CN104390886A - 一种利用磁共振成像技术快速测量气-液扩散系数的方法 - Google Patents

一种利用磁共振成像技术快速测量气-液扩散系数的方法 Download PDF

Info

Publication number
CN104390886A
CN104390886A CN201410668710.1A CN201410668710A CN104390886A CN 104390886 A CN104390886 A CN 104390886A CN 201410668710 A CN201410668710 A CN 201410668710A CN 104390886 A CN104390886 A CN 104390886A
Authority
CN
China
Prior art keywords
moment
diffusion
concentration
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410668710.1A
Other languages
English (en)
Other versions
CN104390886B (zh
Inventor
赵越超
宋永臣
陈俊霖
郝敏
杨明军
蒋兰兰
刘瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201410668710.1A priority Critical patent/CN104390886B/zh
Publication of CN104390886A publication Critical patent/CN104390886A/zh
Application granted granted Critical
Publication of CN104390886B publication Critical patent/CN104390886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种利用磁共振成像技术快速测量气-液扩散系数的方法,属于油藏物理模拟检测领域。这种利用磁共振成像技术快速测量气-液扩散系数的方法,首先利用成像技术获得成像区域内沿扩散方向每一个位置的液相浓度分布,然后获得基准时刻和计算时刻间每一个位置的浓度差,最后利用公式非线性拟合获得气-液扩散系数。该方法可以较准确的确定气-液的扩散系数值,并且利用前后时刻浓度做差消除了实验中界面浓度变化带来的影响,适用性更广,且计算的时间是气相扩散至液相底部的时间,相比较大部分实验要求最后达到平衡浓度的时间,大大减少。

Description

一种利用磁共振成像技术快速测量气-液扩散系数的方法
技术领域
本发明涉及一种利用磁共振成像技术快速测量气-液扩散系数的方法,属于油藏物理模拟检测领域。
背景技术
气体的扩散性是采油工程中一个重要的研究课题。要了解两种不同相态,特别是气液相态之间的传输特性,就必须要研究扩散特性,进而分析由于浓度梯度导致的传输和溶解速率。由于不同气液系统的扩散特性不同,因此,有必要确定扩散系数的值,来对传质过程和注气提高石油采收率项目进行设计。特别在CO2-EOR项目中,扩散系数对于工程设计、风险评估、经济评价等方面都是必要的数据。
扩散系数的测量方法大体分为两种:间接法和直接法。间接法需要测量与扩散过程相关的一些参数的变化,比如溶液体积的变化、气液界面的运移速率和扩散系统的压力变化等。但是这些间接方法需要准确建立测量参数与扩散相浓度的关系,并且需要对被测量参数进行精确的测量,有较大的局限性。直接法需要测量的是扩散相的浓度分布,但是一般都要花费较长的时间,达到平衡浓度时才能计算出扩散系数。
发明内容
为了克服上述现有技术所存在的问题,本发明提供了一种利用磁共振成像技术快速测量气-液扩散系数的方法。该方法利用磁共振成像(MRI)技术对气体在液相的扩散过程进行准确的把握,由于气体在液相中的扩散导致液相浓度发生变化,在气体扩散至液相底部之前的时间段内,通过成像技术对液相的浓度分布数据进行分析,可以快速确定气-液扩散过程中的扩散系数。
本发明的技术方案是一种利用磁共振成像技术快速测量气-液扩散系数的方法,其特征在于以下步骤:
(1)获得成像区域内沿扩散方向每一个位置的液相浓度分布
扩散过程中的某一个时刻的二维投影图像信号强度与气相未注入初始时刻的投影图像信号强度的比值,为液相的浓度分布,沿垂直于扩散方向将每一个位置的浓度值加和后取平均值,获得成像区域内沿扩散方向每一个位置的液相浓度分布;
(2)获得基准时刻和计算时刻间每一个位置的浓度差
通过对不同时刻的液相浓度分布进行比较,确定气体扩散到底部的时刻;将该时刻之前的时间平均分成m份作为计算时刻,记为
选取扩散刚开始阶段的某一时刻为基准时刻,记为t1,该基准时刻每一个位置的液相浓度Cy(t1)减去计算时刻每一个位置的液相浓度获得基准时刻和计算时刻间每一个位置的浓度差;
(3)获得气-液扩散系数
按公式(1)非线性拟合浓度差数据位置数据y和时间数据t1,得到每个计算时刻的扩散系数值D:
C y ( t 1 ) - C y ( t 2 k ) = K · ( erfc ( y 2 D · t 2 k ) - erfc ( y 2 D · t 1 ) ) - - - ( 1 )
其中K为一个常数,erfc为误差函数;
将m个不同计算时刻的扩散系数值求平均值,获得气-液扩散系数。
本发明的有益效果是:这种利用磁共振成像技术快速测量气-液扩散系数的方法,首先利用成像技术获得成像区域内沿扩散方向每一个位置的液相浓度分布,然后获得基准时刻和计算时刻间每一个位置的浓度差,最后利用公式非线性拟合获得气-液扩散系数。该方法可以较准确的确定气-液的扩散系数值,并且利用前后时刻浓度做差消除了实验中界面浓度变化带来的影响,适用性更广,且计算的时间是气相扩散至液相底部的时间,相比较大部分实验要求最后达到平衡浓度的时间,大大减少。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1(a)是气相在液相中扩散过程示意图。
图1(b)是CO2气体在油相中扩散过程示意图。
图2(a)是计算时刻分成4份应用公式非线性拟合48分钟原始数据曲线图。
图2(b)是计算时刻分成4份应用公式非线性拟合96分钟原始数据曲线图。
图2(c)是计算时刻分成4份应用公式非线性拟合144分钟原始数据曲线图。
图2(d)是计算时刻分成4份应用公式非线性拟合192分钟原始数据曲线图。
图3(a)是计算时刻分成6份应用公式非线性拟合32分钟原始数据曲线图。
图3(b)是计算时刻分成6份应用公式非线性拟合64分钟原始数据曲线图。
图3(c)是计算时刻分成6份应用公式非线性拟合96分钟原始数据曲线图。
图3(d)是计算时刻分成6份应用公式非线性拟合128分钟原始数据曲线图。
图3(e)是计算时刻分成6份应用公式非线性拟合160分钟原始数据曲线图。
图3(f)是计算时刻分成6份应用公式非线性拟合192分钟原始数据曲线图。
具体实施方式
下面结合实例介绍该方法建立的具体实施方式:
(1)获得成像区域内沿扩散方向每一个位置的液相浓度分布
以CO2气体在油相中扩散为例,首先获得CO2未注入时的一幅二维图像I0,然后在扩散过程中获得另一幅二维图像Ii,则任意一个小体元的油相浓度为;
C i ( x , y ) = I i ( x , y ) I 0 ( x , y ) - - - ( 2 )
式中Ci(x,y)为二维图像中任一体元的油相浓度,Ii(x,y)为扩散过程中任一体元的信号强度大小,I0(x,y)为CO2未注入时任一体元的信号强度大小。
扩散方向(如图1(b)扩散过程示意图中的y方向)每一个位置的油相浓度分布为:
C i ( y ) = Σ x = 0 n C i ( x , y ) n - - - ( 3 )
式中Ci(y)为扩散方向每一个位置的浓度,n为垂直于扩散方向(如图1(b)扩散过程示意图中中的x方向)的位置个数。
(2)获得基准时刻和计算时刻间每一个片层的浓度差
比较不同时刻的液相浓度分布,若某一时刻处于最底部位置的油相浓度发生了变化,则该时刻即为气相扩散到底部的时刻。在该实例中为192分钟。将该时刻之前的时间根据具体情况平均4份,作为计算时刻,记为
选取扩散刚开始阶段5分钟为基准时刻,记为t1。该基准时刻每一个位置的液相浓度Cy(t1)减去计算时刻每一个位置的液相浓度获得基准时刻和计算时刻间每一个位置的浓度差
(3)获得气-液扩散系数
用matlab软件按公式(1)非线性拟合浓度差数据位置数据y和时间数据t1,得到每个计算时刻的扩散系数值D:
C y ( t 1 ) - C y ( t 2 k ) = K · ( erfc ( y 2 D · t 2 k ) - erfc ( y 2 D · t 1 ) ) - - - ( 1 )
其中K为一个常数,erfc为误差函数。
图2为应用公式非线性拟合原始数据曲线图,计算得到对应四个不同计算时刻48分钟(图2(a))、96分钟(图2(b))、144分钟(图2(c))、192分钟(图2(d))的扩散系数值。
图3为应用公式非线性拟合原始数据曲线图,计算得到对应六个不同计算时刻32分钟(图3(a))、64分钟(图3(b))、96分钟(图3(c))、128分钟(图3(d))、160分钟(图3(e))、192分钟(图3(f))的扩散系数值。
将上述四(六)个计算时刻的扩散系数值求平均值,获得CO2-油相扩散系数。

Claims (1)

1.一种利用磁共振成像技术快速测量气-液扩散系数的方法,其特征在于以下步骤:
(1)获得成像区域内沿扩散方向每一个位置的液相浓度分布
扩散过程中的某一个时刻的二维投影图像信号强度与气相未注入初始时刻的投影图像信号强度的比值,为液相的浓度分布,沿垂直于扩散方向将每一个位置的浓度值加和后取平均值,获得成像区域内沿扩散方向每一个位置的液相浓度分布;
(2)获得基准时刻和计算时刻间每一个位置的浓度差
通过对不同时刻的液相浓度分布进行比较,确定气体扩散到底部的时刻;将该时刻之前的时间平均分成m份作为计算时刻,记为
选取扩散刚开始阶段的某一时刻为基准时刻,记为t1,该基准时刻每一个位置的液相浓度Cy(t1)减去计算时刻每一个位置的液相浓度获得基准时刻和计算时刻间每一个位置的浓度差;
(3)获得气-液扩散系数
按公式(1)非线性拟合浓度差数据位置数据y和时间数据t1,得到每个计算时刻的扩散系数值D:
C y ( t 1 ) - C y ( t 2 k ) = K · ( erfc ( y 2 D · t 2 k ) - erfc ( y 2 D · t 1 ) ) - - - ( 1 )
其中K为一个常数,erfc为误差函数;
将m个不同计算时刻的扩散系数值求平均值,获得气-液扩散系数。
CN201410668710.1A 2014-11-20 2014-11-20 一种利用磁共振成像技术快速测量气-液扩散系数的方法 Active CN104390886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410668710.1A CN104390886B (zh) 2014-11-20 2014-11-20 一种利用磁共振成像技术快速测量气-液扩散系数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410668710.1A CN104390886B (zh) 2014-11-20 2014-11-20 一种利用磁共振成像技术快速测量气-液扩散系数的方法

Publications (2)

Publication Number Publication Date
CN104390886A true CN104390886A (zh) 2015-03-04
CN104390886B CN104390886B (zh) 2017-01-04

Family

ID=52608816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410668710.1A Active CN104390886B (zh) 2014-11-20 2014-11-20 一种利用磁共振成像技术快速测量气-液扩散系数的方法

Country Status (1)

Country Link
CN (1) CN104390886B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703029A (zh) * 2017-11-07 2018-02-16 大连理工大学 一种结合ct与pvt计算co2盐水扩散系数的方法
CN112800698A (zh) * 2021-02-17 2021-05-14 大连理工大学 一种水合物膜随流体物性脱落的海底输气管道的流动安全预警方法
CN113984587A (zh) * 2021-10-29 2022-01-28 大连理工大学 一种原位测量多孔介质内co2-水扩散系数的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236994A1 (de) * 1992-10-28 1994-05-19 Ifz Forschungs Und Entwicklung Verfahren und Vorrichtung zur Messung molekularer Gasdiffusionskoeffizienten in Flüssigkeiten
US20040093934A1 (en) * 2002-11-19 2004-05-20 Myung-Suk Chun Device and method for measuring a diffusion coefficient of nano-particle fluid through hollow-fiber micropores
CN102735592A (zh) * 2012-06-29 2012-10-17 中国石油大学(华东) 一种测量二氧化碳在岩石中扩散系数的装置
CN102879306A (zh) * 2012-10-10 2013-01-16 大连理工大学 一种利用磁共振成像技术检测气液扩散过程的装置及其方法
CN103080764A (zh) * 2010-08-30 2013-05-01 皇家飞利浦电子股份有限公司 利用横向弛豫时间测量数据和质子共振频率偏移数据的储水组织和脂肪组织的mri热成像
CN203732401U (zh) * 2014-02-20 2014-07-23 中国矿业大学连云港徐圩新区高新技术研究院 一种测定松散煤体内氧气扩散系数的实验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236994A1 (de) * 1992-10-28 1994-05-19 Ifz Forschungs Und Entwicklung Verfahren und Vorrichtung zur Messung molekularer Gasdiffusionskoeffizienten in Flüssigkeiten
US20040093934A1 (en) * 2002-11-19 2004-05-20 Myung-Suk Chun Device and method for measuring a diffusion coefficient of nano-particle fluid through hollow-fiber micropores
CN103080764A (zh) * 2010-08-30 2013-05-01 皇家飞利浦电子股份有限公司 利用横向弛豫时间测量数据和质子共振频率偏移数据的储水组织和脂肪组织的mri热成像
CN102735592A (zh) * 2012-06-29 2012-10-17 中国石油大学(华东) 一种测量二氧化碳在岩石中扩散系数的装置
CN102879306A (zh) * 2012-10-10 2013-01-16 大连理工大学 一种利用磁共振成像技术检测气液扩散过程的装置及其方法
CN203732401U (zh) * 2014-02-20 2014-07-23 中国矿业大学连云港徐圩新区高新技术研究院 一种测定松散煤体内氧气扩散系数的实验装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BO SU ET AL: ""A Study‘about Diffusion Coefficient of Carbon Dioxide in Heavy Oil"", 《RESOURCES AND SUSTAINABLE DEVELOPMENT III》 *
刘爱贤等: ""二氧化碳在水中扩散系数的实验测定和计算"", 《石油化工高等学校学报》 *
王少朋等: ""二氧化碳在油藏流体中的扩散系数研究进展"", 《油田化学》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703029A (zh) * 2017-11-07 2018-02-16 大连理工大学 一种结合ct与pvt计算co2盐水扩散系数的方法
CN107703029B (zh) * 2017-11-07 2019-05-10 大连理工大学 一种结合ct与pvt计算co2盐水扩散系数的方法
CN112800698A (zh) * 2021-02-17 2021-05-14 大连理工大学 一种水合物膜随流体物性脱落的海底输气管道的流动安全预警方法
CN113984587A (zh) * 2021-10-29 2022-01-28 大连理工大学 一种原位测量多孔介质内co2-水扩散系数的方法

Also Published As

Publication number Publication date
CN104390886B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
EP3593159B1 (en) Absolute porosity and pore size determination of pore types in media with varying pore sizes using nmr
Elenius et al. On the time scales of nonlinear instability in miscible displacement porous media flow
Sun et al. Linking continuum-scale state of wetting to pore-scale contact angles in porous media
Connolly et al. Capillary trapping quantification in sandstones using NMR relaxometry
CN103674811B (zh) 一种核磁共振孔隙度测量的校正方法、装置及系统
EP3642596A1 (en) Method for correcting low permeability laboratory measurements for leaks
Lai et al. Effect of medium permeability anisotropy on the morphological evolution of two non-uniformities in a geochemical dissolution system
CN103513285A (zh) 一种确定横向表面弛豫速率的方法及装置
WO2014126883A3 (en) Estimating molecular size distributions in formation fluid samples using a downhole nmr fluid analyzer
Jamin et al. Contribution of the finite volume point dilution method for measurement of groundwater fluxes in a fractured aquifer
CN104390886A (zh) 一种利用磁共振成像技术快速测量气-液扩散系数的方法
Liang et al. Investigation of oil saturation development behind spontaneous imbibition front using nuclear magnetic resonance T2
US10534055B2 (en) NMR method for determining non-oil volume of a rock sample
CN103900755A (zh) 一种应用ct测量油气最小混相压力的装置与方法
CN103018134A (zh) 一种利用磁共振成像技术测定油气最小混相压力的装置与方法
Konz et al. Variable-density flow in heterogeneous porous media—Laboratory experiments and numerical simulations
US20140203807A1 (en) Methods for performing nmr measurements on porous media
CN112903555B (zh) 考虑孔隙各向异性的多孔介质渗透率计算方法及装置
Garcia et al. Integrated workflow to estimate permeability through quantification of rock fabric using joint interpretation of nuclear magnetic resonance and electric measurements
EP2836816B1 (en) Method for dispersion and adsorption coefficient estimation using an analysis of pressure transition during a viscosity-switch
CN106226217B (zh) 一种确定地下裂缝张开度的方法、装置及其应用
CN103334740A (zh) 考虑启动压力梯度的确定泄油前缘的方法
CN111241652A (zh) 一种确定地层原油粘度的方法及装置
Sedaghat et al. Tensor analysis of the relative permeability in naturally fractured reservoirs
Mori et al. Laboratory study of geological carbon sequestration using surrogate fluids: Dielectric measurement and scaling of capillary pressure–saturation relationships

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant