CN103077347B - 一种基于改进核心向量机数据融合的复合式入侵检测方法 - Google Patents
一种基于改进核心向量机数据融合的复合式入侵检测方法 Download PDFInfo
- Publication number
- CN103077347B CN103077347B CN201210564255.1A CN201210564255A CN103077347B CN 103077347 B CN103077347 B CN 103077347B CN 201210564255 A CN201210564255 A CN 201210564255A CN 103077347 B CN103077347 B CN 103077347B
- Authority
- CN
- China
- Prior art keywords
- elementary
- detection model
- intrusion detection
- misused
- vector machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Computer And Data Communications (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210564255.1A CN103077347B (zh) | 2012-12-21 | 2012-12-21 | 一种基于改进核心向量机数据融合的复合式入侵检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210564255.1A CN103077347B (zh) | 2012-12-21 | 2012-12-21 | 一种基于改进核心向量机数据融合的复合式入侵检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103077347A CN103077347A (zh) | 2013-05-01 |
CN103077347B true CN103077347B (zh) | 2015-11-04 |
Family
ID=48153874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210564255.1A Active CN103077347B (zh) | 2012-12-21 | 2012-12-21 | 一种基于改进核心向量机数据融合的复合式入侵检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103077347B (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105450619A (zh) * | 2014-09-28 | 2016-03-30 | 腾讯科技(深圳)有限公司 | 恶意攻击的防护方法、装置和系统 |
CN105894087A (zh) * | 2015-01-26 | 2016-08-24 | 华为技术有限公司 | 用于神经网络中训练参数集的系统和方法 |
CN105959250A (zh) * | 2015-10-22 | 2016-09-21 | 杭州迪普科技有限公司 | 网络攻击黑名单管理方法及装置 |
CN105681339B (zh) * | 2016-03-07 | 2018-11-06 | 重庆邮电大学 | 一种融合粗糙集与ds证据理论的增量式入侵检测方法 |
CN106127242A (zh) * | 2016-06-21 | 2016-11-16 | 河海大学 | 基于集成学习的年极端降水预测系统及其预测方法 |
CN106647355B (zh) * | 2016-11-09 | 2023-11-07 | 中国民用航空飞行学院 | 一种飞行情景环境评价的数据处理方法和系统 |
CN107391353B (zh) * | 2017-07-07 | 2020-07-28 | 西安电子科技大学 | 基于日志的复杂软件系统异常行为检测方法 |
CN109495424B (zh) * | 2017-09-11 | 2021-12-31 | 东软集团股份有限公司 | 一种检测入侵流量的方法和装置 |
CN107465691A (zh) * | 2017-09-14 | 2017-12-12 | 西安电子科技大学 | 基于路由器日志分析的网络攻击检测系统及检测方法 |
CN108154029A (zh) * | 2017-10-25 | 2018-06-12 | 上海观安信息技术股份有限公司 | 入侵检测方法、电子设备和计算机存储介质 |
CN108494807A (zh) * | 2018-05-29 | 2018-09-04 | 广西电网有限责任公司 | 基于云计算的下一代关键信息基础设施网络入侵检测系统 |
CN109218077A (zh) * | 2018-08-14 | 2019-01-15 | 阿里巴巴集团控股有限公司 | 目标设备的预测方法、装置、电子设备及存储介质 |
CN109150873A (zh) * | 2018-08-16 | 2019-01-04 | 武汉虹旭信息技术有限责任公司 | 基于pso_svm优化算法的恶意域名检测系统及方法 |
CN109325691B (zh) * | 2018-09-27 | 2020-10-16 | 上海观安信息技术股份有限公司 | 异常行为分析方法、电子设备及计算机程序产品 |
CN109842612B (zh) * | 2018-12-18 | 2021-09-03 | 中国科学院计算机网络信息中心 | 基于图库模型的日志安全分析方法、装置及存储介质 |
CN109743339B (zh) * | 2019-03-22 | 2020-06-02 | 中国南方电网有限责任公司 | 电力厂站的网络安全监测方法和装置、计算机设备 |
CN110378430B (zh) * | 2019-07-23 | 2023-07-25 | 广东工业大学 | 一种基于多模型融合的网络入侵检测的方法及系统 |
CN111931180B (zh) * | 2020-09-22 | 2021-02-09 | 浙江博诚信息技术有限公司 | 一种基于大数据平台的网络安全实施系统 |
CN112633180B (zh) * | 2020-12-25 | 2022-05-24 | 浙江大学 | 一种基于对偶记忆模块的视频异常检测方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263790A (zh) * | 2011-07-18 | 2011-11-30 | 华北电力大学 | 一种基于集成学习的入侵检测方法 |
CN102291392A (zh) * | 2011-07-22 | 2011-12-21 | 中国电力科学研究院 | 一种基于Bagging算法的复合式入侵检测方法 |
CN102426599A (zh) * | 2011-11-09 | 2012-04-25 | 中国人民解放军信息工程大学 | 基于d-s证据理论的敏感信息检测方法 |
-
2012
- 2012-12-21 CN CN201210564255.1A patent/CN103077347B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263790A (zh) * | 2011-07-18 | 2011-11-30 | 华北电力大学 | 一种基于集成学习的入侵检测方法 |
CN102291392A (zh) * | 2011-07-22 | 2011-12-21 | 中国电力科学研究院 | 一种基于Bagging算法的复合式入侵检测方法 |
CN102426599A (zh) * | 2011-11-09 | 2012-04-25 | 中国人民解放军信息工程大学 | 基于d-s证据理论的敏感信息检测方法 |
Non-Patent Citations (3)
Title |
---|
基于D-S证据理论的主机违规行为检查方法;王斌 等;《计算机应用与软件》;20120228;第29卷(第2期);第90-93页 * |
基于D-S证据理论的入侵检测模型;龚琼瑶 等;《计算机工程与应用》;20080930(第18期);正文第113-123页 * |
基于误用检测与异常行为检测的整合模型;谢红 等;《重庆邮电大学学报》;20120228;第24卷(第1期);第73-77页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103077347A (zh) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103077347B (zh) | 一种基于改进核心向量机数据融合的复合式入侵检测方法 | |
CN102291392B (zh) | 一种基于Bagging算法的复合式入侵检测方法 | |
CN108520272B (zh) | 一种改进苍狼算法的半监督入侵检测方法 | |
Wagh et al. | Survey on intrusion detection system using machine learning techniques | |
CN103996287B (zh) | 一种基于决策树模型的车辆强制换道决策方法 | |
CN104392071B (zh) | 一种基于复杂网络的高速列车系统安全评估方法 | |
Yao et al. | A support vector machine with the tabu search algorithm for freeway incident detection | |
CN111598179B (zh) | 电力监控系统用户异常行为分析方法、存储介质和设备 | |
CN104935600A (zh) | 一种基于深度学习的移动自组织网络入侵检测方法与设备 | |
CN104484602A (zh) | 一种入侵检测方法、装置 | |
CN115514627B (zh) | 一种故障根因定位方法、装置、电子设备及可读存储介质 | |
Gesi et al. | An empirical examination of the impact of bias on just-in-time defect prediction | |
Shao et al. | Railway accidents analysis based on the improved algorithm of the maximal information coefficient | |
Zou et al. | The method of dynamic identification of the maximum speed limit of expressway based on electronic toll collection data | |
Lin | Integrated artificial intelligence-based resizing strategy and multiple criteria decision making technique to form a management decision in an imbalanced environment | |
Carmichael et al. | Unfooling perturbation-based post hoc explainers | |
CN115310589A (zh) | 一种基于深度图自监督学习的群体识别方法及系统 | |
Wang et al. | Changing lane probability estimating model based on neural network | |
He et al. | Improved waveform‐feature‐based vehicle classification using a single‐point magnetic sensor | |
Thanh et al. | An approach to reduce data dimension in building effective network intrusion detection systems | |
Zhu et al. | Real-time fault diagnosis for EVs with multilabel feature selection and sliding window control | |
Xu et al. | Exploring Global and Local Information for Anomaly Detection with Normal Samples | |
Murugesan et al. | Mitigating Missing Rate and Early Cyberattack Discrimination Using Optimal Statistical Approach with Machine Learning Techniques in a Smart Grid | |
Intriago et al. | Real-time power system event detection: A novel instance selection approach | |
Mohammadi et al. | Deep Learning-Based Cyber-Attack Detection Model for Smart Grids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160504 Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Patentee after: China Electric Power Research Institute Patentee after: State Grid Smart Grid Institute Patentee after: State Grid Corporation of China Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Patentee before: China Electric Power Research Institute Patentee before: State Grid Corporation of China |
|
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Patentee after: China Electric Power Research Institute Patentee after: GLOBAL ENERGY INTERCONNECTION RESEARCH INSTITUTE Patentee after: State Grid Corporation of China Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Patentee before: China Electric Power Research Institute Patentee before: State Grid Smart Grid Institute Patentee before: State Grid Corporation of China |