CN104392071B - 一种基于复杂网络的高速列车系统安全评估方法 - Google Patents

一种基于复杂网络的高速列车系统安全评估方法 Download PDF

Info

Publication number
CN104392071B
CN104392071B CN201410768888.3A CN201410768888A CN104392071B CN 104392071 B CN104392071 B CN 104392071B CN 201410768888 A CN201410768888 A CN 201410768888A CN 104392071 B CN104392071 B CN 104392071B
Authority
CN
China
Prior art keywords
mrow
msub
bullet train
sample
safe class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410768888.3A
Other languages
English (en)
Other versions
CN104392071A (zh
Inventor
贾利民
秦勇
王艳辉
林帅
史浩
毕利锋
郭磊
李莉洁
李曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201410768888.3A priority Critical patent/CN104392071B/zh
Publication of CN104392071A publication Critical patent/CN104392071A/zh
Priority to PCT/CN2015/095721 priority patent/WO2016091084A1/zh
Priority to US15/123,684 priority patent/US9630637B2/en
Application granted granted Critical
Publication of CN104392071B publication Critical patent/CN104392071B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/60Testing or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Architecture (AREA)

Abstract

本发明公开了属于高速列车系统安全技术领域的一种基于复杂网络的高速列车系统安全评估方法,该方法包括如下步骤:(1)构建高速列车系统物理结构网络模型,基于网络模型构建节点功能属性度;(2)提取部件的功能属性度、失效率、平均无故障时间作为输入量,并利用LIBSVM软件进行SVM训练;(3)进行加权kNN‑SVM判断:对于无法分类的样本点进行判断,得出高速列车系统的安全性等级。对于物理结构及运行情况复杂的高速列车系统,该方法能够解决当系统中部件状态发生变化后对系统安全性影响程度的评估。实验结果表明该算法的精确度高,实用性好。

Description

一种基于复杂网络的高速列车系统安全评估方法
技术领域
本发明属于高速列车系统安全技术领域,特别涉及一种基于复杂网络的高速列车系统安全评估方法。
背景技术
随着高速铁路的发展,动车组的安全性问题也得到广泛的关注。针对高铁列车安全性研究,“频度-后果”矩阵法是比较成熟的,也是应用最广泛的方法。矩阵法中的频率、后果都是由根据专家经验给出,存在较强的主观性。
SVM(支持向量机)具有结构简单、学习速度快、推广性能好、优化求解时具有唯一的极小点等。SVM是为了解决二分类问题而提出来的,对于多分类问题,SVM算法存在一个缺点:当投票结果出现平票时,无法正确判断出样本所属安全等级。加权kNN(k近邻)是对SVM无法准确分类的样本进行重新判断,即对于k个类别,判断样本点距离哪一类近,就把样本点分到哪一类。
与目前比较常用的高铁安全性评价方法矩阵法相比,基于加权kNN-SVM的安全评估方法,从部件在系统中的地位以及部件的可靠性出发,剔出了矩阵法中的主观因素,因此对高铁的安全性评估具有重大的实用价值和推广意义。
发明内容
本发明的目的是提供了一种基于复杂网络的高速列车系统安全评估方法,其特征在于,包括下述步骤:
步骤一、根据高速列车物理结构关系,构建高速列车网络模型G(V,E),
1.1.将高速列车系统中的部件抽象为节点,即V={v1,v2,…,vn},其中V为节点集合,vi为高速列车系统中的节点(部件),n为高速列车系统中节点的个数;
1.2.部件与部件之间存在的物理连接关系抽象为连接边,即E={e12,e13,…,eij},i,j≤n。其中E为连接边的集合,eij为节点i和节点j之间的连接边;
1.3.基于高速列车网络模型,计算节点的功能属性度值节点i的功能属性度为
其中λi为节点i的失效率,ki为复杂网络理论中节点i的度,即与该节点相连的边数;
步骤二,通过对高速列车运营故障数据分析,结合高速列车系统的物理结构,提取部件的功能属性度值失效率λi、平均无故障时间(MTBF)作为训练样本集,对训练样本集进行归一化处理:
2.1.失效率λi的计算公式为
2.2,平均无故障时间MTBF由故障数据中记录的故障时间得出,即
2.3,利用SVM对样本进行训练,
步骤三、利用kNN-SVM对样本进行安全等级划分。
3.1,对k个安全等级的训练样本进行两两分区,针对个SVM分类器,分别建立最有分类面,其表达式如下:
其中:l为第i个安全等级和第j个安全等级的样本数,K(xij,x)为核函数,x为支持向量,at为SVM的权值系数,bij为偏移系数。
3.2,对于待测部件,分别组合上述两类分类器,并使用投票法,对部件所属的安全等级进行计票。得票最多的类,则为该部件所属安全等级;
3.3,由于高速列车系统运行环境复杂,因此,利用SVM分类时容易出现无法分类的情况,因此定义基于加权kNN的判别函数,对部件重新进行安全等级划分,具体步骤如下:
训练集{xi,yi},…,{xn,yn}中,共有k个安全等级即ca1,ca2,…,cak,第i个安全等级的样本中心为其中ni为第i个安全等级的样本数,则部件xj到第i个安全等级样本中心的欧式距离为
式中:xjm为测试样本中第j个样本点的第m个特征属性;cim为第i类样本中心中第m个特征属性;
定义距离判别函数
定义基于加权kNN的不同类别的样本紧密度为
其中:m为k近邻的个数;ui(x)为测试样本属于第i个训练数据的紧密度隶属度;ui(x(j))为第j个近邻属于第i个安全等级的隶属度,即
则样本点的分类判别函数为
di(x)=si(x)×μi(x) (6)
计算样本属于各个安全等级的紧密度di(x),di(x)值最高的类别为样本点预测结果;
依据动车组一二级检修章程与故障数据记录,所述高速列车安全性划分为如下等级:
即y=1对应的安全等级1为安全,包含列车的运行状态为无影响、继续运行;y=5对应的安全等级2是较安全,包含列车的运行状态为临修、碎修,晚点;y=10对应的安全等级3是不安全,包含列车的运行状态为停运、未出库。
本发明的有益效果是与现有技术相比,该方法利用复杂网络提取节点的功能属性度,根据故障数据提取失效率、平均无故障时间等特征,通过SVM进行训练;由于SVM对于多分类问题存在的无法分类问题,考虑了节点在系统中的位置重要性;引入加权kNN-SVM对样本点进行检验,最终得出部件对高速列车系统安全性的影响,能够得到更加准确的分类结果,高速列车的安全性判断得到了验证,验证结果表明此方法具有很高的实用价值。
附图说明
图1为基于复杂网络和加权kNN-SVM的高速列车安全评估方法流程图。
图2为高速列车系统物理结构网络模型。
图3为SVM方法无法进行分类的区域。
图4为训练集样本。
具体实施方式
本发明提供了一种基于复杂网络的高速列车系统安全评估方法,下面结合附图对本发明进一步说明。
图1所示为高速列车系统安全评估步骤流程图。图中所示,首先对高速列车转向架系统的功能结构特点,提取出转向架系统中的33个部件(步骤1.1)。基于转向架系统的物理结构关系,抽象出33个部件之间的作用关系(步骤1.2)。将部件抽象为节点,将部件之间的作用关系抽象为边,构建高速列车转向架系统网络模型如图2所示。
从部件的结构角度,基于转向架网络模型,选取节点的功能属性度作为一个输入量(步骤1.3);从部件的可靠性属性角度,结合高速列车运营故障数据,选取失效率λi、平均无故障时间(MTBF)作为输入量(步骤2.1,2.2)。针对高速列车转向架系统中的同一个部件,分别计算其在不同运营公里下的λi、MTBF作为训练集。例如,节点14齿轮箱总成在列车运行至2450990公里时,其λ14,1=0.013502,MTBF14,1=150.2262。依据动车组一二级检修章程与故障数据记录,将高速列车系统的安全等级划分为三级,即y=1为安全、y=5为较安全、y=10为不安全:
以部件齿轮箱总成为例,选取齿轮箱总成的三个安全等级共90组输入量作为训练集,利用LIBSVM软件包进行SVM训练,计算结果的准确率仅为55.7778%。通过分析发现,高速列车的运行环境比较复杂,利用SVM进行分类时,经常出现无法分类的情况(如图3所示),因此需要利用kNN进行二次判断。
计算齿轮箱总成影响系统安全性的3个等级样本中心以及待测样本x(0.02746,0.01443,200.75)到3个安全等级的距离然后分步计算3个安全等级下的:i=1,2,3
最后计算三个安全等级的分类判别函数gi(x)=si(x)×μi(x),得出测试样本(如图4所示)x(0.02746,0.01443,200.75)的最终分类结果为即安全等级。经过大量实验,得到部件齿轮箱总成利用kNN-SVM分类的准确率为96.6667%。针对高速列车转向架系统中的每一个部件,分别建立训练集,通过实验对比发现,利用kNN-SVM分类方法显著提高了系统安全评估的准确率,如表2所示。
表2两种方法比较

Claims (2)

1.一种基于复杂网络的高速列车系统安全评估方法,其特征在于,包括下述步骤:
步骤一,根据高速列车物理结构关系,构建高速列车网络模型G(V,E),
1.1.将高速列车系统中的部件抽象为节点,即V={v1,v2,…,vn},其中V为节点集合,vi为高速列车系统中的节点,n为高速列车系统中节点的个数;
1.2.部件与部件之间存在的物理连接关系抽象为连接边,即E={e12,e13,…,eij},i,j≤n;其中E为连接边的集合,eij为节点i和节点j之间的连接边;
1.3.基于高速列车网络模型,计算节点的功能属性度值节点i的功能属性度为
<mrow> <msub> <mover> <mi>d</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <mo>*</mo> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中λi为节点i的失效率,ki为复杂网络理论中节点i的度,即与该节点相连的边数;
步骤二,通过对高速列车运营故障数据分析,结合高速列车系统的物理结构,提取部件的功能属性度值失效率λi、平均无故障时间MTBF作为训练样本集,对训练样本集进行归一化处理:
2.1.失效率λi的计算公式为
2.2.平均无故障时间MTBF由故障数据中记录的故障时间得出,即
2.3.利用支持向量机SVM对样本进行训练;
步骤三,利用kNN-SVM对样本进行安全等级划分;
3.1.对k个安全等级的训练样本进行两两分区,针对个SVM分类器,分别建立最优分类面,其表达式如下:
<mrow> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>a</mi> <mi>t</mi> </msub> <msub> <mi>y</mi> <mi>t</mi> </msub> <mi>K</mi> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mi>x</mi> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
其中,l为第i个安全等级和第j个安全等级的样本数,K(xij,x)为核函数,x为支持向量,at为SVM的权值系数,bij为偏移系数;yt为高速列车安全等级;
3.2.对于待测部件,分别组合上述两类分类器,并使用投票法,对部件所属的安全等级进行计票;得票最多的类,则为该部件所属安全等级;
3.3.由于高速列车系统运行环境复杂,因此,利用SVM分类时容易出现无法分类的情况,因此定义基于加权kNN的判别函数,对部件重新进行安全等级划分,具体步骤如下:
训练集{xi,yi},…,{xn,yn}中,共有l个安全等级即ca1,ca2,…,cal,第i个安全等级的样本中心为其中ni为第i个安全等级的样本数,则部件xj到第i个安全等级样本中心的欧式距离为
<mrow> <mi>d</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>o</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>3</mn> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>j</mi> <mi>m</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
式中:xjm为测试样本中第j个样本点的第m个特征属性;cim为第i类样本中心中第m个特征属性;
定义距离判别函数
<mrow> <msub> <mi>s</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>c</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>d</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>c</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>c</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
定义基于加权kNN的不同类别的样本紧密度为
<mrow> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> <mi>d</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mi>d</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中:m为k个近邻的个数;ui(x)为测试样本属于第i个训练数据的紧密度隶属度;ui(x(j))为第j个近邻属于第i个安全等级的隶属度,即
则样本点的分类判别函数为
di(x)=si(x)×μi(x) (6)
计算样本属于各个安全等级的紧密度di(x),di(x)值最高的类别为样本点预测结果。
2.根据权利要求1所述一种基于复杂网络的高速列车系统安全评估方法,其特征在于,依据动车组一二级检修章程与故障数据记录,所述高速列车安全性划分为如下表1所示等级;即y=1对应的安全等级1为安全,包含列车的运行状态为无影响、继续运行;y=5对应的安全等级2是较安全,包含列车的运行状态为临修、碎修,晚点;y=10对应的安全等级3是不安全,包含列车的运行状态为停运、未出库;
表1 列车的运行安全等级
CN201410768888.3A 2014-12-12 2014-12-12 一种基于复杂网络的高速列车系统安全评估方法 Active CN104392071B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410768888.3A CN104392071B (zh) 2014-12-12 2014-12-12 一种基于复杂网络的高速列车系统安全评估方法
PCT/CN2015/095721 WO2016091084A1 (zh) 2014-12-12 2015-11-27 一种基于复杂网络的高速列车系统安全评估方法
US15/123,684 US9630637B2 (en) 2014-12-12 2015-11-27 Complex network-based high speed train system safety evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410768888.3A CN104392071B (zh) 2014-12-12 2014-12-12 一种基于复杂网络的高速列车系统安全评估方法

Publications (2)

Publication Number Publication Date
CN104392071A CN104392071A (zh) 2015-03-04
CN104392071B true CN104392071B (zh) 2017-09-29

Family

ID=52609974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410768888.3A Active CN104392071B (zh) 2014-12-12 2014-12-12 一种基于复杂网络的高速列车系统安全评估方法

Country Status (3)

Country Link
US (1) US9630637B2 (zh)
CN (1) CN104392071B (zh)
WO (1) WO2016091084A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392071B (zh) 2014-12-12 2017-09-29 北京交通大学 一种基于复杂网络的高速列车系统安全评估方法
US9824243B2 (en) * 2015-09-11 2017-11-21 Nxp Usa, Inc. Model-based runtime detection of insecure behavior for system on chip with security requirements
CN105629928A (zh) * 2015-12-23 2016-06-01 潘小胜 一种地铁紧急处理安全装置
CN105809251B (zh) * 2016-03-01 2018-01-30 北京交通大学 一种多属性融合的动车组系统关键部件辨识方法
CN106778796B (zh) * 2016-10-20 2020-04-21 江苏大学 基于混合式协同训练的人体动作识别方法及系统
CN107862763B (zh) * 2017-11-06 2020-12-29 中国人民解放军国防科技大学 列车安全预警评估模型训练方法、模块及监测评估系统
CN107733089A (zh) * 2017-11-10 2018-02-23 国网福建省电力有限公司 一种基于svm的变电站刀闸二次回路故障预测方法
CN109918687B (zh) * 2017-12-08 2021-01-15 通号城市轨道交通技术有限公司 一种基于机器学习的列车动力学仿真方法及仿真平台
CN108196525B (zh) * 2017-12-27 2019-11-12 卡斯柯信号有限公司 高速列车运行控制系统的运行安全风险动态分析方法
CN108583629A (zh) * 2018-05-04 2018-09-28 兰州容大信息科技有限公司 一种铁路车务故障处理方法
CN108995675B (zh) * 2018-06-28 2020-07-24 上海工程技术大学 一种轨道交通运营风险智能识别预警系统及方法
CN109033582A (zh) * 2018-07-12 2018-12-18 西安英特迈思信息科技有限公司 一种高速列车多参数智能阈值准则
CN110059126B (zh) * 2019-04-25 2023-04-07 湖南中车时代通信信号有限公司 基于lkj异常值数据的复杂关联网络分析方法及系统
CN110309550B (zh) * 2019-06-10 2021-06-22 北京交通大学 一种基于势能场与网络效率的高速列车系统可靠性分析方法
CN111061246B (zh) * 2019-12-06 2021-01-22 北京航空航天大学 一种机械产品装配过程故障模式、影响及危害性分析方法
CN111539374B (zh) * 2020-05-07 2022-05-20 上海工程技术大学 基于多维数据空间的轨道列车轴承故障诊断方法
CN113139335B (zh) * 2021-04-09 2023-05-09 郑州宥新算法智能科技有限公司 一种基于bp神经网络的轨道电路故障智能诊断方法
CN118313286A (zh) * 2024-06-11 2024-07-09 中国空气动力研究与发展中心计算空气动力研究所 一种悬挂物分离过程安全性评估方法、装置及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853441A (zh) * 2010-05-11 2010-10-06 北京交通大学 基于复杂网络提高铁路旅客运送效率的方法及系统
CN101866544A (zh) * 2010-05-11 2010-10-20 北京交通大学 基于复杂网络分析灾害天气对列车开行影响的方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848241A1 (en) * 1996-12-12 1998-06-17 European Community Impact test apparatus
US20050100992A1 (en) * 2002-04-17 2005-05-12 Noble William S. Computational method for detecting remote sequence homology
GB0713096D0 (en) * 2007-02-02 2007-08-15 Duong Henri Detectable anti-collision automatic braking device for vehicle
CN102521432B (zh) * 2011-11-18 2014-04-09 北京交通大学 轨道不平顺状态的安全性评判方法
US9283945B1 (en) * 2013-03-14 2016-03-15 Wabtec Holding Corp. Braking systems and methods of determining a safety factor for a braking model for a train
CN103955556B (zh) 2014-03-27 2017-07-28 北京交通大学 高速铁路列车运行控制车载系统故障逻辑建模方法
JP6420972B2 (ja) * 2014-06-13 2018-11-07 公益財団法人鉄道総合技術研究所 列車制御システム設計用シミュレータ
CN104392071B (zh) * 2014-12-12 2017-09-29 北京交通大学 一种基于复杂网络的高速列车系统安全评估方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853441A (zh) * 2010-05-11 2010-10-06 北京交通大学 基于复杂网络提高铁路旅客运送效率的方法及系统
CN101866544A (zh) * 2010-05-11 2010-10-20 北京交通大学 基于复杂网络分析灾害天气对列车开行影响的方法及系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Lijie Li等."Reliability Model Construction for Complex System Based on Common Cause Failure Network".《Advances in Multimedia》.2014,第2014卷第1-7页. *
Yuan Zhang等."Roller bearing safety region estimation and state identification based on LMD-PCA-LSSVM".《Measurement》.2013,第46卷(第3期),第1315-1324页. *
何永明."基于KNN-SVM的网络安全态势评估模型".《计算机工程与应用》.2013,第49卷(第9期),第81-84页. *
王艳辉等."高速列车群运营安全保障仿真模拟实验平台设计".《中国铁道科学》.2011,第32卷(第6期),第134-140页. *
肖雪梅等."基于复杂网络和熵的城轨路网运营安全评价模型".《中国安全科学学报》.2011,第21卷(第11期), *

Also Published As

Publication number Publication date
US20170015339A1 (en) 2017-01-19
US9630637B2 (en) 2017-04-25
CN104392071A (zh) 2015-03-04
WO2016091084A1 (zh) 2016-06-16

Similar Documents

Publication Publication Date Title
CN104392071B (zh) 一种基于复杂网络的高速列车系统安全评估方法
Huang et al. Railway dangerous goods transportation system risk identification: Comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM
CN102496069B (zh) 基于模糊层次分析法的电缆多状态安全运行评估方法
CN103077347B (zh) 一种基于改进核心向量机数据融合的复合式入侵检测方法
CN104155574A (zh) 基于自适应神经模糊推理系统的配电网故障分类方法
CN105117602B (zh) 一种计量装置运行状态预警方法
CN103632168B (zh) 一种机器学习中的分类器集成方法
Wahono et al. Metaheuristic optimization based feature selection for software defect prediction.
CN103632203A (zh) 一种基于综合评价的配电网供电区域划分方法
CN104688252B (zh) 采用方向盘转角信息的驾驶人疲劳状态检测方法
CN109947898B (zh) 基于智能化的装备故障测试方法
CN103927448B (zh) 轨道交通车辆部件故障模式危害度的确定方法
CN111680875B (zh) 基于概率基线模型的无人机状态风险模糊综合评价方法
CN102663264A (zh) 桥梁结构健康监测静态参数的半监督协同评估方法
CN107239908A (zh) 一种信息系统的体系成熟度评价方法
CN106295332A (zh) 基于区间数和理想解的信息安全风险评估方法
CN104123678A (zh) 一种基于状态等级评估模型的电力继电保护状态检修方法
CN104298881A (zh) 一种基于贝叶斯网络模型的公交环境动态变化预报方法
CN105138953A (zh) 一种基于连续的多实例学习的视频中动作识别的方法
CN106482967A (zh) 一种代价敏感支持向量机机车车轮检测系统及方法
CN110991472B (zh) 一种高速列车牵引系统微小故障诊断方法
Swindiarto et al. Integration of fuzzy C-means clustering and TOPSIS (FCM-TOPSIS) with silhouette analysis for multi criteria parameter data
CN107239857A (zh) 基于ls_svm和pca的架空输电线路风险评估方法
CN104986347A (zh) 一种民机航线飞行员操作差错的实时检测方法
CN103324939A (zh) 基于最小二乘支持向量机技术的偏向性分类及参数寻优方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant