CN104382604A - 无创脑部血氧参数测量方法 - Google Patents

无创脑部血氧参数测量方法 Download PDF

Info

Publication number
CN104382604A
CN104382604A CN201410720201.9A CN201410720201A CN104382604A CN 104382604 A CN104382604 A CN 104382604A CN 201410720201 A CN201410720201 A CN 201410720201A CN 104382604 A CN104382604 A CN 104382604A
Authority
CN
China
Prior art keywords
lambda
far
delta
formula
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410720201.9A
Other languages
English (en)
Other versions
CN104382604B (zh
Inventor
李卓东
何文劼
胡胜利
赖波
王中克
闫晓东
刘欢
郑子隆
吴西
彭毅
杨峻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHONGQING MINGXI MEDICAL DEVICES Co Ltd
Original Assignee
CHONGQING MINGXI MEDICAL DEVICES Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHONGQING MINGXI MEDICAL DEVICES Co Ltd filed Critical CHONGQING MINGXI MEDICAL DEVICES Co Ltd
Priority to CN201410720201.9A priority Critical patent/CN104382604B/zh
Publication of CN104382604A publication Critical patent/CN104382604A/zh
Application granted granted Critical
Publication of CN104382604B publication Critical patent/CN104382604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Neurology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种无创脑部血氧参数测量方法,在人体前额安放两个发光波长分别为λ1和λ2的近红外光LED发光二极管,在两个LED发光二极管的同侧设置远近不同的两个光电接收管,在控制器的驱动下,分别于t1和t2时刻同时驱动两个LED发光二极管发光,每次发光后由光电接收管获取经过人体组织吸收散射后的光强值,分别对应λ1和λ2用距离发光LED较近的光电接收管值减去较远的光电接受管值,以消除包括背景噪声、皮肤、颅骨对测量造成的影响,然后用t1时刻的差值减去t2时刻的差值,即对不同时间点得到光强度值作差就可以得到浓度变化量,本方法测量的血氧参数更稳定、准确。

Description

无创脑部血氧参数测量方法
技术领域
本发明涉及医疗检测领域,特别涉及一种无创脑部血氧参数测量方法。
背景技术
血红蛋白是组织中氧的主要载体,它由氧合血红蛋白(HbO2)和脱氧血红蛋白(Hb)组成。人体的新陈代谢过程是生物氧化过程,而新陈代谢过程中所需要的氧,是通过呼吸系统进入人体血液,与血液红细胞中的脱氧血红蛋白(Hb),结合成氧合血红蛋白(HbO2),再输送到人体各部分组织细胞中去。
目前医学上已普遍采用近红外光谱(NIRS)检测法来检测氧合血红蛋白(HbO2)和脱氧血红蛋白(Hb)的变化量。近红外光对人体组织有良好的穿透性,研究表明在一定波段下HbO2和Hb是组织中主要的吸收体。因此通过检测探头中的光源将近红外光入射到人体组织表面,再通过光电检测器检测经被检组织的漫射后的出射光,计算出射光相对于入射光的衰减,就可得到组织氧合状况的有关信息。这种检测方法是无损、实时、连续的。但是,近红外光谱检测法中,对光信号的处理直接影响血氧参数检测的稳定性。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种无创脑部血氧参数测量方法,本方法测量的血氧参数更准确。
本发明的无创脑部血氧参数测量方法,基于人体组织对近红外光的吸收特性,实现脑部组织局部血氧参数的测量,包含如下步骤:
S1)在人体前额安放两个近红外光LED发光二极管,一个发光主波长λ1为650~800nm,另一个发光主波长λ2为800~1000nm;在两个LED发光二极管的同侧设置两个光电接收管,两个光电接收管与两个LED发光二极管连线的中点水平共线,其中一个光电接收管与LED发光二极管连线中点的距离D1为15mm~30mm,另一个光电接收管与LED发光二极管连线中点的距离D2为30mm~40mm;
优选的,所述λ1为710nm,λ2为920nm;所述D1为22mm,D2为35mm。
S2)在控制器的驱动下,驱动主波长λ1的LED发光二极管发光,同时用两个光电接收管获取经过人体组织吸收散射后的光强值;
S3)在控制器的驱动下,驱动主波长λ2的LED发光二极管发光,同时用两个光电接收管获取经过人体组织吸收散射后的光强值;
S4)重复步骤S2)和步骤S3)一次,得到另外一组经过人体组织吸收散射后的光强值;
S5)经过步骤S1)~S4)后,获得用于脑部组织血氧参数计算的数据,由以上获得的参数解算血氧参数过程如下:
S5.1)列出步骤S2)、S3)和S4)中对应的吸光度等式如下:
主波长为λ1LED发光: OD λ 1 , t 1 , near = A λ 1 , t 1 , near + S λ 1 , t 1 , near OD λ 1 , t 1 , far = A λ 1 , t 1 , far + S λ 1 , t 1 , far OD λ 1 , t 2 , near = A λ 1 , t 2 , near + S λ 1 , t 2 , near OD λ 1 , t 2 , far = A λ 1 , t 2 , far + S λ 1 , t 2 , far        (式1)
主波长λ2LED发光: OD λ 2 , t 1 , near = A λ 2 , t 1 , near + S λ 2 , t 1 , near OD λ 2 , t 1 , far = A λ 2 , t 1 , far + S λ 2 , t 1 , far OD λ 2 , t 2 , near = A λ 2 , t 2 , near + S λ 2 , t 2 , near OD λ 2 , t 2 , far = A λ 2 , t 2 , far + S λ 2 , t 2 , far
ODλ表示组织对波长λ光的吸光度,其中Aλ为吸收衰减,Sλ为散射衰减;t1表示步骤S2)和S3)中两个LED第一次发光,t2表示步骤S4)中两个LED第二次发光;near表示距离发光LED较近的光电接收管,far表示距离发光LED较远的光电接收管;
光密度和吸收衰减表示为:
OD λ = - ln I o I i
Aλ=ελcdλ        (式2)
其中Io为输出光强,Ii为输入光强,ελ为消光系数,c为介质浓度,dλ为光穿过介质的路径长度,散射衰减可以认为近似相等;
S5.2)对步骤S5.1)中的(式1)进行作差变换,用距离发光LED较近的光电接收管值减去较远的光电接受管值,得到如下等式。
OD λ 1 , t 1 , near - OD λ 1 , t 1 , far = A λ 1 , t 1 , near - A λ 1 , t 1 , far OD λ 1 , t 2 , near - OD λ 1 , t 2 , far = A λ 1 , t 2 , near - A λ 1 , t 2 , far     (式3)
OD λ 2 , t 1 , near - OD λ 2 , t 1 , far = A λ 2 , t 1 , near - A λ 2 , t 1 , far OD λ 2 , t 2 , near - OD λ 2 , t 2 , far = A λ 2 , t 2 , near - A λ 2 , t 2 , far
S5.3)对步骤S5.2)中得到的两组等式(式3)作差,得到如下等式:
OD λ 1 , t 1 , near - OD λ 1 , t 1 , far - OD λ 1 , t 2 , near + OD λ 1 , t 2 , far = A λ 1 , t 1 near - A λ 1 , t 1 , far - A λ 1 , t 2 , near + A λ 1 , t 2 , far     (式4)
OD λ 2 , t 1 , near - OD λ 2 , t 1 , far - OD λ 2 , t 2 , near + OD λ 2 , t 2 , far = A λ 2 , t 1 near - A λ 2 , t 1 , far - A λ 2 , t 2 , near + A λ 2 , t 2 , far
将步骤S5.1)中对应的ODλ和Aλ(式2)带入(式4)得到如下结果:
▿ OD λ 1 = ln ( I o , t 2 , near , λ 1 I o , t 1 , near , λ 1 × I o , t 1 , far , λ 1 I o , t 2 , far , λ 1 ) = ϵ λ 1 , HbO 2 Δ c HbO 2 Δ d λ 1 + ϵ λ 1 , DHb Δ c DHb Δ d λ 1
▿ OD λ 2 = ln ( I o , t 2 , near , λ 2 I o , t 1 , near , λ 2 × I o , t 1 , far , λ 2 I o , t 2 , far , λ 2 ) = ϵ λ 2 , HbO 2 Δ c HbO 2 Δ d λ 2 + ϵ λ 2 , DHb Δ c DHb Δ d λ 2      (式5)
上式中表示针对波长为λ的氧合血红蛋白HbO2吸光系数,ελ,DHb表示波长为λ的脱氧血红蛋白(DHb)吸光系数;表示氧合血红蛋白浓度变化,ΔcDHb表示脱氧血红蛋白浓度变化;Δdλ表示光路径长度差;将式5写成矩阵相乘的形式如下:
▿ OD λ 1 ▿ OD λ 2 = M Δ c HbO 2 Δ c DHb    (式6)
其中M为系数矩阵,表示为:
M = ϵ λ 1 , HbO 2 Δ d λ 1 ϵ λ 1 , DHb Δ d λ 1 ϵ λ 2 , HbO 2 Δ d λ 2 ϵ λ 2 , DHb Δ d λ 2       (式7);
S5.4)计算系数矩阵M的逆矩阵M-1,根据(式7)可以得到氧合血红蛋白和脱氧血红蛋白的浓度变化量计算公式为:
Δ C HbO 2 Δ C DHb = M - 1 ▿ OD λ 1 ▿ OD λ 2
系数矩阵M与组织吸收和散射系数有关,同时还和光路径长度有关;当D1和D2分别是30mm和40mm,系数矩阵M的逆矩阵M-1为:
M - 1 = - 0.0986 0.1837 0.1454 - 0.0618
进一步可以得到氧合血红蛋白和脱氧血红蛋白的浓度变化量计算公式为:
Δ c HbO 2 Δ c DHb = - 0.0986 0.1837 0.1454 - 0.0618 ▿ OD λ 1 ▿ OD λ 2 .
本发明的有益效果:本发明的无创脑部血氧参数测量方法,在人体前额安放两个发光波长分别为λ1和λ2的近红外光LED发光二极管,在两个LED发光二极管的同侧设置远近不同的两个光电接收管,在控制器的驱动下,分别于t1和t2时刻同时驱动两个LED发光二极管发光,每次发光后由光电接收管获取经过人体组织吸收散射后的光强值,分别对应λ1和λ2用距离发光LED较近的光电接收管值减去较远的光电接受管值,以消除包括背景噪声、皮肤、颅骨对测量造成的影响,然后用t1时刻的差值减去t2时刻的差值,即对不同时间点得到光强度值作差就可以得到浓度变化量,本方法测量的血氧参数更准确。
具体实施方式
实施例1
本实施例的无创脑部血氧参数测量方法,基于人体组织对近红外光的吸收特性,实现脑部组织局部血氧参数的测量,包含如下步骤:
S1)在人体前额安放两个近红外光LED发光二极管,一个发光主波长λ1为650nm,另一个发光主波长λ2为800nm;在两个LED发光二极管的同侧设置两个光电接收管,两个光电接收管与两个LED发光二极管连线的中点水平共线,其中一个光电接收管与LED发光二极管连线中点的距离D1为15mmmm,另一个光电接收管与LED发光二极管连线中点的距离D2为30mmmm;
S2)在控制器的驱动下,驱动主波长λ1的LED发光二极管发光,同时用两个光电接收管获取经过人体组织吸收散射后的光强值;
S3)在控制器的驱动下,驱动主波长λ2的LED发光二极管发光,同时用两个光电接收管获取经过人体组织吸收散射后的光强值;
S4)重复步骤S2)和步骤S3)一次,得到另外一组经过人体组织吸收散射后的光强值;
S5)经过步骤S1)~S4)后,获得用于脑部组织血氧参数计算的数据,由以上获得的参数解算血氧参数过程如下:
S5.1)列出步骤S2)、S3)和S4)中对应的吸光度等式如下:
主波长为λ1LED发光: OD λ 1 , t 1 , near = A λ 1 , t 1 , near + S λ 1 , t 1 , near OD λ 1 , t 1 , far = A λ 1 , t 1 , far + S λ 1 , t 1 , far OD λ 1 , t 2 , near = A λ 1 , t 2 , near + S λ 1 , t 2 , near OD λ 1 , t 2 , far = A λ 1 , t 2 , far + S λ 1 , t 2 , far        (式1)
主波长λ2LED发光: OD λ 2 , t 1 , near = A λ 2 , t 1 , near + S λ 2 , t 1 , near OD λ 2 , t 1 , far = A λ 2 , t 1 , far + S λ 2 , t 1 , far OD λ 2 , t 2 , near = A λ 2 , t 2 , near + S λ 2 , t 2 , near OD λ 2 , t 2 , far = A λ 2 , t 2 , far + S λ 2 , t 2 , far
ODλ表示组织对波长λ光的吸光度,其中Aλ为吸收衰减,Sλ为散射衰减;t1表示步骤S2)和S3)中两个LED第一次发光,t2表示步骤S4)中两个LED第二次发光;near表示距离发光LED较近的光电接收管,far表示距离发光LED较远的光电接收管;
光密度和吸收衰减表示为:
OD λ = - ln I o I i
Aλ=ελcdλ      (式2)
其中Io为输出光强,Ii为输入光强,ελ为消光系数,c为介质浓度,dλ为光穿过介质的路径长度,散射衰减可以认为近似相等;
S5.2)对步骤S5.1)中的(式1)进行作差变换,用距离发光LED较近的光电接收管值减去较远的光电接受管值,得到如下等式。
OD λ 1 , t 1 , near - OD λ 1 , t 1 , far = A λ 1 , t 1 , near - A λ 1 , t 1 , far OD λ 1 , t 2 , near - OD λ 1 , t 2 , far = A λ 1 , t 2 , near - A λ 1 , t 2 , far    (式3)
OD λ 2 , t 1 , near - OD λ 2 , t 1 , far = A λ 2 , t 1 , near - A λ 2 , t 1 , far OD λ 2 , t 2 , near - OD λ 2 , t 2 , far = A λ 2 , t 2 , near - A λ 2 , t 2 , far
用双光电接收管的目的是为了消除包括背景噪声、皮肤、颅骨对测量造成的影响,通过对距离LED发光二极管不同距离的两个光电接收管得到的光强度值进行作差便可消除以上影响。
S5.3)对步骤S5.2)中得到的两组等式(式3)作差:
OD λ 1 , t 1 , near - OD λ 1 , t 1 , far - OD λ 1 , t 2 , near + OD λ 1 , t 2 , far = A λ 1 , t 1 near - A λ 1 , t 1 , far - A λ 1 , t 2 , near + A λ 1 , t 2 , far    (式4)
OD λ 2 , t 1 , near - OD λ 2 , t 1 , far - OD λ 2 , t 2 , near + OD λ 2 , t 2 , far = A λ 2 , t 1 near - A λ 2 , t 1 , far - A λ 2 , t 2 , near + A λ 2 , t 2 , far
即对不同时间点得到光强度值作差可以得到浓度变化量,
将步骤S5.1)中对应的ODλ和Aλ(式2)带入(式4)得到如下结果:
▿ OD λ 1 = ln ( I o , t 2 , near , λ 1 I o , t 1 , near , λ 1 × I o , t 1 , far , λ 1 I o , t 2 , far , λ 1 ) = ϵ λ 1 , HbO 2 Δ c HbO 2 Δ d λ 1 + ϵ λ 1 , DHb Δ c DHb Δ d λ 1
▿ OD λ 2 = ln ( I o , t 2 , near , λ 2 I o , t 1 , near , λ 2 × I o , t 1 , far , λ 2 I o , t 2 , far , λ 2 ) = ϵ λ 2 , HbO 2 Δ c HbO 2 Δ d λ 2 + ϵ λ 2 , DHb Δ c DHb Δ d λ 2     (式5)
上式中表示针对波长为λ的氧合血红蛋白HbO2吸光系数,ελ,DHb表示波长为λ的脱氧血红蛋白(DHb)吸光系数;表示氧合血红蛋白浓度变化,ΔcDHb表示脱氧血红蛋白浓度变化;Δdλ表示光路径长度差;将式5写成矩阵相乘的形式如下:
▿ OD λ 1 ▿ OD λ 2 = M Δ c HbO 2 Δ c DHb     (式6)
其中M为系数矩阵,表示为:
M = ϵ λ 1 , HbO 2 Δ d λ 1 ϵ λ 1 , DHb Δ d λ 1 ϵ λ 2 , HbO 2 Δ d λ 2 ϵ λ 2 , DHb Δ d λ 2       (式7);
S5.4)计算系数矩阵M的逆矩阵M-1,根据(式7)可以计算出氧合血红蛋白和脱氧血红蛋白的浓度变化量计算公式为:
Δ C HbO 2 Δ C DHb = M - 1 ▿ OD λ 1 ▿ OD λ 2
实施例2
与实施例1不同的是,λ1为800nm,λ2为1000nm;D1为29mm,D2为40mm。
实施例3
与实施例1不同的是λ1为710nm,λ2为920nm;D1为22mm,D2为35mm。
对照例
采用市场上A品牌的脑血氧监测仪就行脑血氧测量。
稳定性对比实验
分别对甲、乙两人在相同时间分别采用本实施例1-3中的一种方法及对照例中的血氧仪进行脑血氧测量。
表1
表2
表3
由表1-3可以看出,采用实施例1-3测得脑血氧值相比对照例测得脑血氧值,数据更加稳定。
为了防止个体差异而造成脑血氧值不稳定,对乙采用实施例3、对甲采用对照例进行监测,结果见表4。
表4
由4可以看出,当对乙采用实施例3进行脑血氧检测时,其数值稳定性明显提升,而对甲采用对照例进行脑血氧检测时,数值稳定性大大下降,由此更加客观的说明本发明的方法进行脑血氧测量时检测结果的稳定性更好。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (2)

1.一种无创脑部血氧参数测量方法,基于人体组织对近红外光的吸收特性,实现脑部组织局部血氧参数的测量,其特征在于,包含如下步骤:
S1)在人体前额安放两个近红外光LED发光二极管,一个发光主波长λ1为650~800nm,另一个发光主波长λ2为800~1000nm;在两个LED发光二极管的同侧设置两个光电接收管,两个光电接收管与两个LED发光二极管连线的中点水平共线,其中一个光电接收管与LED发光二极管连线中点的距离D1为15mm~30mm,另一个光电接收管与LED发光二极管连线中点的距离D2为30mm~40mm;
S2)在控制器的驱动下,驱动主波长λ1的LED发光二极管发光,同时用两个光电接收管获取经过人体组织吸收散射后的光强值;
S3)在控制器的驱动下,驱动主波长λ2的LED发光二极管发光,同时用两个光电接收管获取经过人体组织吸收散射后的光强值;
S4)重复步骤S2)和步骤S3)一次,得到另外一组经过人体组织吸收散射后的光强值;
S5)经过步骤S1)~S4)后,获得用于脑部组织血氧参数计算的数据,由以上获得的参数解算血氧参数过程如下:
S5.1)列出步骤S2)、S3)和S4)中对应的吸光度等式如下:
主波长λ1LED发光: OD λ 1 , t 1 , near = A λ 1 , t 1 , near + S λ 1 , t 1 , near OD λ 1 , t 1 , far = A λ 1 , t 1 , far + S λ 1 , t 1 , far OD λ 1 , t 2 , near = A λ 1 , t 2 , near + S λ 1 , t 2 , near OD λ 1 , t 2 , far = A λ 1 , t 2 , far + S λ 1 , t 2 , far     (式1)
主波长λ2LED发光: OD λ 2 , t 1 , near = A λ 2 , t 1 , near + S λ 2 , t 1 , near OD λ 2 , t 1 , far = A λ 2 , t 1 , far + S λ 2 , t 1 , far OD λ 2 , t 2 , near = A λ 2 , t 2 , near + S λ 2 , t 2 , near OD λ 2 , t 2 , far = A λ 2 , t 2 , far + S λ 2 , t 2 , far
ODλ表示组织对波长λ光的吸光度,其中Aλ为吸收衰减,Sλ为散射衰减;t1表示步骤S2)和S3)中两个LED第一次发光,t2表示步骤S4)中两个LED第二次发光;near表示距离发光LED较近的光电接收管,far表示距离发光LED较远的光电接收管;
光密度和吸收衰减表示为:
OD λ = - ln I o I i
Aλ=ελcdλ     (式2)
其中Io为输出光强,Ii为输入光强,ελ为消光系数,c为介质浓度,dλ为光穿过介质的路径长度,散射衰减可以认为近似相等;
S5.2)对步骤S5.1)中的(式1)进行作差变换,用距离发光LED较近的光电接收管值减去较远的光电接受管值,得到如下等式。
OD λ 1 , t 1 , near - OD λ 1 , t 1 , far = A λ 1 , t 1 , near - A λ 1 , t 1 , far OD λ 1 , t 2 , near - OD λ 1 , t 2 , far = A λ 1 , t 2 , near - A λ 1 , t 2 , far    (式3)
OD λ 2 , t 1 , near - OD λ 2 , t 1 , far = A λ 2 , t 1 , near - A λ 2 , t 1 , far OD λ 2 , t 2 , near - OD λ 2 , t 2 , far = A λ 2 , t 2 , near - A λ 2 , t 2 , far
S5.3)对步骤S5.2)中得到的两组等式(式3)作差,得到如下等式:
OD λ 1 , t 1 , near - OD λ 1 , t 1 , far - OD λ 1 , t 2 , near + OD λ 1 , t 2 , far = A λ 1 , t 1 , near - A λ 1 , t 1 , far - A λ 1 , t 2 , near + A λ 1 , t 2 , far (式4)
OD λ 2 , t 1 , near - OD λ 2 , t 1 , far - OD λ 2 , t 2 , near + OD λ 2 , t 2 , far = A λ 2 , t 1 , near - A λ 2 , t 1 , far - A λ 2 , t 2 , near + A λ 2 , t 2 , far
将步骤S5.1)中对应的ODλ和Aλ(式2)带入(式4)得到如下结果:
▿ OD λ 1 = 1 n ( I o , t 2 , near , λ 1 I o , t 1 , near , λ 1 × I o , t 1 , far , λ 1 I o , t 2 , far , λ 1 ) = ϵ λ 1 , Hb O 2 Δc Hb O 2 Δd λ 1 + ϵ λ 1 , DHb Δc DHb Δd λ 1
▿ OD λ 2 = 1 n ( I o , t 2 , near , λ 2 I o , t 1 , near , λ 2 × I o , t 1 , far , λ 2 I o , t 2 , far , λ 2 ) = ϵ λ 2 , Hb O 2 Δc Hb O 2 Δd λ 2 + ϵ λ 2 , DHb Δc DHb Δd λ 2    (式5)
上式中表示针对波长为λ的氧合血红蛋白HbO2吸光系数,ελDHb表示波长为λ的脱氧血红蛋白(DHb)吸光系数;表示氧合血红蛋白浓度变化,ΔcDHb表示脱氧血红蛋白浓度变化;Δdλ表示光路径长度差;将式5写成矩阵相乘的形式如下:
▿ OD λ 1 ▿ OD λ 2 = M Δc Hb O 2 Δc DHb       (式6)
其中M为系数矩阵,表示为:
M = ϵ λ 1 , Hb O 2 Δd λ 1 ϵ λ 1 , DHb Δd λ 1 ϵ λ 2 , Hb O 2 Δd λ 2 ϵ λ 2 , DHb Δd λ 2     (式7);
S5.4)计算系数矩阵M的逆矩阵M-1,根据(式7)可以得到氧合血红蛋白和脱氧血红蛋白的浓度变化量计算公式为:
ΔC HbO 2 ΔC DHb = M - 1 ▿ OD λ 1 ▿ OD λ 2
2.根据权利要求1所述的无创脑部血氧参数测量方法,其特征在于:所述λ1为710nm,λ2为920nm;所述D1为22mm,D2为35mm。
CN201410720201.9A 2014-12-02 2014-12-02 无创脑部血氧参数测量方法 Active CN104382604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410720201.9A CN104382604B (zh) 2014-12-02 2014-12-02 无创脑部血氧参数测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410720201.9A CN104382604B (zh) 2014-12-02 2014-12-02 无创脑部血氧参数测量方法

Publications (2)

Publication Number Publication Date
CN104382604A true CN104382604A (zh) 2015-03-04
CN104382604B CN104382604B (zh) 2016-08-31

Family

ID=52600644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410720201.9A Active CN104382604B (zh) 2014-12-02 2014-12-02 无创脑部血氧参数测量方法

Country Status (1)

Country Link
CN (1) CN104382604B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106725323A (zh) * 2016-12-22 2017-05-31 中国科学院苏州生物医学工程技术研究所 可穿戴式生物信号采集装置
CN107595297A (zh) * 2017-11-06 2018-01-19 清华大学 生理信息检测装置及方法
CN108024713A (zh) * 2015-05-26 2018-05-11 Bsx体育公司 用于确定组织中的生物指标水平的设备和方法
CN108464813A (zh) * 2018-01-30 2018-08-31 东南大学 采用高-低双密度光极配置的功能性近红外脑功能成像系统
CN112043287A (zh) * 2020-09-30 2020-12-08 重庆大学 一种脑血氧无创监测方法及监测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0352923A1 (en) * 1988-07-25 1990-01-31 BAXTER INTERNATIONAL INC. (a Delaware corporation) Spectrophotometric apparatus and method for monitoring oxygen saturation
US5995857A (en) * 1996-07-01 1999-11-30 Toomim; I. Hershel Biofeedback of human central nervous system activity using radiation detection
US6195574B1 (en) * 1998-09-04 2001-02-27 Perkinelmer Instruments Llc Monitoring constituents of an animal organ using discrete radiation
CN1331953A (zh) * 2001-08-03 2002-01-23 天津大学 新生儿脑血氧检测传感器
CN1365649A (zh) * 2002-02-26 2002-08-28 南开大学 脑血氧饱和度捡测仪
CN1452937A (zh) * 2002-04-26 2003-11-05 武汉一海数字工程有限公司 三波长脑组织血氧含量监护仪
CN1542434A (zh) * 2003-11-07 2004-11-03 清华大学 可修正外层组织影响的组织血氧参数检测方法
CN103445774A (zh) * 2013-07-14 2013-12-18 北京师范大学 脑电与血氧信号同步采集的光-电电极

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0352923A1 (en) * 1988-07-25 1990-01-31 BAXTER INTERNATIONAL INC. (a Delaware corporation) Spectrophotometric apparatus and method for monitoring oxygen saturation
US5995857A (en) * 1996-07-01 1999-11-30 Toomim; I. Hershel Biofeedback of human central nervous system activity using radiation detection
US6195574B1 (en) * 1998-09-04 2001-02-27 Perkinelmer Instruments Llc Monitoring constituents of an animal organ using discrete radiation
CN1331953A (zh) * 2001-08-03 2002-01-23 天津大学 新生儿脑血氧检测传感器
CN1365649A (zh) * 2002-02-26 2002-08-28 南开大学 脑血氧饱和度捡测仪
CN1452937A (zh) * 2002-04-26 2003-11-05 武汉一海数字工程有限公司 三波长脑组织血氧含量监护仪
CN1542434A (zh) * 2003-11-07 2004-11-03 清华大学 可修正外层组织影响的组织血氧参数检测方法
CN103445774A (zh) * 2013-07-14 2013-12-18 北京师范大学 脑电与血氧信号同步采集的光-电电极

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘睿: "《基于近红外光的血氧浓度测量》", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *
韩素敏 等: "《近红外双波长反射式脑血氧监测仪的研究》", 《河南理工大学学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024713A (zh) * 2015-05-26 2018-05-11 Bsx体育公司 用于确定组织中的生物指标水平的设备和方法
CN108024713B (zh) * 2015-05-26 2021-08-17 Lvl技术公司 用于确定组织中的生物指标水平的设备和方法
CN106725323A (zh) * 2016-12-22 2017-05-31 中国科学院苏州生物医学工程技术研究所 可穿戴式生物信号采集装置
CN107595297A (zh) * 2017-11-06 2018-01-19 清华大学 生理信息检测装置及方法
CN108464813A (zh) * 2018-01-30 2018-08-31 东南大学 采用高-低双密度光极配置的功能性近红外脑功能成像系统
CN112043287A (zh) * 2020-09-30 2020-12-08 重庆大学 一种脑血氧无创监测方法及监测装置
CN112043287B (zh) * 2020-09-30 2021-07-20 重庆大学 一种脑血氧无创监测方法及监测装置

Also Published As

Publication number Publication date
CN104382604B (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
US10646146B2 (en) Physiological monitoring devices, systems, and methods
US7072701B2 (en) Method for spectrophotometric blood oxygenation monitoring
US6456862B2 (en) Method for non-invasive spectrophotometric blood oxygenation monitoring
US7277741B2 (en) Pulse oximetry motion artifact rejection using near infrared absorption by water
CN104382604A (zh) 无创脑部血氧参数测量方法
US8219170B2 (en) System and method for practicing spectrophotometry using light emitting nanostructure devices
KR20070032643A (ko) 공간적으로 균일한 다중-컬러 소스를 갖는 광혈류측정기
CN110179472A (zh) 一种脑功能检测的方法及系统
JP6125821B2 (ja) 酸素飽和度測定装置及び酸素飽和度算出方法
JP5917756B2 (ja) ヘモグロビンの相対濃度変化と酸素飽和度測定装置
CN105942984B (zh) 黄疸检测方法及其装置
CN109596552A (zh) 利用单距离光源-探测器对测量组织血氧饱和度的方法
US20150230736A1 (en) Pathlength enhancement of optical measurement of physiological blood parameters
CN204394526U (zh) 近红外的组织血氧饱和度无创检测探头
JP6741485B2 (ja) パルスフォトメータ、および血中吸光物質濃度の算出値の信頼性評価方法
Nishimura et al. A new approach to functional near-infrared technology
JP3635331B2 (ja) 物質計測装置
Sato et al. Wavelength dependence of effective pathlength factor in noninvasive optical measurements of human brain functions
Chacko et al. Application of a Fiber Optic Probe for Blood Oxygenation Measurement Using Near Infrared Spectroscopy
US20240049996A1 (en) Nirs / tissue oximetry based method to measure arterial blood oxygen saturation from pulsatile hemoglobin waveforms
Timm et al. Sensor System Concept for Non-Invasive Blood Diagnosis
JP3183811U (ja) ヘモグロビンの相対濃度変化と酸素飽和度測定装置
Torricelli et al. Mapping cerebral hemodynamics in brain cortex by multi-channel time-resolved near-infrared spectroscopy
Humphreys et al. A CMOS camera-based system for non-contact pulse oximetry imaging
Happawana et al. Photodynamic Therapy oxygen monitoring system for use in oesophageal carcinoma

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant