CN104428367A - 使纳米填料分散在水中的嵌段共聚物 - Google Patents

使纳米填料分散在水中的嵌段共聚物 Download PDF

Info

Publication number
CN104428367A
CN104428367A CN201380023884.6A CN201380023884A CN104428367A CN 104428367 A CN104428367 A CN 104428367A CN 201380023884 A CN201380023884 A CN 201380023884A CN 104428367 A CN104428367 A CN 104428367A
Authority
CN
China
Prior art keywords
block
composition
segmented copolymer
dispersion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380023884.6A
Other languages
English (en)
Inventor
C.纳瓦罗
K.贝萨尼
C.布罗乔恩
H.克拉迈尔
G.弗勒里
G.哈齐奥诺
E.克劳特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Technology Of Bordeaux
Centre National de la Recherche Scientifique CNRS
Arkema France SA
Universite des Sciences et Tech (Bordeaux 1)
Institut Polytechnique de Bordeaux
Original Assignee
Institute Of Technology Of Bordeaux
Centre National de la Recherche Scientifique CNRS
Arkema France SA
Universite des Sciences et Tech (Bordeaux 1)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Technology Of Bordeaux, Centre National de la Recherche Scientifique CNRS, Arkema France SA, Universite des Sciences et Tech (Bordeaux 1) filed Critical Institute Of Technology Of Bordeaux
Publication of CN104428367A publication Critical patent/CN104428367A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L41/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及使得实现纳米填料在水中的良好分散体的新型嵌段共聚物以及由于这些嵌段共聚物而获得的纳米填料的分散体。该分散体可用作有机太阳能电池或者其它光电发射体或感光体器件中的透明电极。

Description

使纳米填料分散在水中的嵌段共聚物
本发明涉及使得实现纳米填料在水中的良好分散体的新型嵌段共聚物。本发明还涉及通过本发明的嵌段共聚物获得的纳米填料分散体并且还涉及所述分散体作为有机太阳能电池或其它光电发射体(photoemitter)或感光体器件中的透明电极的用途。
在光伏和光电发射体或感光体系统中,必须使用透明导电层。通常使用的材料为导电氧化物,例如锡掺杂的氧化铟。该材料具有如下优点:为透明的,良好的电导体和容易形成,且是化学稳定的。另一方面,其难以制造并且因此是昂贵的。此外,其制造方法产生污染性产物。
因此寻求具有锡掺杂的氧化铟的优点而没有其缺点的新材料。用于绕过制造锡掺杂的氧化铟的问题的替代方案在于将其与其它氧化物例如氧化锌或氧化锡组合。其它解决方案使用无铟材料,例如掺杂有铝或镓的氧化锌、或者氟掺杂的氧化锌,但是这些不是良好的解决方案,因为它们具有其它缺点,例如它们在潮湿环境中的电稳定性。在Tadatsugu,M.的文章Thin SolidFilms,(516)1314,(2008)中描述了这些缺点。
此外,已经测试了导电聚合物作为透明电极的材料。作为有希望的,可提及PEDOT:PSS(聚(3,4-亚乙基二氧噻吩):聚苯乙烯磺酸钠)配方,因为它们将良好的电导率(29.6S/cm)和良好的成膜性能组合。另一方面,它们的电稳定性对高温、对水分和对紫外辐射是敏感的,如Xue,F等,Electron Devices,IEEE Transactions,(9)1982(2005)所描述的。
由于对提供透明电极的大的需求,因此正在研究其它材料以替代特别是锡掺杂的氧化铟,尤其是在太阳能电池应用中。作为潜在的有希望的候选物,可提及基于银纳米线的导电膜、薄金属膜、纳米管膜或石墨烯膜。更特别地关于碳纳米管,它们在太阳能电池中具有两种类型的应用:首先,作为活性层,在所述活性层中,它们可充当半导体;其次,作为电极。
碳纳米管是在最有希望的材料之中的材料。它们被认为是石墨片折叠成碳圆筒或者管的结果。取决于壁的数量,它们以多种形式存在:单壁、双壁、或多壁。取决于管的折叠角度和直径,获得半导体性或金属性的电子状态。因其非凡的电、机械和光学性质,碳纳米管现在是众所周知的。碳纳米管的高的电导率取决于若干种参数,包括它们的分散程度。
已知若干种用于获得碳纳米管的良好分散体的方法,例如使用表面活性剂,或者使用与分散聚合物或者其它分散剂例如DNA、蛋白质或者淀粉组合的官能化的碳纳米管。一旦已经形成膜,则必须随后通过特定处理将这些分散剂除去,因为它们是电绝缘的。将碳纳米管用聚合物包覆是用于保证其良好分散的常规方法。聚合物经由π-π相互作用结合至碳纳米管的表面,从而保持碳纳米管的固有性质。它们典型地为共轭聚合物或者包含芘实体的聚合物(Zhu,J.等,Journal of the American Chemical Society(133)7450,(2011))。可使用均聚物和嵌段共聚物两者。
迄今,不存在用于将碳纳米管合适地分散在含水介质中且应用该分散体以制造不需要后续处理的其良好品质的膜的解决方案。
本申请人现已发现,其嵌段的至少一个为共轭的导电聚合物且其嵌段的至少一个为聚电解质的嵌段共聚物使得实现纳米填料在水中的良好分散体,该分散体具有良好的成膜品质。所获得的膜呈现出良好的应用性质,不需要后处理。它们既是导电的(电子导电的),也是离子导电的。
发明内容
本发明涉及包括至少一种嵌段共聚物的组合物,所述嵌段共聚物能溶于水或者呈现在水中的稳定分散体并且具有至少一个由共轭聚合物构成的嵌段和至少一个由聚电解质聚合物构成的嵌段。
具体实施方式
术语“稳定分散体”用于表示不呈现沉降并且保持均匀至少1星期的分散体。
术语“嵌段共聚物”用于表示二嵌段、三嵌段或多嵌段共聚物或其共混物,包括嵌段各自的均聚物。优选地,其为二嵌段或三嵌段共聚物,且更优选地其为二嵌段共聚物。
关于由共轭聚合物构成的嵌段,这可包括(涉及)呈现出π型共轭的任何类型的聚合物。可提及由芴、亚苯基、喹啉、咔唑、苯胺、噻吩、或其衍生物得到的聚合物。优选地,这包括噻吩衍生物,更特别地3-烷基噻吩,和甚至更特别地3-己基噻吩。所述由共轭聚合物构成的嵌段具有1000-50 000g/mol和优选2000-10 000g/mol的重均分子量,以及大于1的分散指数(PI或)。
关于由电解质聚合物构成的嵌段,这可包括任何聚电解质,其中可提及聚苯乙烯磺酸盐、聚(苯乙烯-共-苯乙烯磺酸盐)、聚丙烯酸、带有双磺酰亚胺型基团的聚合物和共聚物、带有磺酸盐型基团的聚合物和共聚物、带有膦酸盐型基团的聚合物和共聚物、聚乙烯亚胺、聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)、聚((甲基)丙烯酸氨基烷基酯),优选聚阴离子型的电解质聚合物,且优先聚磺酸盐。
优选地,其为聚(苯乙烯-共-苯乙烯磺酸盐)。
本发明的嵌段共聚物可通过任何合适的技术制备。这特别地包括使用使得可控制嵌段的数量、它们的比率、它们的长度、以及它们的分散性的技术。
关于由共轭聚合物构成的嵌段,它们可为由如下的单体获得的嵌段:芴、亚苯基、喹啉、咔唑、苯胺、噻吩、或其衍生物。例如可提及3-己基噻吩。更特别地,关于聚(3-己基噻吩),其有利地通过格利雅(Grignard)易位聚合反应而合成,如Loewe,R.S.等,Macromolecules(13)4324,(2001)描述的。此外,这些嵌段可为单官能或双官能改性的,如Jeffries-El等,AdvancedMaterials(12)1017(2004)所描述的,并且因此提供使得实现聚电解质嵌段或者其前体的聚合开始的功能(官能团)。
在聚(3-己基噻吩)的特定情况下,羟基型的官能化使得可经由RAFT(可逆加成断裂链转移)技术引发单体的聚合。例如,其中可以受控方式使具有双键的单体聚合,无论是离子的还是非离子的,并且因此获得期望的导电聚合物-离子聚合物嵌段共聚物。也可使用使得可获得该类型结构的任何其它偶联或者聚合技术。
因此可使用任何类型的具有双键的单体。可特别地提及单体丁二烯、环己二烯或异戊二烯,其与其它单体组合,特别是选自苯乙烯、α-甲基苯乙烯、对-甲基苯乙烯、乙烯基萘、2-乙烯基吡啶、4-乙烯基吡啶的乙烯基芳族化合物,或者丙烯酸酯或甲基丙烯酸酯例如甲基丙烯酸的或者丙烯酸的甲酯、乙酯、正丙酯、异丙酯、正丁酯、异丁酯、仲丁酯、叔丁酯、正戊酯、异戊酯、正己酯、环己酯、2-乙基己酯、辛酯、异辛酯、癸酯、十五烷基酯、十二烷基酯、异冰片酯、苯酯、苄酯、缩水甘油酯、降冰片酯、月桂酯、硬脂基酯、苯氧基乙基酯、2-羟基乙基酯、2-甲氧基乙基酯或者2,2,2-三氟乙基酯;甲基丙烯腈、丙烯腈和二烷基甲基丙烯酰胺、二烷基丙烯酰胺、2-丙烯酰氨基-2-甲基丙烷磺酸、或者这些单体的组合,其为官能化或者非官能化的或者可随后官能化或者部分地官能化。优选地,所述单体为苯乙烯、苯乙烯磺酸盐或者苯乙烯-苯乙烯磺酸盐组合。关于由聚电解质聚合物构成的嵌段的特性,它们具有1000-500 000g/mol、和优选2000-50 000g/mol的重均分子量,以及大于1的分散指数(PI或)。
本发明还涉及本发明的共聚物作为在含水介质中纳米填料的分散剂的用途。术语“纳米填料”用于非限制地表示石墨烯、富勒烯、碳纳米管或者其组合。优选地,它们为碳纳米管。所使用的碳纳米管为单壁或多壁型的。它们优选为多壁碳纳米管。
所述分散体通过将纳米管在水中的水溶液与所述嵌段共聚物的水溶液混合而获得。为了获得良好的分散体,将各溶液使用合适装置例如通过超声处理进行预处理。
本发明还涉及使用所述嵌段共聚物和所述纳米填料的分散体获得的膜作为有机太阳能电池或其它光电发射体或感光体器件中的透明电极的用途。
已经可证实这些体系良好的电导率以及它们良好的光学和热稳定性、UV稳定性和水分稳定性性质。
实施例1(本发明):
聚(3-己基噻吩)-聚(苯乙烯-共-苯乙烯磺酸盐)嵌段共聚物的合成
a)聚(3-己基噻吩)嵌段的合成
将50ml新鲜蒸馏的四氢呋喃(THF)、7g 2,5-二溴-3-己基噻吩和10.7ml叔丁基氯化镁引入到在真空下干燥且装备有搅拌器并用氩气吹扫的500ml圆底烧瓶中。在环境温度下在3小时内完成反应。然后加入150ml新鲜蒸馏的THF和0.3628g[1,3-二(二苯基膦基)丙烷]二氯合镍(II)Ni(dppp)Cl2,同时保持搅拌40分钟。然后加入8.64ml烯丙基溴化镁。在真空下将溶剂蒸发之后,用过量甲醇沉淀出聚合物。然后将聚合物使用索氏设备用甲醇纯化三天和用氯仿纯化两天。通过用聚苯乙烯样品校准的SEC测量数均分子量,其为4522g/mol。分散性为1.1。
b)聚(3-己基噻吩)嵌段的官能化
将120ml新鲜蒸馏的四氢呋喃(THF)引入到在真空下干燥且装备有搅拌器并用氩气吹扫的500ml圆底烧瓶中。将1.4g在a)中制备的聚合物和1.75ml 9-硼双环[3.3.1]壬烷(9-BBN)引入到该圆底烧瓶中。然后将溶液在45℃下搅拌24h,然后冷却至环境温度,之后加入1.21ml在水中30%的过氧化氢。在搅拌下将混合物再次在45℃下加热24h。然后由甲醇沉淀出聚合物。
c)大分子引发剂(macroinitiator)RAFT试剂的合成
将10ml(1当量)3-巯基丙酸添加至氢氧化钾(13g,2当量)的溶液。然后加入15ml二硫化碳,然后反应在环境温度下搅拌5h。然后向该溶液加入27.4ml苄基溴并且将所得混合物在80℃搅拌12h。然后将反应混合物冷却至环境温度并且向其中加入150ml氯仿,然后将反应混合物用盐酸酸化,直至反应混合物变成黄色。将混合物的水相用氯仿萃取。将有机相取出并且用硫酸镁干燥。最终产物通过使用3:1庚烷/乙酸乙酯混合物的急骤层析法纯化,最终获得黄色粉末。
d)RAFT大分子引发剂的合成
将20ml新鲜蒸馏的二氯甲烷引入到在真空下干燥且装备有搅拌器并用氩气吹扫的100ml圆底烧瓶中。加入1g在步骤b)中制备的聚合物。通过将混合物在45℃下加热而进行溶液化。然后加入0.125g在步骤c)中制备的RAFT试剂,之后加入0.03g 4-甲苯磺酸4-(二甲基氨基)吡啶和0.09mlN,N’-二异丙基碳二亚胺。将所获得的混合物在30℃下在搅拌的情况下放置3天。然后由甲醇沉淀出聚合物。
e)用RAFT大分子引发剂使苯乙烯聚合
在搅拌下将1g在步骤d)中获得的RAFT大分子引发剂和5ml苯乙烯引入到100ml圆底烧瓶中。使混合物达到45℃以促进介质的良好均化。在用氩气进行惰性化之后,使温度达到120℃并且在搅拌下将混合物在该温度下保持4h。通过将该圆底烧瓶浸在液氮中而将所获得的混合物冷却。所获得的嵌段共聚物通过SEC表征并且具有49755g/mol的Mn和1.2的分散性(通过质子NMR测得14000g/mol的Mn(PS))。
f)在e)中获得的嵌段共聚物的磺化
将3ml二氯乙烷和2ml乙酸酐引入到50ml圆底烧瓶中。将保持在氩气下的该溶液(1)在冰浴中冷却至0℃并且向其中加入0.88ml 96%硫酸。
并行地,在用氩气进行惰性化的情况下将20ml二氯乙烷引入到100ml圆底烧瓶中。向其中加入1.5g在e)中制备的共聚物。将该溶液在45℃下加热以促进该共聚物的溶解。然后仍然在氩气下将溶液(1)逐渐引入其中。根据期望的磺化度,使该反应混合物在回流下放置2天,然后在环境温度下放置3天。于是形成不溶的蓝黑色固体。加入2ml 2-丙醇,并且对整个混合物进行过滤以分离聚合物。通过NMR测得苯乙烯实体的60%的磺化度。
实施例2(本发明):
共聚物的物理化学表征
对于高于0.2g/l的浓度,通过在100℃下搅拌24h,获得共聚物的水溶液。对于低于0.2g/l的浓度,进行稀释。
通过测量在多种浓度下的电导率,可证实嵌段共聚物的胶束行为。在0.02g/l(1.1×10-6mol/l)的浓度处可测定与临界胶束浓度对应的斜率变化,参见图1。
此外,通过测量在低于和高于临界胶束浓度的浓度下的ζ(Zeta)电位而评价溶液的胶束性质。在两种情况下,均测得带负电的聚集体,从而使得可得出如下结论:该共聚物是以P3HT在中心处和PS-共-PSS作为冠而自组装的(图2)。
此外,通过对经深冷的0.3g/l的共聚物溶液的样品拍摄的透射显微镜图像(照片1),证明了胶束聚集体的形成。
实施例3(本发明):
多壁碳纳米管的分散体
在水浴中在环境温度下使用超声发生器、用950瓦的功率以02/02脉冲进行10分钟和用285的最终功率进行在本发明的嵌段共聚物的存在下碳纳米管在水中的分散。
预先通过在上述条件下超声处理5分钟而制备2ml 0.5重量%的本发明共聚物的水溶液。然后加入渐进量的多壁碳纳米管(来自Arkema),从0.005g直至0.05g。对于在5ml水中0.5%的本发明共聚物和最高达0.05%多壁碳纳米管的浓度观察到稳定分散体。将分散体通过光学显微镜法表征(表1)。
实施例4(本发明):
膜形成和表征
使用实施例3的分散体通过“刮刀”技术在玻璃表面上制备膜。然后所述膜通过在400-800nm波长范围内的透射率(用Shimadzu UV-VIS-NIR光谱仪仪器(UV-3600))和通过它们的电阻率(用Jandel仪器,型号RM3-AR)进行表征。还表征所形成的膜的厚度(以纳米计)(用Alpha-Step IQ Profilometer仪器)。
结果在表2中给出。
实施例5(本发明):
将官能化的单壁碳纳米管(Carbon solution Inc.)使用硝酸纯化并且用与实施例3中相同的技术分散。
对经低温研磨的(cryomilled)样品拍摄透射显微镜照片。在照片2上观察到碳纳米管的良好分散体。此外,用于分散碳纳米管的处理未影响它们的长度。所观察到的小的黑色颗粒为碳纳米管合成的催化残留物。
实施例6(本发明):
将包含10重量%催化剂和20重量%石墨的非官能化的单壁碳纳米管(Hanwha Nanotech,Korea)根据实施例3中描述的方法分散并且在低温研磨之后通过高分辨率透射显微镜法进行观察。在照片3中观察到这些碳纳米管的良好分散体以及在碳纳米管的表面处的薄层,所述薄层对应于本发明的共聚物。
实施例7(对比):
聚(3-己基噻吩)-聚(丙烯酸)嵌段共聚物的合成:
首先,使用可得自Arkema的通过氮氧化物控制的自由基聚合(NMP)合成聚(3-己基噻吩)-聚(丙烯酸叔丁酯)嵌段共聚物。如Mougnier等的出版物Journal of Pol.Science Part A:Polymer chemistry,2012,50,2463中所描述地合成封端的聚(3-己基噻吩)大分子引发剂。在没有氧的存在下在甲苯中在120℃下进行丙烯酸叔丁酯的聚合。然后,用甲醇使聚(3-己基噻吩)-聚(丙烯酸叔丁酯)共聚物沉淀,然后将所述共聚物通过在1:4二氧六环/三氟乙酸(TFA)混合物中水解而转化成聚(3-己基噻吩)-聚(丙烯酸)。
典型地,在合适的圆底烧瓶中,将封端的聚(3-己基噻吩)大分子引发剂(1g,0.2mmol)溶解在50ml甲苯中并且在40℃下搅拌1小时。接着,加入36mmol丙烯酸叔丁酯并且将混合物搅拌5分钟。然后将该圆底烧瓶在搅拌的情况下浸在115℃的油浴中5小时。然后,将该圆底烧瓶浸在液氮浴中以停止聚合。通过由冷甲醇沉淀而分离嵌段共聚物,然后过滤和在真空下干燥24小时,并且通过1H NMR以及使用聚苯乙烯标准物的在THF中的SEC表征。
然后将所述嵌段共聚物以如下方式水解:将0.05mmol在三颈圆底烧瓶中在环境温度下在氮气下在氯仿中搅拌30分钟。在完全溶解之后,加入0.5ml TFA。向该反应混合物加入3ml 1,4-二氧六环。使反应回流18小时。加入第二部分的1,4-二氧六环(5ml)并且回流18小时。将所得共聚物冷却至环境温度,用甲醇沉淀,干燥和过滤。将其通过1H NMR、FTIR以及使用聚苯乙烯标准物的在THF中的SEC表征。其能溶于THF和氯仿中。
实施例8(在本发明共聚物存在下和在聚(3-己基噻吩)-聚(丙烯酸)共聚物存在下的碳纳米管分散体和膜的比较)。
根据使用本发明共聚物还是聚(3-己基噻吩)-聚(丙烯酸),按照实施例3和4在相同条件下制备分散体和膜。
进行作为膜电阻(以Ω/□度量)的函数的在550nm处的透射率的测量。还对由碳纳米管在十二烷基硫酸钠(SDS)中的分散体构成的参照物进行测量。
如可在图3上看到的,当使用本发明的共聚物时,与聚(3-己基噻吩)-聚(丙烯酸)共聚物相比,对于相等的膜电阻,本发明的共聚物容许膜的好得多的透射率。

Claims (12)

1.包括至少一种嵌段共聚物的组合物,所述嵌段共聚物能溶于水或者呈现稳定的在水中的分散体且具有至少一个由共轭聚合物构成的嵌段和至少一个由苯乙烯-苯乙烯磺酸盐类型的聚电解质聚合物构成的嵌段。
2.权利要求1的组合物,其中所述嵌段共聚物为二嵌段、三嵌段或多嵌段类型的、或者其混合物,包括嵌段各自的均聚物。
3.权利要求1的组合物,其包括至少一种二嵌段共聚物。
4.权利要求1的组合物,其中所述共轭聚合物为噻吩衍生物。
5.权利要求4的组合物,其中所述噻吩衍生物为3-烷基噻吩。
6.权利要求5的组合物,其中所述噻吩衍生物为3-己基噻吩。
7.权利要求1的组合物,其中所述聚电解质嵌段具有1000-500 000g/mol的重均分子量。
8.权利要求1的组合物,其中所述共轭聚合物嵌段具有1000-50 000g/mol的重均分子量。
9.包括权利要求1-8之一的嵌段共聚物以及纳米填料的含水分散体在光伏太阳能领域、或者光电发射体或感光体器件中的用途。
10.权利要求9的用途,其中所述纳米填料选自石墨烯、富勒烯、碳纳米管、或其组合。
11.权利要求11的用途,其中所述纳米填料由碳纳米管构成。
12.权利要求11的用途,其中所述纳米填料由多壁碳纳米管构成。
CN201380023884.6A 2012-04-06 2013-04-03 使纳米填料分散在水中的嵌段共聚物 Pending CN104428367A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1253228 2012-04-06
FR1253228A FR2989091B1 (fr) 2012-04-06 2012-04-06 Copolymeres a bloc dispersants de nanocharges dans l'eau
PCT/FR2013/050734 WO2013150242A1 (fr) 2012-04-06 2013-04-03 Copolymeres a bloc dispersants de nanocharges dans l' eau

Publications (1)

Publication Number Publication Date
CN104428367A true CN104428367A (zh) 2015-03-18

Family

ID=48237123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380023884.6A Pending CN104428367A (zh) 2012-04-06 2013-04-03 使纳米填料分散在水中的嵌段共聚物

Country Status (7)

Country Link
US (1) US9558861B2 (zh)
EP (1) EP2834305B1 (zh)
JP (1) JP6328609B2 (zh)
KR (1) KR20140147882A (zh)
CN (1) CN104428367A (zh)
FR (1) FR2989091B1 (zh)
WO (1) WO2013150242A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291094A (zh) * 2016-02-22 2018-07-17 积水化学工业株式会社 复合材料,导电性材料,导电性粒子以及导电性薄膜

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012456B1 (fr) * 2013-10-31 2018-01-26 Arkema France Procede de synthese de pedot-(co) - polymere electrolyte
FR3012461B1 (fr) * 2013-10-31 2016-01-01 Arkema France Compositions stables de nanotubes de carbone - polymeres electrolytes
FR3012462B1 (fr) * 2013-10-31 2016-01-01 Arkema France Compositions stables de poly (3,4-ethylenedioxythiophene) et de stabilisants anioniques a acidite limitee
KR101681186B1 (ko) * 2014-07-21 2016-12-01 한국과학기술연구원 외부자극에 의하여 자가도핑이 가능한 cnt-고분자 복합체 및 이의 제조방법
JP7470419B2 (ja) 2018-07-26 2024-04-18 国立大学法人東海国立大学機構 非共有結合性ナノカーボン-ポリマーハイブリッド組成物
CN114133919B (zh) * 2020-09-04 2024-03-01 中国石油化工股份有限公司 一种冷却液及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118420A1 (en) * 2007-10-10 2009-05-07 University Of Central Florida Research Foundation, Inc. Dispersions of carbon nanotubes in copolymer solutions and functional composite materials and coatings therefrom

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408109A (en) * 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
KR100337021B1 (ko) * 1999-10-18 2002-05-16 윤덕용 이오노머형 발광 고분자 및 이를 이용한 전기 발광 소자
FR2870121B1 (fr) * 2004-05-12 2006-07-21 Oreal Composition cosmetique comprenant au moins un copolymere bloc specifique.
TWI271876B (en) * 2005-05-27 2007-01-21 Univ Nat Taiwan Block copolymer containing nano-particles, electron transporting material and photoelectric device employing the same
JP2009506173A (ja) * 2005-08-26 2009-02-12 カーネギー メロン ユニバーシティ 導電性ポリマーおよびコントロールラジカル重合
CN101563388B (zh) * 2006-07-21 2013-05-15 普莱克斯托尼克斯公司 导电聚合物的磺化和oled器件、光电器件以及esd器件
US8961830B2 (en) * 2006-10-11 2015-02-24 University Of Florida Research Foundation, Inc. Electroactive polymers containing pendant pi-interacting/binding substituents, their carbon nanotube composites, and processes to form the same
JP2009114098A (ja) * 2007-11-02 2009-05-28 Sansho Kaken Kk 液状化粧料
US8715606B2 (en) * 2007-12-21 2014-05-06 Plextronics, Inc. Organic photovoltaic devices comprising fullerenes and derivatives thereof and improved methods of making fullerene derivatives
US8211996B2 (en) * 2008-12-01 2012-07-03 The Regents Of The University Of California Well-defined donor-acceptor rod-coil diblock copolymer based on P3HT containing C60
JP5641336B2 (ja) * 2010-02-01 2014-12-17 日油株式会社 化粧料用基剤およびこれを配合してなる化粧料
JP5827790B2 (ja) * 2010-04-28 2015-12-02 東レ・ダウコーニング株式会社 高級アルコール変性シリコーンを含有してなる化粧料および皮膚外用剤
KR101163460B1 (ko) * 2010-05-18 2012-07-18 국립대학법인 울산과학기술대학교 산학협력단 유기 태양전지용 주개-받개 로드-코일 블록 공중합체 및 그의 제조방법
CN103483508B (zh) * 2013-08-28 2015-07-15 合肥工业大学 一种自掺杂型噻吩类聚合物的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118420A1 (en) * 2007-10-10 2009-05-07 University Of Central Florida Research Foundation, Inc. Dispersions of carbon nanotubes in copolymer solutions and functional composite materials and coatings therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAODONG ZHAO ET AL: "Water soluble multi-walled carbon nanotubes prepared via nitroxide-mediated radical polymerization", 《OURNAL OF MATERIALS CHEMISTRY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291094A (zh) * 2016-02-22 2018-07-17 积水化学工业株式会社 复合材料,导电性材料,导电性粒子以及导电性薄膜

Also Published As

Publication number Publication date
KR20140147882A (ko) 2014-12-30
EP2834305B1 (fr) 2018-07-11
WO2013150242A1 (fr) 2013-10-10
JP6328609B2 (ja) 2018-05-23
US9558861B2 (en) 2017-01-31
JP2015517010A (ja) 2015-06-18
FR2989091A1 (fr) 2013-10-11
US20150060737A1 (en) 2015-03-05
FR2989091B1 (fr) 2015-07-03
EP2834305A1 (fr) 2015-02-11

Similar Documents

Publication Publication Date Title
CN104428367A (zh) 使纳米填料分散在水中的嵌段共聚物
González-Guisasola et al. Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells
Xie et al. Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications
Jing et al. Cross-conjugated oligomeric quinones for high performance organic batteries
Liu et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries
Ye et al. Long-term-stable, solution-processable, electrochromic carbon nanotubes/polymer composite for smart supercapacitor with wide working potential window
Jeong et al. Rational design of exfoliated 1T MoS 2@ CNT-based bifunctional separators for lithium sulfur batteries
Kong et al. Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device
Zhao et al. Gel polymer electrolyte based on polymethyl methacrylate matrix composited with methacrylisobutyl-polyhedral oligomeric silsesquioxane by phase inversion method
Kumar et al. Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system
Han et al. Conducting polypyrrole with nanoscale hierarchical structure
Cui et al. PVK/MWNT electrodeposited conjugated polymer network nanocomposite films
Tsang et al. Ionic purity and connectivity of proton-conducting channels in fluorous-ionic diblock copolymers
Wan et al. Water-soluble polyaniline/graphene prepared by in situ polymerization in graphene dispersions and use as counter-electrode materials for dye-sensitized solar cells
Min et al. Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors
Li et al. High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries
Zuo et al. Enhanced performance of a novel gel polymer electrolyte by dual plasticizers
Wang et al. Topological polymer electrolyte containing poly (pinacol vinylboronate) segments composited with ceramic nanowires towards ambient-temperature superior performance all-solid-state lithium batteries
Ramasamy et al. Functionalization of graphene with self-doped conducting polypyrrole by click coupling
Wang et al. Effect of silane-functionalized mesoporous silica SBA-15 on performance of PEO-based composite polymer electrolytes
Vereshchagin et al. Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices
Wang et al. High electrochemical performances of solid nano-composite star polymer electrolytes enhanced by different carbon nanomaterials
Li et al. Synthesis of feather fan-like PANI electrodes for supercapacitors
Hu et al. Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters
Huang et al. Polyhedral oligomeric silsesquioxane containing gel polymer electrolyte based on a PMMA matrix

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150318