CN104371226B - 一种羟基化石墨烯-聚合物复合材料的制备方法 - Google Patents

一种羟基化石墨烯-聚合物复合材料的制备方法 Download PDF

Info

Publication number
CN104371226B
CN104371226B CN201410638440.XA CN201410638440A CN104371226B CN 104371226 B CN104371226 B CN 104371226B CN 201410638440 A CN201410638440 A CN 201410638440A CN 104371226 B CN104371226 B CN 104371226B
Authority
CN
China
Prior art keywords
graphene
hydroxylating graphene
polymer
hydroxylating
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410638440.XA
Other languages
English (en)
Other versions
CN104371226A (zh
Inventor
杨程
耿小颖
戴圣龙
张晓艳
燕绍九
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Beijing Graphene Technology Research Institute Co Ltd
Original Assignee
BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp filed Critical BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority to CN201410638440.XA priority Critical patent/CN104371226B/zh
Publication of CN104371226A publication Critical patent/CN104371226A/zh
Application granted granted Critical
Publication of CN104371226B publication Critical patent/CN104371226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于介电材料的制备技术领域,涉及对以石墨烯为填料的渗流型高储能密度的介电复合材料制备方法的改进。其特征在于,制备的步骤如下:制备羟基化石墨烯悬浮液;石墨烯悬浮液超声处理;制备羟基化石墨烯‑聚合物浑浊液;制备羟基化石墨烯‑聚合物粉体;粉体干燥。本发明提出了一种羟基化石墨烯‑聚合物复合材料的制备方法,将羟基负载在石墨烯上,能使石墨烯容易分散于聚合物中,进而便于控制石墨烯的介电常数,提高了石墨烯‑聚合物复合材料的电学性能。

Description

一种羟基化石墨烯-聚合物复合材料的制备方法
技术领域
本发明属于介电材料的制备技术领域,涉及对以石墨烯为填料的渗流型高储能密度的介电复合材料制备方法的改进。
背景技术
目前,对无机/有机复合电介质材料的研究主要集中在两种类型上,一种是采用具有高介电常数的陶瓷粉体与聚合物基体直接复合,提高聚合物介电常数。该类复合材料虽然可获得较高的介电常数,但由于陶瓷和聚合物基体的相容性差使得在材料内部容易形成大量空洞,致使材料易被击穿,直接影响复合材料储能密度的提高。而且陶瓷/聚合物复合材料的密度较大,这不利于储能电容器向“轻型化”发展。另一种是采用导电颗粒与聚合物基体进行复合,利用导电颗粒在绝缘聚合物基体内发生渗流转变时的介电常数突增的效应来提高介电常数。同陶瓷粉体/聚合物复合材料相比,这种渗流型复合电介质材料能够在添加少量填料颗粒的情况下获得更高的介电常数,从而较好的保持聚合物基体自身的优良机械性能。近年来,科研工作者通过改性包覆金属导电颗粒(银、铜、铝)来制备渗流型高储能密度的介电复合材料,取得较好的研究结果。但是由于金属填料的成本较高,限制其向工业化应用的可能。相比之下,石墨烯由于密度小、导电性好及成本低而成为渗流型介电复合材料的优选填料。并且,石墨烯的形状系数比大,理论和实验数据表明,以线状和片状粒子为填料的复合材料其渗流阈值较低,这对于材料的减薄(减重)以及降低生产成本都很有意义,而且避免因大量填料的添加而降低复合材料的机械性能。目前用石墨烯作填料的渗流型高储能密度的介电复合材料文献参见(“石墨烯的制备及石墨烯/PVDF复合材料介电性能的研究”,宋洪松,刘大博,化学工程师,2011年)其缺点是:石墨烯比表面积大、表面能高,因而在溶剂和基体中非常容易团聚,不易分散于聚合物中,使其介电常数难以控制。
发明内容
本发明的目的是:提出一种羟基化石墨烯-聚合物复合材料的制备方法,将羟基负载在石墨烯上,以便使石墨烯容易分散于聚合物中,进而便于控制石墨烯的介电常数,提高石墨烯-聚合物复合材料的电学性能。
本发明的技术方案是:一种羟基化石墨烯-聚合物复合材料的制备方法,其特征在于,制备的步骤如下:
1、制备羟基化石墨烯悬浮液:将羟基化石墨烯加入到有机溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯电阻率在10-1Ω·m~105Ω·m范围内,有机溶剂为N,N-二甲基甲酰胺或四氢呋喃,羟基化石墨烯悬浮液浓度为0.01mg/ml~0.30mg/ml;
2、石墨烯悬浮液超声处理:将上述羟基化石墨烯悬浮液超声处理,使其分散均匀,得到羟基化石墨烯分散液,超声处理时间为30min~60min;
3、制备羟基化石墨烯-聚合物浑浊液:向羟基化石墨烯分散液中加入聚合物,得到羟基化石墨烯-聚合物浑浊液,聚合物为聚偏氟乙烯或聚苯乙烯,羟基化石墨烯和聚合物的质量比为0.1~30:1000,然后将羟基化石墨烯-聚合物浑浊液加热,得到溶解均匀的羟基化石墨烯/聚合物溶液,加热温度为70℃~90℃,保温时间为0.5h~1.0h,然后冷却到室温;
4、制备羟基化石墨烯-聚合物粉体:向羟基化石墨烯-聚合物浑浊液加入常温易挥发溶剂,羟基化石墨烯-聚合物浑浊液和常温易挥发溶剂的体积比为1:2,然后对加入常温易挥发溶剂的羟基化石墨烯-聚合物浑浊液进行真空抽滤,得到羟基化石墨烯-聚合物粉体,常温易挥发溶剂为乙醇或丙酮;
5、粉体干燥:将羟基化石墨烯/聚合物粉体放入烘箱干燥,得到羟基化石墨烯-聚合物复合材料粉末,干燥温度为40℃~60℃,干燥时间为24h~48h。
本发明的优点是:提出了一种羟基化石墨烯-聚合物复合材料的制备方法,将羟基负载在石墨烯上,能使石墨烯容易分散于聚合物中,进而便于控制石墨烯的介电常数,提高了石墨烯-聚合物复合材料的电学性能。参见附图1至附图6,本发明的实施例证明,通过控制羟基化石墨烯的电阻率和添加量,能够得到介电常数可控的羟基化石墨烯-聚合物复合材料。
附图说明
图1是实施例1制备的羟基化石墨烯-聚合物复合材料介电常数与频率的关系图。横坐标是频率,纵坐标是介电常数,频率在102~104,介电常数略有下降,频率在104~107,介电常数趋于平缓。
图2实施例2制备的羟基化石墨烯-聚合物复合材料介电常数与频率的关系图。频率在102~104,介电常数有所下降,频率在104~107,介电常数趋于平缓。
图3实施例3制备的羟基化石墨烯-聚合物复合材料介电常数与频率的关系图。频率在102~104,介电常数有显著下降,频率在104~107,介电常数趋于平缓。
图4是实施例4制备的羟基化石墨烯-聚合物复合材料介电常数与频率的关系图。频率在102~104,介电常数下降明显,频率在104~107,介电常数趋于平缓。
图5是实施例5制备的羟基化石墨烯-聚合物复合材料介电常数与频率的关系图。频率在102~103,介电常数略有下降,频率在103~107,介电常数趋于平缓。
图6是实施例6制备的羟基化石墨烯-聚合物复合材料介电常数与频率的关系图。频率在102~103,介电常数略有下降,频率在103~107,介电常数趋于平缓。
具体实施方式
下面对本发明做进一步详细说明。一种羟基化石墨烯-聚合物复合材料的制备方法,其特征在于,制备的步骤如下:
1、制备羟基化石墨烯悬浮液:将羟基化石墨烯加入到有机溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯电阻率在10-1Ω·m~105Ω·m范围内,有机溶剂为N,N-二甲基甲酰胺或四氢呋喃,羟基化石墨烯悬浮液浓度为0.01mg/ml~0.30mg/ml;
2、石墨烯悬浮液超声处理:将上述羟基化石墨烯悬浮液超声处理,使其分散均匀,得到羟基化石墨烯分散液,超声处理时间为30min~60min;
3、制备羟基化石墨烯-聚合物浑浊液:向羟基化石墨烯分散液中加入聚合物,得到羟基化石墨烯-聚合物浑浊液,聚合物为聚偏氟乙烯或聚苯乙烯,羟基化石墨烯和聚合物的质量比为0.1~30:1000,然后将羟基化石墨烯-聚合物浑浊液加热,得到溶解均匀的羟基化石墨烯/聚合物溶液,加热温度为70℃~90℃,保温时间为0.5h~1.0h,然后冷却到室温;
4、制备羟基化石墨烯-聚合物粉体:向羟基化石墨烯-聚合物浑浊液加入常温易挥发溶剂,羟基化石墨烯-聚合物浑浊液和常温易挥发溶剂的体积比为1:2,然后对加入常温易挥发溶剂的羟基化石墨烯-聚合物浑浊液进行真空抽滤,得到羟基化石墨烯-聚合物粉体,常温易挥发溶剂为乙醇或丙酮;
5、粉体干燥:将羟基化石墨烯/聚合物粉体放入烘箱干燥,得到羟基化石墨烯-聚合物复合材料粉末,干燥温度为40℃~60℃,干燥时间为24h~48h。
本发明所使用的羟基化石墨烯的制备方法参见申请号为201410524965.0的中国专利申请“一种可控导电性能的羟基化石墨烯粉体的制备方法”,其主要制备过程是:
1、将氧化石墨烯置于蒸馏水中,制成氧化石墨烯水溶液,对氧化石墨烯水溶液超声,得分散均匀的氧化石墨烯水溶液,浓度为1g/L~10g/L;
2、在所述氧化石墨烯水溶液中加入氨水,PH值调至7~9,再加入水合肼,氧化石墨烯水溶液与还原剂水合肼的质量比小于1:1,在80℃~95℃的油浴中冷凝回流24h~48h,得到石墨烯与水的浑浊液;
3、将所述浑浊液降温至70℃~80℃,再加入氨基苯基醇与亚硝酸异戊酯;氨基苯基醇与氧化石墨烯的摩尔比小于1:1,氨基苯基醇与亚硝酸异戊酯的摩尔比小于1:1,冷凝回流24h~48h,获得一种羟基化石墨烯;
4、将所述羟基化石墨烯溶液过滤至中性溶液;
5、将所述中性溶液冷冻干燥5天~7天,得到一种纯净的羟基功能化石墨烯粉体。
实施例1:
取0.002g电阻率为0.789Ω·m的羟基化石墨烯,加入到100ml N,N-二甲基甲酰胺溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯悬浮液浓度为0.02mg/ml;将羟基化石墨烯悬浮液超声处理30min,得到羟基化石墨烯分散液;向羟基化石墨烯分散液中加入2.0g聚偏氟乙烯,70℃加热1h,得到溶解均匀的羟基化石墨烯/聚偏氟乙烯溶液,冷却到室温,向羟基化石墨烯/聚偏氟乙烯溶液中加入200ml乙醇,真空抽滤,得到羟基化石墨烯-聚偏氟乙烯粉体,将羟基化石墨烯-聚偏氟乙烯粉体置于烘箱中,干燥温度40℃,干燥时间48h。然后将羟基化石墨烯-聚偏氟乙烯粉体180℃热压成型,涂上高纯导电银胶,得到电极,在频率为102~107Hz范围内测介电性能,介电常数与频率的关系图1所示。
实施例2:
取0.01g电阻率为179Ω·m的羟基化石墨烯,加入到100ml N,N-二甲基甲酰胺溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯悬浮液浓度为0.1mg/ml;将羟基化石墨烯悬浮液超声处理30min,得到羟基化石墨烯分散液;向羟基化石墨烯分散液中加入2.0g聚偏氟乙烯,70℃加热1h,得到溶解均匀的羟基化石墨烯/聚偏氟乙烯溶液,冷却到室温,向羟基化石墨烯/聚偏氟乙烯溶液中加入200ml乙醇,真空抽滤,得到羟基化石墨烯-聚偏氟乙烯粉体,将羟基化石墨烯-聚偏氟乙烯粉体置于烘箱中,干燥温度40℃,干燥时间48h,然后将羟基化石墨烯-聚偏氟乙烯粉体180℃热压成型,涂上高纯导电银胶,得到电极,在频率为102~107Hz范围内测介电性能,介电常数与频率的关系图2所示。
实施例3:
取0.02g电阻率为436Ω·m的羟基化石墨烯,加入到200ml N,N-二甲基甲酰胺溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯悬浮液浓度为0.1mg/ml;将羟基化石墨烯悬浮液超声处理40min,得到羟基化石墨烯分散液;向羟基化石墨烯分散液中加入2.0g聚偏氟乙烯,80℃加热1h,得到溶解均匀的羟基化石墨烯/聚偏氟乙烯溶液,冷却到室温,向羟基化石墨烯/聚偏氟乙烯溶液中加入400ml乙醇,真空抽滤,得到羟基化石墨烯-聚偏氟乙烯粉体,将羟基化石墨烯-聚偏氟乙烯粉体置于烘箱中,干燥温度50℃,干燥时间36h;然后将羟基化石墨烯-聚偏氟乙烯粉体190℃热压成型,镀金,得到电极,在频率为102~107Hz范围内测介电性能,介电常数与频率的关系图3所示。
实施例4:
取0.03g电阻率为627Ω·m的羟基化石墨烯,加入到200ml四氢呋喃溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯悬浮液浓度为0.15mg/ml;将羟基化石墨烯悬浮液超声处理40min,得到羟基化石墨烯分散液;向羟基化石墨烯分散液中加入2.0g聚偏氟乙烯,90℃加热0.5h,得到溶解均匀的羟基化石墨烯/聚偏氟乙烯溶液,冷却到室温,向羟基化石墨烯/聚偏氟乙烯溶液中加入400ml丙酮,真空抽滤,得到羟基化石墨烯-聚偏氟乙烯粉体,将羟基化石墨烯-聚偏氟乙烯粉体置于烘箱中,干燥温度50℃,干燥时间36h,然后170℃热压成型得试样,再在试样上镀金作为测试用的电极,之后在频率为102~107Hz范围内测介电性能,介电常数与频率的关系图4所示。
实施例5:
取0.04g电阻率为8807Ω·m的羟基化石墨烯,加入到200ml四氢呋喃溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯悬浮液浓度为0.20mg/ml;将羟基化石墨烯悬浮液超声处理50min,得到羟基化石墨烯分散液;向羟基化石墨烯分散液中加入2.0g聚苯乙烯,80℃加热1h,得到溶解均匀的羟基化石墨烯/聚苯乙烯溶液,冷却到室温,向羟基化石墨烯/聚苯乙烯溶液中加入400ml丙酮,真空抽滤,得到羟基化石墨烯-聚苯乙烯粉体,将羟基化石墨烯-聚苯乙烯粉体置于烘箱中,干燥温度60℃,干燥时间24h,然后170℃热压成型得试样,再在试样上镀铂测试用的电极,之后在频率为102~107Hz范围内测介电性能,介电常数与频率的关系图5所示。
实施例6:
取0.05g电阻率为13760Ω·m的羟基化石墨烯,加入到200ml四氢呋喃溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯悬浮液浓度为0.25mg/ml;将羟基化石墨烯悬浮液超声处理60min,得到羟基化石墨烯分散液;向羟基化石墨烯分散液中加入2.0g聚苯乙烯,90℃加热0.5h,得到溶解均匀的羟基化石墨烯/聚苯乙烯溶液,冷却到室温,向羟基化石墨烯/聚苯乙烯溶液中加入400ml丙酮,真空抽滤,得到羟基化石墨烯-聚苯乙烯粉体,将羟基化石墨烯-聚苯乙烯粉体置于烘箱中,干燥温度60℃,干燥时间24h,然后160℃热压成型得试样,再在试样上镀铂作为测试用的电极,之后在频率为102~107Hz范围内测介电性能,介电常数与频率的关系图6所示。

Claims (1)

1.一种羟基化石墨烯-聚合物复合材料粉体的制备方法,其特征在于,制备的步骤如下:
1.1、制备羟基化石墨烯悬浮液:将羟基化石墨烯加入到有机溶剂中,得到羟基化石墨烯悬浮液,羟基化石墨烯电阻率在10-1Ω·m~105Ω·m范围内,有机溶剂为N,N-二甲基甲酰胺或四氢呋喃,羟基化石墨烯悬浮液浓度为0.01mg/ml~0.30mg/ml;
1.2、石墨烯悬浮液超声处理:将上述羟基化石墨烯悬浮液超声处理,使其分散均匀,得到羟基化石墨烯分散液,超声处理时间为30min~60min;
1.3、制备羟基化石墨烯-聚合物浑浊液:向羟基化石墨烯分散液中加入聚合物,得到羟基化石墨烯-聚合物浑浊液,聚合物为聚偏氟乙烯或聚苯乙烯,羟基化石墨烯和聚合物的质量比为0.1~30:1000,然后将羟基化石墨烯-聚合物浑浊液加热,得到溶解均匀的羟基化石墨烯/聚合物溶液,加热温度为70℃~90℃,保温时间为0.5h~1.0h,然后冷却到室温;
1.4、制备羟基化石墨烯-聚合物粉体:向羟基化石墨烯-聚合物浑浊液加入常温易挥发溶剂,羟基化石墨烯-聚合物浑浊液和常温易挥发溶剂的体积比为1:2,然后对加入常温易挥发溶剂的羟基化石墨烯-聚合物浑浊液进行真空抽滤,得到羟基化石墨烯-聚合物粉体,常温易挥发溶剂为乙醇或丙酮;
1.5、粉体干燥:将羟基化石墨烯/聚合物粉体放入烘箱干燥,得到羟基化石墨烯-聚合物复合材料粉末,干燥温度为40℃~60℃,干燥时间为24h~48h。
CN201410638440.XA 2014-11-06 2014-11-06 一种羟基化石墨烯-聚合物复合材料的制备方法 Active CN104371226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410638440.XA CN104371226B (zh) 2014-11-06 2014-11-06 一种羟基化石墨烯-聚合物复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410638440.XA CN104371226B (zh) 2014-11-06 2014-11-06 一种羟基化石墨烯-聚合物复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN104371226A CN104371226A (zh) 2015-02-25
CN104371226B true CN104371226B (zh) 2016-07-20

Family

ID=52550435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410638440.XA Active CN104371226B (zh) 2014-11-06 2014-11-06 一种羟基化石墨烯-聚合物复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN104371226B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255073B (zh) * 2015-10-29 2018-01-19 中国航空工业集团公司北京航空材料研究院 一种含石墨烯的耐磨氟橡胶及其制备方法
CN107265447B (zh) * 2017-08-03 2019-08-16 山东金城石墨烯科技有限公司 一种羟基化石墨烯的制备方法
CN109904387B (zh) * 2019-02-25 2021-07-13 天津艾克凯胜石墨烯科技有限公司 一种高性能锂电池正极片制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424705A (zh) * 2011-09-21 2012-04-25 中国科学技术大学 聚合物/石墨烯纳米复合材料的制备方法
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424705A (zh) * 2011-09-21 2012-04-25 中国科学技术大学 聚合物/石墨烯纳米复合材料的制备方法
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"石墨烯表面非共价修饰及其聚合物复合材料制备与性能";王磊;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20140315(第3期);12 *

Also Published As

Publication number Publication date
CN104371226A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
Meng et al. Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance
Qian et al. Condiment‐derived 3D architecture porous carbon for electrochemical supercapacitors
Zhu et al. Black liquor-derived porous carbons from rice straw for high-performance supercapacitors
Kim et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors
Zhu et al. High‐performance supercapacitor electrode materials from chitosan via hydrothermal carbonization and potassium hydroxide activation
Zhi et al. Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor
Wang et al. Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors
Yuan et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure
KR101351269B1 (ko) 전기적 특성이 우수한 다공성 그라핀 필름 및 제조 방법
Tian et al. Constructed nitrogen and sulfur codoped multilevel porous carbon from lignin for high-performance supercapacitors
CN104371226B (zh) 一种羟基化石墨烯-聚合物复合材料的制备方法
CN106449166B (zh) 基于单壁碳纳米管/氧化钨纳米线复合薄膜电极的超级电容器制备方法
CN105122407B (zh) 双电层电容器电极用活性炭及其制造方法
CN104841291B (zh) 一种有效增强氧化石墨烯膜脱水性能的方法
Chen et al. Fabrication and supercapacitive properties of hierarchical porous carbon from polyacrylonitrile
CN103434207A (zh) 泡沫金属-碳纳米管复合材料及其制备方法
CN105914048A (zh) 一种多孔碳-石墨烯-金属氧化物复合材料及其制备方法和应用
Fu et al. Carbon Nanotube@ N‐Doped Mesoporous Carbon Composite Material for Supercapacitor Electrodes
CN107089707B (zh) 电容型脱盐电极用核壳结构三维石墨烯复合材料及其制备方法
CN105810444B (zh) 一种石墨烯-聚吡咯纳米颗粒复合薄膜电极及其制备方法
Kang et al. Enhanced electrochemical capacitance of nitrogen-doped carbon gels synthesized by microwave-assisted polymerization of resorcinol and formaldehyde
Kim et al. Enhanced electrical capacitance of tetraethyl orthosilicate-derived porous carbon nanofibers produced via electrospinning
He et al. Microwave-assisted synthesis of Ru/mesoporous carbon composites for supercapacitors
Park et al. Foldable and Biodegradable Energy‐Storage Devices on Copy Papers
Lv et al. A self-supported electrode for supercapacitors based on nanocellulose/multi-walled carbon nanotubes/polypyrrole composite

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100095 box 81, Haidian District, Beijing

Patentee after: AECC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS

Address before: 100095 box 81, Haidian District, Beijing

Patentee before: AVIC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS

CP03 Change of name, title or address
TR01 Transfer of patent right

Effective date of registration: 20211207

Address after: No. 108, 1f, building 1, yard 3, Fengzhi East Road, Haidian District, Beijing 100094

Patentee after: BEIJING GRAPHENE TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.

Address before: 100095 box 81, Haidian District, Beijing

Patentee before: AECC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS

TR01 Transfer of patent right