污染小,因而在荧光材料、光电材料等方面具有很好的应用前景。

Description

一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法
技术领域
本发明属于荧光纳米材料领域,涉及一种硼和氮双掺杂的二硫化钼荧光材料的制备方法。
背景技术
二维石墨烯材料所具有独特的结构使其展现出低电阻率,高载流子迁移率以及高导热性和高透光率等优异性质,因此在微电子、储能器件、传感器、平板显示和太阳能电池等诸多领域具有广泛的应用前景。自发现以来,人们在石墨烯制备方法与应用方面付出了巨大努力。但是由于石墨烯是零带隙材料且有很高的漏电流,这大大限制其在微纳米电子光学方面的进一步发展。近几年,人们发现二维过度金属硫族化合物。如二硫化钼(MoS2)二硫化钨(WS2),结构与石墨烯类似,但具有自己独特的光电性质。
作为一种重要的层状纳米材料,二硫化钼以其独特的层状结构在润滑剂、催化、能量储存、复合材料等众多领域得到了广泛应用。更重要的是,相对于其它层状材料,二硫化钼存在可调控的能带间隙,随着二硫化钼厚度的降低,其带隙可以从1.2eV增加到1.8eV。当厚度减小到单层时,其由间接带隙半导体变成直接带隙半导体材料,其发光率大大提高,从而在光电器件领域有光明的应用前景。
然而,虽然单层二硫化钼具有强烈荧光,但制备单层的二硫化钼非常困难,产量极低,制备条件苛刻且重复性低,如何大量制备高质量二硫化钼荧光材料是本领域急需解决的问题。
发明内容
为了解决上述技术问题,本发明提供一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法。
本发明的技术方案为:
一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,包括如下步骤:
(1)将二硫化钼、硼酸和三聚氰胺加入反应器,再加入溶剂进行超声处理,然后进行溶胶凝胶反应,干燥得固体,研磨后即得混合粉末;
(2)将混合粉末置于坩埚中,在氮气保护下进行煅烧,然后自然冷却;
(3)将步骤(2)所得粗产物进行洗涤,干燥后即可得到硼和氮双掺杂的二硫化钼荧光材料。
进一步,所述二硫化钼、硼酸和三聚氰胺的质量份数比为1:2-5:2-5。
进一步,所述超声处理的时间为0.5-20小时,功率为100-200W。
进一步,所述溶胶凝胶反应的温度为60-100℃,时间为0.5-48小时。
进一步,所述溶剂为乙醇、丙醇、异丙醇或异丁醇。
进一步,所述坩埚优选为刚玉坩埚、瓷坩埚或石英坩埚。
进一步,所述煅烧的温度为200-800℃,时间为1-8小时。
进一步,所述煅烧的升温速率为5-10℃/min。
进一步,所述步骤(3)的洗涤方式为:用蒸馏水和乙醇分别洗涤2-4次。
上述的化学试剂均为化学纯或以上纯度。
本发明的有益效果在于:
(1)本发明制备的硼氮双掺杂的二硫化钼荧光纳米材料,经X射线光电子能谱分析(XPS)证实掺杂成功,经荧光光谱仪测定其荧光强度,结果证实了掺杂后的二硫化钼具有荧光;原子力显微镜和透射电镜测试了其尺寸,其厚度为0.6-10纳米,大小为100纳米-10微米,具有超薄的二维层状结构,且具有强烈的荧光强度,是理想的荧光材料。
(2)本发明的制备方法,原料廉价易得,反应条件温和,操作简单,易于控制,重现性好,对环境污染小,因而在荧光材料、光电材料等方面具有很好的应用前景。
附图说明
图1为实施例1制备的硼和氮双掺杂的二硫化钼荧光纳米材料的XPS图。
图2为实施例1制备的硼和氮双掺杂的二硫化钼荧光纳米材料紫外和荧光强度图谱。
图3为实施例1制备的硼和氮双掺杂的二硫化钼荧光纳米材料透射电镜图。
图4为实施例1制备的硼和氮双掺杂的二硫化钼荧光纳米材料原子力显微镜图。
具体实施方式
以下实施例旨在说明本发明,而不是对本发明的限制。
实施例1
(1)将0.4g二硫化钼,2g硼酸,2g三聚氰胺一起加入烧杯中,用超声机超声1小时,超声功率为140W,在70℃溶胶凝胶反应5小时,烘干,将得到的固体研磨,即得三者混合的粉末。
(2)将步骤(1)得到的粉末,置于瓷舟中,在氮气保护下,5℃/min升温至400℃,保温2小时然后降至室温。将粗产物用水、乙醇各洗涤两次。烘干,即可得到硼和氮双掺杂的二硫化钼荧光纳米材料。
图1的XPS结果表明实施例1所得纳米材料掺杂成功,图2的紫外和荧光强度测试结果表明实施例1所得掺杂后的二硫化钼具有荧光,图3的透射电镜图和图4的原子力显微镜图显示实施例1所得纳米材料厚度为0.6-10纳米,大小为100纳米-10微米,且具有超薄的二维层状结构。
实施例2
(1)将0.6g二硫化钼,1g硼酸,2.5g三聚氰胺一起加入烧杯中,用超声机超声2小时,超声功率为140W,在80℃溶胶凝胶反应10小时,烘干,将得到的固体研磨,即得三者混合的粉末。
(2)将步骤(1)得到的粉末,置于瓷舟中,在氮气保护下,5℃/min升温至400℃,保温2小时然后降至室温。将粗产物用水、乙醇各洗涤两次。烘干,即可得到硼和氮双掺杂的二硫化钼荧光纳米材料。
实施例3
(1)将0.5g二硫化钼,1.81g硼酸,1g三聚氰胺一起加入烧杯中,用超声机超声4小时,超声功率为140W,在60℃溶胶凝胶反应2小时,烘干,将得到的固体研磨,即得三者混合的粉末。
(2)将步骤(1)得到的粉末,置于瓷舟中,在氮气保护下,10℃/min升温至500℃,保温2小时然后降至室温。将粗产物用水、乙醇各洗涤两次。烘干,即可得到硼和氮双掺杂的二硫化钼荧光纳米材料。
实施例4
(1)将1g的二硫化钼,3.5g硼酸,4g三聚氰胺一起加入烧杯中,用超声机超声4小时,超声功率为140W,在60℃溶胶凝胶反应24小时,烘干,将得到的固体研磨,即得三者混合的粉末。
(2)将步骤(1)得到的粉末,置于瓷舟中,在氮气保护下,5℃/min升温至600℃,保温5小时然后降至室温。将粗产物用水、乙醇各洗涤两次。烘干,即可得到硼和氮双掺杂的二硫化钼荧光纳米材料。
实施例5
(1)将0.8g二硫化钼,3g份硼酸,4.6g三聚氰胺一起加入烧杯中,用超声机超声3小时,超声功率为140W,在60℃溶胶凝胶反应40小时,烘干,将得到的固体研磨,即得三者混合的粉末。
(2)将步骤(1)得到的粉末,置于瓷舟中,在氮气保护下,8℃/min升温至800℃,保温1小时然后降至室温。将粗产物用水、乙醇各洗涤两次。烘干,即可得到硼和氮双掺杂的二硫化钼荧光纳米材料。

Claims (9)

1.一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于包括如下步骤:
(1)将二硫化钼、硼酸和三聚氰胺加入反应器,再加入溶剂进行超声处理,然后进行溶胶凝胶反应,干燥得固体,研磨后即得混合粉末;
(2)将混合粉末置于坩埚中,在氮气保护下进行煅烧,然后自然冷却;
(3)将步骤(2)所得粗产物进行洗涤,干燥后即可得到硼和氮双掺杂的二硫化钼荧光材料。
2.根据权利要求1所述的硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于:所述二硫化钼、硼酸和三聚氰胺的质量份数比为1:1-5:1-5。
3.根据权利要求1所述的硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于:所述超声处理的时间为0.5-20小时,功率为100-200W。
4.根据权利要求1所述的硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于:所述溶胶凝胶反应的温度为60-100℃,时间为0.5-48小时。
5.根据权利要求1所述的硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于:所述溶剂为乙醇、丙醇、异丙醇或异丁醇。
6.根据权利要求1所述的硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于:所述坩埚为刚玉坩埚、瓷坩埚或石英坩埚。
7.根据权利要求1所述的硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于:所述煅烧的温度为200-800℃,时间为1-8小时。
8.根据权利要求1所述的硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于:所述煅烧的升温速率为5-10℃/min。
9.根据权利要求1所述的硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法,其特征在于:所述步骤(3)的洗涤方式为:用蒸馏水和乙醇分别洗涤2-4次。
CN201410753247.0A 2014-12-09 2014-12-09 一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法 Active CN104445413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410753247.0A CN104445413B (zh) 2014-12-09 2014-12-09 一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410753247.0A CN104445413B (zh) 2014-12-09 2014-12-09 一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN104445413A true CN104445413A (zh) 2015-03-25
CN104445413B CN104445413B (zh) 2016-02-17

Family

ID=52892274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410753247.0A Active CN104445413B (zh) 2014-12-09 2014-12-09 一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN104445413B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789219A (zh) * 2015-04-27 2015-07-22 杭州电子科技大学 一种提高单层MoS2发光效率的分子修饰方法
CN105618098A (zh) * 2016-01-13 2016-06-01 西安交通大学 一种掺氮二硫化钼载铂光催化剂及其制备方法
CN109574077A (zh) * 2019-01-29 2019-04-05 中国科学院高能物理研究所 一种层状纳米硫化物及其制备方法和应用
CN113603142A (zh) * 2021-08-19 2021-11-05 曹洋 一种双原子硼修饰的二硫化钼纳米材料及其制备方法和应用
CN114588921A (zh) * 2020-12-04 2022-06-07 中国科学院大连化学物理研究所 多环芳烃加氢催化剂及多环芳烃加氢反应的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801526A (zh) * 2007-09-14 2010-08-11 丰田自动车株式会社 微粒子复合材料、其制造方法、固体高分子型燃料电池用催化剂和固体高分子型燃料电池
CN103254429A (zh) * 2013-05-21 2013-08-21 合肥工业大学 一种聚苯胺和二硫化钼插层复合材料的制备方法
CN103613138A (zh) * 2013-11-21 2014-03-05 镇江市高等专科学校 一种镉掺杂二硫化钼的纳米润滑添加剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801526A (zh) * 2007-09-14 2010-08-11 丰田自动车株式会社 微粒子复合材料、其制造方法、固体高分子型燃料电池用催化剂和固体高分子型燃料电池
CN103254429A (zh) * 2013-05-21 2013-08-21 合肥工业大学 一种聚苯胺和二硫化钼插层复合材料的制备方法
CN103613138A (zh) * 2013-11-21 2014-03-05 镇江市高等专科学校 一种镉掺杂二硫化钼的纳米润滑添加剂的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789219A (zh) * 2015-04-27 2015-07-22 杭州电子科技大学 一种提高单层MoS2发光效率的分子修饰方法
CN105618098A (zh) * 2016-01-13 2016-06-01 西安交通大学 一种掺氮二硫化钼载铂光催化剂及其制备方法
CN105618098B (zh) * 2016-01-13 2018-06-26 西安交通大学 一种掺氮二硫化钼载铂光催化剂及其制备方法
CN109574077A (zh) * 2019-01-29 2019-04-05 中国科学院高能物理研究所 一种层状纳米硫化物及其制备方法和应用
CN109574077B (zh) * 2019-01-29 2020-03-17 中国科学院高能物理研究所 一种层状纳米硫化物及其制备方法和应用
CN114588921A (zh) * 2020-12-04 2022-06-07 中国科学院大连化学物理研究所 多环芳烃加氢催化剂及多环芳烃加氢反应的方法
CN114588921B (zh) * 2020-12-04 2023-06-20 中国科学院大连化学物理研究所 多环芳烃加氢催化剂及多环芳烃加氢反应的方法
CN113603142A (zh) * 2021-08-19 2021-11-05 曹洋 一种双原子硼修饰的二硫化钼纳米材料及其制备方法和应用
CN113603142B (zh) * 2021-08-19 2023-03-07 曹洋 一种双原子硼修饰的二硫化钼纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN104445413B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
CN104445413B (zh) 一种硼和氮双掺杂的二硫化钼荧光纳米材料的制备方法
Qian et al. Thermo-electrochemical coupling for room temperature thermocatalysis in pyroelectric ZnO nanorods
Wu et al. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction
Huang et al. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance
CN102897724B (zh) 硒化锡纳米花及其制备方法
Guo et al. A novel Z-scheme g-C3N4/LaCoO3 heterojunction with enhanced photocatalytic activity in degradation of tetracycline hydrochloride
CN109560186B (zh) 一种n型热电薄膜及其制备和应用
Ahmed et al. Photoresponse of porous silicon for potential optical sensing
Manibalan et al. Novel chemical route for synthesis of CeO 2–ZnO nanocomposite towards high electrochemical supercapacitor application
Huang et al. Preparation and photocatalytic activity of CuO/ZnO composite nanostructured films
Cui et al. Preparation of all-oxide β-Ga2O3/α-MoO3 heterojunction towards self-driven deep ultraviolet photosensor
Phogat et al. Electrochemical analysis of thermally treated two dimensional zinc sulphide hexagonal nano-sheets with reduced band gap
Li et al. SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector
Yuan et al. Photoelectrochemical reduction of carbon dioxide to methanol at CuS/CuO/CuInS2 thin film photocathodes
Zheng et al. High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition
Liang et al. Multilayer α′-4H-borophene growth on gallium arsenide towards high-performance near-infrared photodetector
Abid Hubeatir et al. Polymer solar cells with enhanced power conversion efficiency using nanomaterials and laser techniques
Pan et al. p–n junction induced electron injection type transparent photosensitive film of Cu2O/carbon quantum dots/ZnO
Fernando et al. Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN's model equation for the p-CuI sensitized methylviolet-C18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu2O/M-C18/p-CuI solid-state photovoltaic cells
CN103247718A (zh) 常温下原位控制合成硫铜银三元化合物半导体光电薄膜材料的化学方法
Zhang et al. Effect of strain on exciton dynamics in monolayer WS2
Liu et al. Facile fabrication of p-Cu2O/n-ZnO nanorods arrays heterojunction ultraviolet sensor by aqueous method
Borousan et al. Improvement of visible-near-infrared (NIR) broad spectral photocurrent application of PbSe mesostructures using tuning the morphology and optical properties
Bo et al. Controlled growth of biomorphic CuO via an one-step thermal decomposition on biotemplates
CN105016389B (zh) 一种碳壳包覆的钼酸铅纳米晶体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant