CN104393098B - 基于半导体量子点的多结太阳能电池及其制作方法 - Google Patents

基于半导体量子点的多结太阳能电池及其制作方法 Download PDF

Info

Publication number
CN104393098B
CN104393098B CN201410525803.9A CN201410525803A CN104393098B CN 104393098 B CN104393098 B CN 104393098B CN 201410525803 A CN201410525803 A CN 201410525803A CN 104393098 B CN104393098 B CN 104393098B
Authority
CN
China
Prior art keywords
layer
quantum dot
solar cell
battery
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410525803.9A
Other languages
English (en)
Other versions
CN104393098A (zh
Inventor
杨晓杰
叶继春
刘凤全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU MATRIX OPTICAL CO., LTD.
Original Assignee
SUZHOU QIANGMING PHOTOELECTRIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU QIANGMING PHOTOELECTRIC CO Ltd filed Critical SUZHOU QIANGMING PHOTOELECTRIC CO Ltd
Priority to CN201410525803.9A priority Critical patent/CN104393098B/zh
Publication of CN104393098A publication Critical patent/CN104393098A/zh
Application granted granted Critical
Publication of CN104393098B publication Critical patent/CN104393098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种基于半导体量子点的多结太阳能电池及其制作方法,包括以下步骤:GaAs衬底上依次外延生长缓冲层、牺牲层以及太阳能电池层制作出外延片,太阳能电池层包括N型接触层、GaInP顶电池、隧道结I、GaInAs中电池、隧道结II、InGaAs/GaAs量子点底电池和P型接触层,GaInP顶电池禁带宽度为1.80-1.92eV,GaInAs中电池禁带宽度为1.38-1.42eV,InGaAs/GaAs量子点底电池禁带宽度为1.0-1.3eV;利用外延片制作基于半导体量子点的多结太阳能电池。与传统多结太阳能电池相比,其器件结构与聚光系统简单,具有柔性,且制作工艺简单、生产成本低。

Description

基于半导体量子点的多结太阳能电池及其制作方法
技术领域
本发明涉及太阳能电池技术领域,具体地说,是一种基于半导体量子点的多结太阳能电池及其制作方法。
背景技术
以煤、石油和天然气为代表的传统能源会产生严重的环境污染,因此太阳能光伏产业为代表的可再生洁净能源受到普遍重视并取得快速发展。目前在光伏市场占据主导地位的单晶硅和多晶硅太阳能电池组件的转换效率分别为18%和15%左右。由于硅材料和砷化镓(GaAs)分别是间接带隙和直接带隙半导体材料,硅太阳能电池的理论光电转换效率(23%)远低于砷化镓太阳能电池,其中单结的砷化镓电池的理论效率为27%,多结的砷化镓电池的理论效率高于50%。硅电池的最大优势在于硅材料的价格低廉且制作工艺成熟,因此砷化镓电池需要在保持高效率的优势的同时,通过引入新型的器件结构和工艺,降低成本,赢得市场。
据理论预测,最优设计的中间带太阳能电池的光电转换效率在高倍聚光情况下分别可达63%(见A.LuqueandA.Marti,Phys.Rev.Lett.78,5014(1997))。中间带(Intermediate-Band,IB)太阳能电池是利用能级处于n型和p型半导体禁带宽度之间的半导体材料来吸收亚禁带(Sub-Bandgap)能量的光子,实现光生电子从价带(VB)到中间带(即VB-IB)以及中间带到导带(CB)(即IB-CB)的跃迁。中间带太阳能电池是通过接力式地吸收了两个或者多个长波长光子,实现吸收低能量光子而产生高输出电压的高效光伏技术。例如,优化中间带太阳能电池的能带结构设计,可以分别吸收能量为0.70电子伏特(eV)和1.25eV的光子,激发禁带宽度为1.95eV的半导体材料的价带电子实现VB-IB和IB-CB跃迁,使电池的开路电压达到1.55伏(V)左右。
以InGaAs/GaAs为代表的III-V族半导体量子点的密度、尺寸和禁带宽度可以通过变化其组分与生长温度来调节,能够设计出吸收光谱与太阳能光谱匹配的半导体量子点活性层(ActiveLayer),实现高效率量子点太阳能电池。基于InAs/GaAs量子点超晶格结构的中间带太阳能电池的吸收光谱可以拓展到红外波段(0.8-2.0μm),而且光电流会明显增强,分别在AM1.5G单倍和两倍太阳光照条件下,实现18.7%和19.4%的效率(见K.Tanabeetal,Appl.Phys.Lett.100,193905(2012))。
传统的多结III-V族半导体太阳能电池一般是在锗(Ge)衬底上外延生长GaInAs和GaInP半导体材料组成的三对p-n结以及重掺杂的隧道结叠层结构来实现,其中Ge、GaInAs和GaInP的禁带宽度为0.67,1.4和1.9电子伏特(eV)。三结III-V族半导体太阳能电池的理论效率达到52.4%,在高倍聚光条件下,其实验室最高效率已经达到44.4%,保持着太阳能电池效率的世界纪录。GaAs衬底上生长的三结太阳能电池器件结构与上述三结太阳能电池不同,先外延生长GaInP和GaInAs太阳能电池,然后需要生长5微米左右、组分渐变的GaInAs缓冲层来消除晶格失配引起的应力与缺陷后,再外延生长禁带宽度为1.0eV的GaInAs电池。Ge基和GaAs基多结太阳能电池结构复杂,配套的聚光光伏系统的制作工艺繁琐,生产成本很高,价格昂贵,因此难以进入民用市场。现有技术存在的主要问题在于如何制作出可以替代Ge基太阳能电池同时具有0.67eV、1.0eV、1.4eV和1.9eV禁带宽度的高效多结太阳能电池,其不仅器件结构与聚光系统简单,且制作工艺简单、生长成本低。
发明内容
为此,本发明所要解决的技术问题在于传统的多结III-V族半导体太阳能电池一般是在锗(Ge)衬底上外延生长GaInAs和GaInP半导体材料组成的三对p-n结以及重掺杂的隧道结叠层结构来实现,但这种Ge基多结太阳能电池的器件结构与聚光系统复杂、制作工艺繁琐而且生产成本高昂。从而提出一种能够接力式地吸收1.0-1.3eV和0.6-0.9eV光子的中间带量子点太阳能电池,代替Ge电池然后再与GaInAs和GaInP外延层结合成具有1.0-1.3,1.4和1.9eV禁带宽度的三结太阳能电池。
为解决上述技术问题,本发明提供了如下技术方案:
一种基于半导体量子点的多结太阳能电池的制作方法,包括以下步骤:
S1:在GaAs衬底上依次外延生长缓冲层、牺牲层以及太阳能电池层制作出太阳能电池外延片,太阳能电池层包括N型接触层、GaInP顶电池、隧道结I、GaInAs中电池、隧道结II、InGaAs/GaAs量子点底电池和P型接触层,GaInP顶电池的禁带宽度为1.80-1.92eV,GaInAs中电池的禁带宽度为1.38-1.42eV,InGaAs/GaAs量子点底电池的禁带宽度为1.0-1.3eV;
S2:在太阳能电池外延片的P型接触层表面沉积金属背电极层并黏贴在柔性载体上,腐蚀掉牺牲层,太阳能电池层与GaAs衬底无损分离后,在N型接触层表面沉积上电极和减反射膜,制作出基于半导体量子点的多结太阳能电池。
作为优化,InGaAs/GaAs量子点底电池包括量子点超晶格结构以及分设在量子点超晶格结构两侧的基极和发射极,量子点超晶格结构包括至少一层InxGa1-xAs量子点层、以及设置在InxGa1-xAs量子点层之间的GaAs间隔层,其中InxGa1-xAs量子点层中的In组分0.0≤x≤1.0。
作为优化,步骤S1还包括:优化InxGa1-xAs量子点层的组分以及生长参数使其禁带宽度为1.0-1.3eV,InxGa1-xAs量子点层的In组分为0.4≤x≤1.0、沉积速率为0.01-1.0单层每秒、生长温度为450-540℃、厚度为1.8-10.0单层。
作为优化,步骤S1还包括:在GaAs间隔层和/或InxGa1-xAs量子点层中掺杂施主硅原子来增强InGaAs/GaAs量子点底电池的电流密度和转换效率,硅原子浓度为1.0×1017-1.0×1018cm-3
作为优化,GaAs间隔层厚度为5-100nm。
作为优化,InxGa1-xAs量子点层设置1-100层,GaAs间隔层相应设置1-100层。
作为优化,基极为P型GaInP基极,发射极为N型GaInP发射极,GaInP的晶格常数为0.56-0.57nm、禁带宽度为1.80-1.92eV,P型GaInP基极的厚度为0.5-3.0μm,N型GaInP发射极的厚度为50-300nm。
作为优化,步骤S2中在腐蚀掉牺牲层,实现太阳能电池层与GaAs衬底的无损分离后包括:
将剥离后的太阳能电池层分割为独立的电池单元;
在N型接触层上沉积减反射膜和上电极;
移去柔性载体;
根据用电设备的输入电压和输入电流的要求,将多个移去柔性载体的电池单元串联和/或并联后与控制芯片连接,制作出基于半导体量子点的多结太阳能电池。
一种基于半导体量子点的多结太阳能电池,包括控制芯片、以及与控制芯片连接的多个串联和/或并联的电池单元,电池单元从上至下依次包括金属背电极层、P型接触层、InGaAs/GaAs量子点底电池、隧道结II、GaInAs中电池、隧道结I、GaInP顶电池、N型接触层,GaInP顶电池的禁带宽度为1.80-1.92eV,GaInAs中电池的禁带宽度为1.38-1.42eV,InGaAs/GaAs量子点底电池的禁带宽度为1.0-1.3eV。
本发明的上述技术方案相比现有技术具有以下优点:
虽然InGaAs/GaAs量子点是由于InAs与GaAs之间因晶格失配而自组织性能三维纳米岛状结构,但是InGaAs中的应力在形成量子点后应力几乎完全释放,与GaAs间隔层之间的界面没有缺陷。以StranskiKrastanow(S-K)模式自组织外延生长的InGaAs/GaAs量子点的尺寸呈高斯型分布,其发光和吸收光谱具有20-100毫电子伏特(meV)的不均匀展宽。本发明通过调节InGaAs/GaAs量子点层的组分、生长参数和尺寸,设计出能够接力式地吸收1.0-1.3eV和0.6-0.9eV光子的中间带量子点太阳能电池,然后再与GaInAs和GaInP外延层结合成基于半导体量子点的三结太阳能电池。以替代一般由Ge、GaInAs和GaInP组成的Ge基多结太阳能电池以及由反转结构的GaInP、GaInAs和GaInAs半导体材料组成的GaAs基多结III-V族半导体太阳能电池。半导体量子点基三结太阳能电池结构中省去了厚度达5微米的GaInAs缓冲层以及价格昂贵而且易碎的Ge衬底,可以结合外延层剥离技术制备柔性高效的多结太阳能电池。
附图说明
图1是本发明一个实施例的量子点太阳能电池的工作原理示意图;
图2是本发明一个实施例的一种太阳能电池外延片的结构示意图;
图3是本发明一个实施例的一种设置了金属背电极层和柔性载体的太阳能电池外延片的结构示意图;
图4是本发明一个实施例的一种基于半导体量子点的多结太阳能电池单元结构示意图;
图5是本发明另一个实施例的一种基于半导体量子点的多结太阳能电池结构示意图。
图中附图标记表示为:1-GaAs衬底,2-缓冲层,3-牺牲层,4-N型接触层,5-GaInP顶电池,6-隧道结I,7-GaInAs中电池,8-隧道结II,9-InGaAs/GaAs量子点底电池,10-P型接触层,11-金属背电极层,12-柔性载体,13-上电极,14-减反射膜。
具体实施方式
为了使本发明的内容更容易被清楚地理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明。
实施例1
本实施例提供了一种基于半导体量子点的多结太阳能电池的制作方法,
包括以下步骤:
步骤S1:在GaAs衬底1上依次外延生长缓冲层2、牺牲层3以及太阳能电池层制作出太阳能电池外延片,太阳能电池层包括N型接触层4、GaInP顶电池5、隧道结I6、GaInAs中电池7、隧道结II8、InGaAs/GaAs量子点底电池9和P型接触层10,GaInP顶电池5的禁带宽度为1.80-1.92eV,GaInAs中电池7的禁带宽度为1.38-1.42eV,InGaAs/GaAs量子点底电池9的禁带宽度为1.0-1.3eV。具体地,InGaAs/GaAs量子点底电池9包括量子点超晶格结构以及分设在量子点超晶格结构两侧的基极和发射极,量子点超晶格结构包括至少一层InxGa1-xAs量子点层、以及设置在InxGa1-xAs量子点层之间的GaAs间隔层。InxGa1-xAs量子点层设置1-100层,相应地,GaAs间隔层需设置1-100层。InxGa1-xAs量子点层优选设置5-50层,相应地,GaAs间隔层优选设置5-50层。优化InxGa1-xAs量子点层的组分以及生长参数使其禁带宽度为1.0-1.3eV:InxGa1-xAs量子点层的In组分为0.4≤x≤1.0,InxGa1-xAs量子点层的沉积速率为0.01-1.0单层每秒、生长温度为450-540℃、厚度为1.8-10.0单层,其中,InxGa1-xAs量子点层的In组分优选为0.5≤x≤1.0,其沉积速率优选为0.05-0.5单层每秒,具体可为0.2单层每秒,其生长温度优选为470-500℃,而其厚度优选为1.8-6.0单层。基极为P型GaInP基极,发射极为N型GaInP发射极,GaInP的晶格常数为0.56-0.57nm、禁带宽度为1.80-1.92eV,基极和发射极分别优选为适当掺杂的P型Ga0.51In0.49P和N型Ga0.51In0.49P,其禁带宽度为1.9eV。P型GaInP基极的厚度为0.5-3.0μm,优选为1-2μm。N型GaInP发射极的厚度为50-300nm,优选为100-150nm。具体地,缓冲层2优选GaAs缓冲层,牺牲层3优选为高Al组分的AlGaAs,Al的组分比至少为60%,P型接触层10优选GaAs材料,N型接触层4优选In组分仅为1-2%的GaInAs材料。
步骤S2:在太阳能电池外延片的P型接触层10表面沉积金属背电极层11并黏贴在柔性载体12上,高选择性地腐蚀掉牺牲层3,实现太阳能电池层与GaAs衬底1的无损分离后,反转设置了金属背电极层11和柔性载体12的太阳能电池层并在其N型接触层表面沉积上电极13和减反射膜14,制作出基于半导体量子点的多结太阳能电池。
InxGa1-xAs量子点中In组分x增加到0.5-1.0情况下,InxGa1-xAs量子点的禁带宽度在0.8-1.3eV之间可调,本实施例选为1.0-1.3eV,InxGa1-xAs量子点层中的量子点价带中电子能够吸收能量为1.0-1.3eV的光子,跃迁到中间带(微带)中,这些电子能够吸收能量为0.6-0.9eV的光子再跃迁到发射极和基极的导带上,形成中间带量子点太阳能电池。
优化地,步骤S1还包括:在GaAs间隔层和/或InxGa1-xAs量子点层中掺杂施主硅原子来增强InGaAs/GaAs量子点底电池9的电流密度和转换效率,硅原子浓度为1.0×1017-1.0×1018cm-3,优选为1.0×1017-5.0×1017cm-3。而GaAs间隔层厚度为5-100nm,优选为10-50nm。
步骤S2的过程具体包括:
S21.切割并利用化学方法清洗太阳能电池外延片;
S22.在其P型GaAs接触层表面沉积钛(Ti)、镍(Ni)、金(Au)、银(Ag)、铝(Al)和铜(Cu)等金属薄膜形成金属背电极层11;
S23.将柔性载体12附着在电池的金属背电极层11上;
S24.采用氢氟酸等溶液高选择性地腐蚀掉采用高Al组分的AlGaAs材料的牺牲层3,实现太阳能电池层与GaAs衬底1的无损分离;
S25.翻转与牺牲层3分离的并设置了金属背电极层11和柔性载体的太阳能电池层,利用光刻、湿法或干法腐蚀方法将其分割成电池单元;
S26.在重掺杂的N型GaInAs接触层上沉积作为上电极13的镍(Ni)、锗(Ge)、金(Au)、银(Ag)和铜(Cu)等金属材料以及作为减反射膜14的氟化镁(MgF2)与硫化锌(ZnS)的复合膜等材料;
S27.移去柔性载体12。
S28.根据用电设备的输入电压和输入电流的要求,将多个移去柔性载体12的电池单元串联和/或并联后与控制芯片连接,制作出基于半导体量子点的多结太阳能电池。
实施例2
如图5所示,本实施例提供了一种基于半导体量子点的多结太阳能电池,包括控制芯片、以及与控制芯片连接的多个串联和/或并联的电池单元,其特征在于,电池单元从上至下依次包括金属背电极层11、P型接触层10、InGaAs/GaAs量子点底电池9、隧道结II8、GaInAs中电池7、隧道结I6、GaInP顶电池5、N型接触层4。还包括设置在N型GaInAs接触层上的减反射膜14和上电极13。
具体地,InGaAs/GaAs量子点底电池9包括量子点超晶格结构以及分设在量子点超晶格结构两侧的基极和发射极,量子点超晶格结构包括至少一层InxGa1-xAs量子点层、以及设置在InxGa1-xAs量子点层之间的GaAs间隔层。InxGa1-xAs量子点层设置1-100层,相应地,GaAs间隔层需设置1-100层。InxGa1-xAs量子点层优选设置5-50层,相应地,GaAs间隔层优选设置5-50层。InxGa1-xAs量子点层的In组分为0.4≤x≤1.0、厚度为1.8-10.0单层,其中,InxGa1-xAs量子点层的In组分优选为0.5≤x≤1.0,而其厚度优选为1.8-6.0单层。基极为P型GaInP基极,发射极为N型GaInP发射极,GaInP的晶格常数为0.56-0.57nm、禁带宽度为1.80-1.92eV,基极和发射极分别优选为适当掺杂的P型Ga0.51In0.49P和N型Ga0.51In0.49P,其禁带宽度为1.9eV。P型GaInP基极的厚度为0.5-3.0μm,优选1-2μm。N型GaInP发射极的厚度为50-300nm,优选为100-150nm。具体地,缓冲层2优选GaAs缓冲层,牺牲层3优选为高Al组分的AlGaAs,Al的组分比至少为60%,P型接触层10优选GaAs材料,N型接触层4优选In组分仅为1-2%的GaInAs材料。
优化地,在GaAs间隔层和/或InxGa1-xAs量子点层中掺杂施主硅原子来增强InGaAs/GaAs量子点底电池9的电流密度和转换效率,硅原子浓度为1.0×1017-1.0×1018cm-3,优选为1.0×1017-5.0×1017cm-3。而GaAs间隔层厚度为5-100nm,优选为10-50nm。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种基于半导体量子点的多结太阳能电池的制作方法,其特征在于,包括以下步骤:
S1:在GaAs衬底上依次外延生长缓冲层、牺牲层以及太阳能电池层制作出太阳能电池外延片,所述太阳能电池层包括N型接触层、GaInP顶电池、隧道结I、GaInAs中电池、隧道结II、InGaAs/GaAs量子点底电池和P型接触层,所述GaInP顶电池的禁带宽度为1.80-1.92eV,所述GaInAs中电池的禁带宽度为1.38-1.42eV,所述InGaAs/GaAs量子点底电池的禁带宽度为1.0-1.3eV;
S2:在所述太阳能电池外延片的P型接触层表面沉积金属背电极层并黏贴在柔性载体上,腐蚀掉所述牺牲层,所述太阳能电池层与所述GaAs衬底无损分离后,在所述N型接触层表面沉积上电极和减反射膜,制作出基于半导体量子点的多结太阳能电池。
2.如权利要求1所述的基于半导体量子点的多结太阳能电池的制作方法,其特征在于,所述InGaAs/GaAs量子点底电池包括量子点超晶格结构以及分设在所述量子点超晶格结构两侧的基极和发射极,所述量子点超晶格结构包括至少一层InxGa1-xAs量子点层、以及设置在InxGa1-xAs量子点层之间的GaAs间隔层,其中InxGa1-xAs量子点层中的In组分0.0≤x≤1.0。
3.如权利要求2所述的基于半导体量子点的多结太阳能电池的制作方法,其特征在于,步骤S1还包括:优化所述InxGa1-xAs量子点层的组分以及生长参数使其禁带宽度为1.0-1.3eV,所述InxGa1-xAs量子点层的In组分为0.4≤x≤1.0、沉积速率为0.01-1.0单层每秒、生长温度为450-540℃、厚度为1.8-10.0单层。
4.如权利要求2所述的基于半导体量子点的多结太阳能电池的制作方法,其特征在于,步骤S1还包括:在所述GaAs间隔层和/或InxGa1-xAs量子点层中掺杂施主硅原子来增强所述InGaAs/GaAs量子点底电池的电流密度和转换效率,硅原子浓度为1.0×1017-1.0×1018cm-3
5.如权利要求2或4所述的基于半导体量子点的多结太阳能电池的制作方法,其特征在于,所述GaAs间隔层厚度为5-100nm。
6.如权利要求2-4中任一项所述的基于半导体量子点的多结太阳能电池的制作方法,其特征在于,所述InxGa1-xAs量子点层设置1-100层,所述GaAs间隔层相应设置1-100层。
7.如权利要求5所述的基于半导体量子点的多结太阳能电池的制作方法,其特征在于,所述InxGa1-xAs量子点层设置1-100层,所述GaAs间隔层相应设置1-100层。
8.如权利要求2所述的基于半导体量子点的多结太阳能电池的制作方法,其特征在于,所述基极为P型GaInP基极,所述发射极为N型GaInP发射极,GaInP的晶格常数为0.56-0.57nm、禁带宽度为1.80-1.92eV,所述P型GaInP基极的厚度为0.5-3.0μm,所述N型GaInP发射极的厚度为50-300nm。
9.如权利要求1或2所述的基于半导体量子点的多结太阳能电池的制作方法,其特征在于,步骤S2中在腐蚀掉牺牲层,实现太阳能电池层与GaAs衬底的无损分离后包括:
将剥离后的太阳能电池层分割为独立的电池单元;
在N型接触层上沉积减反射膜和上电极;
移去柔性载体;
根据用电设备的输入电压和输入电流的要求,将多个所述移去柔性载体的电池单元串联和/或并联后与控制芯片连接,制作出基于半导体量子点的多结太阳能电池。
10.一种基于半导体量子点的多结太阳能电池,包括控制芯片、以及与控制芯片连接的多个串联和/或并联的电池单元,其特征在于,所述电池单元从上至下依次包括金属背电极层、P型接触层、InGaAs/GaAs量子点底电池、隧道结II、GaInAs中电池、隧道结I、GaInP顶电池、N型接触层,GaInP顶电池的禁带宽度为1.80-1.92eV,GaInAs中电池的禁带宽度为1.38-1.42eV,InGaAs/GaAs量子点底电池的禁带宽度为1.0-1.3eV。
CN201410525803.9A 2014-10-09 2014-10-09 基于半导体量子点的多结太阳能电池及其制作方法 Active CN104393098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410525803.9A CN104393098B (zh) 2014-10-09 2014-10-09 基于半导体量子点的多结太阳能电池及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410525803.9A CN104393098B (zh) 2014-10-09 2014-10-09 基于半导体量子点的多结太阳能电池及其制作方法

Publications (2)

Publication Number Publication Date
CN104393098A CN104393098A (zh) 2015-03-04
CN104393098B true CN104393098B (zh) 2016-05-11

Family

ID=52610970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410525803.9A Active CN104393098B (zh) 2014-10-09 2014-10-09 基于半导体量子点的多结太阳能电池及其制作方法

Country Status (1)

Country Link
CN (1) CN104393098B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552140B (zh) * 2016-01-29 2017-07-14 扬州乾照光电有限公司 高比功率GaAs多结柔性薄膜太阳电池及其制备方法
US20210066531A1 (en) * 2018-08-09 2021-03-04 Suzhou Institute Of Nano-Tech And Nano-Bionics (Sinano), Chinese Academy Of Sciences Flexible solar cell and manufacturing method thereof
CN110828581A (zh) * 2018-08-09 2020-02-21 中国科学院苏州纳米技术与纳米仿生研究所 一种柔性太阳电池及其制作方法
CN111613693A (zh) * 2019-02-22 2020-09-01 中国科学院苏州纳米技术与纳米仿生研究所 柔性太阳能电池及其制作方法
CN113875025A (zh) * 2019-03-29 2021-12-31 新加坡国立大学 太阳能电池和太阳能电池的制造方法
CN111834474B (zh) * 2019-04-19 2022-12-27 紫石能源有限公司 一种三结太阳能电池的制备方法和三结太阳能电池
CN111524984A (zh) * 2020-04-20 2020-08-11 中山德华芯片技术有限公司 一种柔性砷化镓太阳能电池芯片及其制作方法
CN112510122B (zh) * 2021-02-07 2021-07-06 中山德华芯片技术有限公司 一种免切割的柔性砷化镓太阳电池及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915744A (en) * 1989-02-03 1990-04-10 Applied Solar Energy Corporation High efficiency solar cell
JPH07335934A (ja) * 1994-06-03 1995-12-22 Mitsubishi Electric Corp 光半導体素子,及びその製造方法
JPH08195504A (ja) * 1995-01-17 1996-07-30 Daido Steel Co Ltd 受光素子
GB2373371A (en) * 2001-03-17 2002-09-18 Agilent Technologies Inc Quantum dot laser structure
US20120186641A1 (en) * 2009-05-08 2012-07-26 Emcore Solar Power, Inc. Inverted multijunction solar cells with group iv alloys

Also Published As

Publication number Publication date
CN104393098A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN104393098B (zh) 基于半导体量子点的多结太阳能电池及其制作方法
Yamaguchi et al. Multi-junction solar cells paving the way for super high-efficiency
Razykov et al. Solar photovoltaic electricity: Current status and future prospects
CN104465843B (zh) 一种双面生长的GaAs四结太阳电池
CN104300015B (zh) AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN105190911B (zh) 化合物半导体光伏电池和其制造方法
CN106067493A (zh) 一种微晶格失配量子阱太阳能电池及其制备方法
CN104241452B (zh) 柔性量子点太阳能电池及其制作方法
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN101901854A (zh) 一种InGaP/GaAs/InGaAs三结薄膜太阳能电池的制备方法
CN106796965A (zh) 包括接合层的半导体结构、多结光伏电池和相关方法
Shoji et al. Pd-mediated mechanical stack of III–V solar cells fabricated via hydride vapor phase epitaxy
CN102983203A (zh) 三结级联太阳能电池及其制作方法
CN102790116A (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN102790117B (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN110911510B (zh) 一种含超晶格结构的硅基氮化物五结太阳电池
CN206282866U (zh) 一种五结叠层太阳电池
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN104465809B (zh) 一种双面生长的硅基四结太阳电池
TW201140875A (en) A semiconductor epitaxial structure and apparatus comprising the same
CN204315590U (zh) 一种双面生长的硅基四结太阳电池
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
Shafi et al. A numerical simulation for efficiency enhancement of CZTS based thin film solar cell using SCAPS-1D
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN104332511B (zh) InGaAs量子点太阳能电池及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190717

Address after: 215614, Shuanglong Village, Fenghuang Town, Suzhou, Jiangsu, Zhangjiagang

Patentee after: SUZHOU MATRIX OPTICAL CO., LTD.

Address before: 215614 Building D of Phoenix Science and Technology Venture Park, Fenghuang Town, Zhangjiagang City, Jiangsu Province

Patentee before: Suzhou Qiangming Photoelectric Co., Ltd.