CN104360326B - Digital storage and forwarding type interference system - Google Patents

Digital storage and forwarding type interference system Download PDF

Info

Publication number
CN104360326B
CN104360326B CN201410679828.4A CN201410679828A CN104360326B CN 104360326 B CN104360326 B CN 104360326B CN 201410679828 A CN201410679828 A CN 201410679828A CN 104360326 B CN104360326 B CN 104360326B
Authority
CN
China
Prior art keywords
analog
digital
data
digital converter
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410679828.4A
Other languages
Chinese (zh)
Other versions
CN104360326A (en
Inventor
李桓
赵峰
陈斐
唐建华
李玉柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410679828.4A priority Critical patent/CN104360326B/en
Publication of CN104360326A publication Critical patent/CN104360326A/en
Application granted granted Critical
Publication of CN104360326B publication Critical patent/CN104360326B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/38Jamming means, e.g. producing false echoes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一种数字存储与转发式干扰系统,属于电子通信领域。本发明可以对辐射源进行侦查、欺骗和干扰,其中欺骗时可以完成在距离、速度和高度上的欺骗。本发明包含7个外部SMA接口,通过外部提供的雷达波包络进行主瓣判断,可编程门整列器件可自动对齐外部输入的中频雷达波采样数据位并对数据进行处理,控制数字频率合成器与外部功放,实现对辐射源的侦查、欺骗与干扰。

The invention provides a digital store and forward interference system, which belongs to the field of electronic communication. The invention can conduct detection, deception and interference to the radiation source, wherein the deception in distance, speed and height can be completed during deception. The present invention includes 7 external SMA interfaces, the main lobe is judged through the radar wave envelope provided externally, and the programmable gate array device can automatically align the sampling data bits of the intermediate frequency radar wave input from the outside and process the data to control the digital frequency synthesizer With external power amplifier, the detection, deception and interference of radiation sources can be realized.

Description

一种数字存储与转发式干扰系统A digital store and forward jamming system

技术领域technical field

本发明属于电子通信领域,具体涉及一种数字存储与转发式干扰系统。The invention belongs to the field of electronic communication, in particular to a digital store and forward interference system.

背景技术Background technique

信号延迟技术在通信领域中被广泛应用,如通信交换设备、雷达欺骗设备等,常常利用该技术来实现目标。Signal delay technology is widely used in the field of communication, such as communication switching equipment, radar deception equipment, etc., and often uses this technology to achieve goals.

在通信仪器中,许多设备需要使用延迟技术;比如示波器,在很多观察复杂信号波形的应用场合中,往往需要显示一个波形的一小部分,并让它占据整个屏幕,在观察研究全部电视信号某一选定波形时,使用标准时基通过正常触发的方法是无能为力的,所以一般都采用双时基的结构,这就需要引入延迟技术来延迟第二个时基。民用上实现信号延迟的一般方法是使用延迟线,通过信号在延迟线上传播来得到延迟;上述方法的缺点是延迟线体积庞大,延迟不可控,对于精密仪器来说这样的延迟不够精确。In communication instruments, many devices need to use delay technology; such as oscilloscopes, in many applications for observing complex signal waveforms, it is often necessary to display a small part of a waveform and let it occupy the entire screen. When a waveform is selected, it is powerless to use the standard time base through the normal trigger method, so a dual time base structure is generally used, which requires the introduction of delay technology to delay the second time base. The general method to achieve signal delay in civilian use is to use a delay line, and the delay is obtained by propagating the signal on the delay line; the disadvantage of the above method is that the delay line is bulky and the delay is uncontrollable, which is not accurate enough for precision instruments.

在雷达领域,如搜索警戒雷达,该雷达能够在尽可能大的范围内,尽可能早地发现及监视目标,保证对方目标在临近防区之前有充分的时间做好迎敌准备。而延迟技术可以用来对搜索警戒雷达进行欺骗。使用该技术,一方面可以对敌方雷达进行欺骗,达到战略效果;另一方面可以对自己雷达进行欺骗,适合在演习、训练等不可能使用真飞机来作为目标的情况下使用,达到演习教学效果。In the field of radar, such as search and warning radar, the radar can detect and monitor targets as early as possible in the largest possible range, ensuring that the opponent's target has sufficient time to prepare for the enemy before approaching the defense zone. The delay technique can be used to spoof the search and warning radar. Using this technology, on the one hand, it can deceive the enemy's radar to achieve strategic effects; on the other hand, it can deceive its own radar, which is suitable for use in exercises and training where it is impossible to use real aircraft as the target, to achieve exercise teaching Effect.

介于以上这些情况,国内对延迟技术,尤其是数字存储与转发技术的需求越来越高,存储与转发技术已成为对雷达距离欺骗、航迹欺骗、高度欺骗的重要手段。对存储转发系统的设计国内有部分研究及专利,如周续力(对搜索警戒雷达的距离欺骗和航迹欺骗研究[D].中北大学,2008:27.)提出了对雷达距离和航迹欺骗方案,即距离欺骗是通过对收到的雷达照射信号进行时延调制和放大实现;田晓威(一种具有实时存储转发功能的存储器,中国实用新型专利,201220069420.1[P].2012-09-05.)提出了一种具有实时存储转发功能的存储器,主要包含存储器、数据接口模块、数据存储模块、状态控制模块和实时输出模块。上述文献所提及的传统的存储转发系统以及雷达欺骗效果是建立在距离欺骗和速度欺骗基础上,系统功能比较单一,欺骗功能比较简单,由于使用外部存储器,系统最低延迟比较大,欺骗检验方法基本上都是通过建模来进行仿真,在实际应用中,存储转发系统的输入输出链路往往会出现时序不同步、数据位不对齐等问题,造成输出数据不可纠正的错误,单一通过仿真来验证欺骗效果往往和实际有所出入,从而造成系统设计的缺陷。Due to the above situations, domestic demand for delay technology, especially digital store-and-forward technology, is getting higher and higher. Store-and-forward technology has become an important means of radar distance deception, track deception, and altitude deception. There are some domestic studies and patents on the design of the store-and-forward system, such as Zhou Xuli (Research on the distance deception and track deception of search and warning radar [D]. North University of China, 2008: 27.) proposed the radar distance and track deception The scheme, that is, distance deception is realized by delay modulation and amplification of the received radar illumination signal; Tian Xiaowei (a memory with real-time store-and-forward function, Chinese utility model patent, 201220069420.1[P]. 2012-09-05. ) proposed a memory with real-time store-and-forward function, which mainly includes memory, data interface module, data storage module, state control module and real-time output module. The traditional store-and-forward system mentioned in the above literature and the radar deception effect are based on distance deception and speed deception. The system function is relatively simple, and the deception function is relatively simple. Due to the use of external memory, the minimum delay of the system is relatively large. The deception detection method Basically, simulation is performed by modeling. In practical applications, the input and output links of the store-and-forward system often have problems such as timing asynchrony and data bit misalignment, resulting in uncorrectable errors in output data. The effect of verifying deception is often different from the actual one, thus causing flaws in the system design.

发明内容Contents of the invention

本发明提供了一种数字存储与转发式干扰系统,该系统可以集信号侦查、欺骗、干扰于一体,实现雷达在开启防干扰模式下进行距离、速度、高度的欺骗;本发明实现简单,工作稳定,输入带宽宽。The invention provides a digital storage and forwarding jamming system, which can integrate signal detection, deception, and jamming, and realize the deception of distance, speed, and height of the radar when the anti-jamming mode is turned on; the invention is simple to implement and works Stable, wide input bandwidth.

本发明具体采用如下技术方案:The present invention specifically adopts the following technical solutions:

一种数字存储与转发式干扰系统,其结构如图2和图3所示,包括数模转换输出口1、多普勒倍频基准输出口2、频综输入口3、基准频率输入口4、外部雷达波包络输入口5、饱和功率中频雷达波输入口6、低功率中频雷达波输入口7、接插件8、第一模数转换器16、FPGA模块17、数字频率合成器18、数模转换器19、时钟芯片20、存储器21、单片机22、第二模数转换器23及DLVA模数转换器25;A digital store-and-forward jamming system, the structure of which is shown in Figure 2 and Figure 3, including a digital-to-analog conversion output port 1, a Doppler frequency multiplication reference output port 2, a frequency synthesis input port 3, and a reference frequency input port 4 , external radar wave envelope input port 5, saturated power intermediate frequency radar wave input port 6, low power intermediate frequency radar wave input port 7, connector 8, first analog-to-digital converter 16, FPGA module 17, digital frequency synthesizer 18, Digital-to-analog converter 19, clock chip 20, memory 21, single-chip microcomputer 22, second analog-to-digital converter 23 and DLVA analog-to-digital converter 25;

所述饱和功率中频雷达波输入口6与第一模数转换器16连接,所述低功率中频雷达波输入口7与第二模数转换器23连接,所述第一模数转换器16和第二模数转换器23分别与FPGA模块17连接;The saturated power intermediate-frequency radar wave input port 6 is connected with the first analog-to-digital converter 16, and the low-power intermediate-frequency radar wave input port 7 is connected with the second analog-to-digital converter 23, and the first analog-to-digital converter 16 and The second analog-to-digital converter 23 is connected with the FPGA module 17 respectively;

所述外部雷达波包络输入口5连接有DLVA模数转换器25,DLVA模数转换器25的输出端通过CMOS电平转换器件与FPGA模块17连接;Described external radar wave envelope input port 5 is connected with DLVA analog-to-digital converter 25, and the output end of DLVA analog-to-digital converter 25 is connected with FPGA module 17 by CMOS level conversion device;

所述单片机22分别与FPGA模块17、时钟芯片20、第二模数转换器23连接,所述单片机22通过RS422接口与所述接插件8连接;Described single-chip microcomputer 22 is connected with FPGA module 17, clock chip 20, the second analog-to-digital converter 23 respectively, and described single-chip microcomputer 22 is connected with described connector 8 by RS422 interface;

所述FPGA模块17通过SPI接口与数字频率合成器18相连,用于控制数字频率合成器18实时产生多普勒倍频基准;所述FPGA模块17的通用输出接口与接插件8连接以输出外部功率控制信号;所述数模转换器19与FPGA模块17通过LVDS信号通信,可进一步在数模转换器19输出端通过锁延迟环(DLL)与FPGA模块17连接以确保FPGA模块17与数模转换器19的数据时钟节拍对齐;Described FPGA module 17 is connected with digital frequency synthesizer 18 by SPI interface, is used to control digital frequency synthesizer 18 to produce Doppler frequency multiplication reference in real time; The general output interface of described FPGA module 17 is connected with connector 8 to output external Power control signal; described digital-to-analog converter 19 and FPGA module 17 are communicated by LVDS signal, can be further connected with FPGA module 17 by locked delay loop (DLL) to ensure FPGA module 17 and digital-analog at digital-to-analog converter 19 output terminals The data clock beats of the converter 19 are aligned;

所述频综输入口3与时钟芯片20连接,所述基准频率输入口4与数字频率合成器18连接,所述数字频率合成器18的输出端与多普勒倍频基准输出口2连接,所述数模转换器19的输出端与数模转换输出口1连接;The frequency synthesis input port 3 is connected with the clock chip 20, the reference frequency input port 4 is connected with the digital frequency synthesizer 18, and the output port of the digital frequency synthesizer 18 is connected with the Doppler frequency multiplication reference output port 2, The output end of the digital-to-analog converter 19 is connected with the digital-to-analog conversion output port 1;

所述时钟芯片20分别向第一模数转换器16、数模转换器19、第二模数转换器23及DLVA模数转换器25提供时钟节拍;整个系统电源由母板通过接插件8提供;存储器21与FPGA模块17连接。The clock chip 20 provides clock beats to the first analog-to-digital converter 16, the digital-to-analog converter 19, the second analog-to-digital converter 23 and the DLVA analog-to-digital converter 25 respectively; the whole system power supply is provided by the motherboard through the connector 8 ; The memory 21 is connected with the FPGA module 17 .

所述第二数模转换器23对输入至低频率中频雷达波输入口7的雷达波进行采样,采样后的信号通过低压差分信号模式(LVDS)输入至FPGA模块17形成雷达欺骗波;The second digital-to-analog converter 23 samples the radar wave input to the low-frequency intermediate-frequency radar wave input port 7, and the sampled signal is input to the FPGA module 17 by a low-voltage differential signal mode (LVDS) to form a radar deception wave;

所述第一模数转换器16对饱和功率中频雷达波输入口6的雷达波进行采样,采样后的信号通过LVDS输入至FPGA模块17并作为对雷达波的侦查信息存储在存储器21中,达到侦查目的;进一步的,将所存储信息经由预留网口导入到上位机中进行分析,得到辐射源特征;The first analog-to-digital converter 16 samples the radar wave of the saturated power intermediate frequency radar wave input port 6, and the sampled signal is input to the FPGA module 17 by LVDS and is stored in the memory 21 as the detection information of the radar wave, so as to achieve The purpose of investigation; further, the stored information is imported into the host computer through the reserved network port for analysis, and the characteristics of the radiation source are obtained;

所述DLVA模数转换器25对外部雷达波包络输入口5的信号进行采样,采样后的信号经由CMOS电平转换器件输入至FPGA模块17作为判断雷达波主瓣依据,由此可只对关键波形进行存储,压缩存储量,而不必像现有技术中需增加外部存储器;以DLVA模数转换器25输入的信号为依据,FPGA模块17调整不同程区雷达波脉冲幅度,实现目标高度欺骗目的;The DLVA analog-to-digital converter 25 samples the signal of the external radar wave envelope input port 5, and the sampled signal is input to the FPGA module 17 as the basis for judging the main lobe of the radar wave through a CMOS level conversion device, so that only Key waveforms are stored to compress the storage capacity, without the need to increase external memory as in the prior art; based on the signal input by the DLVA analog-to-digital converter 25, the FPGA module 17 adjusts the radar wave pulse amplitude in different ranges to achieve target height deception Purpose;

整个系统开始工作时,单片机22配置第二模数转换器23进入测试模式,此时第二模数转换器23的四个通道发出特定的测试图样,同时FPGA模块17的内部数据转换单元14接收第二模数转换器23传输的采样点,若所述采样点与上述测试图样不同,则FPAG模块17通过调节其内部的数据转换单元14中的串并转换器的行数据移位控制引脚来上下滑动并行数据,同时检测滑动后的数据是否与测试图样对齐;一旦检测到对齐,FPGA模块17将固定行数据移位控制引脚,同时产生通知信号触发单片机配置第二模数转换器23进入正常工作模式;When the whole system starts to work, the single-chip microcomputer 22 configures the second analog-to-digital converter 23 to enter the test mode. At this time, the four channels of the second analog-to-digital converter 23 send specific test patterns, and the internal data conversion unit 14 of the FPGA module 17 receives The sampling point that the second analog-to-digital converter 23 transmits, if the sampling point is different from the above-mentioned test pattern, then the FPAG module 17 is by adjusting the row data shift control pin of the serial-to-parallel converter in its internal data conversion unit 14 to slide the parallel data up and down, and at the same time detect whether the data after sliding is aligned with the test pattern; once the alignment is detected, the FPGA module 17 will shift the fixed row of data to the control pin, and at the same time generate a notification signal to trigger the single-chip microcomputer to configure the second analog-to-digital converter 23 Enter normal working mode;

FPGA模块17的结构如图4所示:The structure of FPGA module 17 is as shown in Figure 4:

1)在欺骗模式中,其内部的数据转换单元14收到第二模数转换器23的采样数据后,将所采集数据按照节拍频率传递给多路复用选择器9,多路复用选择器9按照节拍频率将数据传递给入口FIFO单元10,入口FIFO单元10一旦收到由门限判定单元26传输的DLVA信号,就开始放行多路复用选择器9传来的数据并按照时钟节拍传递给主存储FIFO单元11,同时改变主存储FIFO单元11输出信号的empty状态;出口FIFO单元12检测到empty信号的状态由1变为0后启其动内部计时器开始计时,一旦计时达到与FPGA模块17相连的单片机22所配置的延迟参数后,出口FIFO单元12开始按照时钟节拍读取主存储FIFO单元11中的数据并将数据传递给数据转换单元15进行并串转换,最后数据传输到多路复用选择器13输出给数模转换器19并输出欺骗信号;在实现距离欺骗的基础上,欺骗单元27通过SPI接口28实时控制外部数字频率合成器18的输出频率,达到在载波上叠加多普勒频率的目的,实现速度欺骗功能;增益控制单元24收到欺骗单元27的控制信号后,分析经由DLVA模数转换器25输入的数据,估算此时输入信号的功率大小并产生功率控制信号至与FPGA模块17连接的接插件8,该信号用于控制外部T/R组件对数模转换器19输出的不同程区的脉冲信号的放大倍数,达到高度欺骗的目的;1) In the fraud mode, after its internal data conversion unit 14 receives the sampling data of the second analog-to-digital converter 23, the collected data is passed to the multiplexing selector 9 according to the beat frequency, and the multiplexing selector The device 9 transmits the data to the entry FIFO unit 10 according to the beat frequency. Once the entry FIFO unit 10 receives the DLVA signal transmitted by the threshold determination unit 26, it starts to release the data from the multiplexing selector 9 and transmits it according to the clock beat. Give main storage FIFO unit 11, change the empty state of main storage FIFO unit 11 output signals simultaneously; Export FIFO unit 12 detects that the state of empty signal changes from 1 to 0 and then starts its internal timer to start counting, once timing reaches and FPGA After the delay parameter configured by the single-chip microcomputer 22 connected to the module 17, the export FIFO unit 12 starts to read the data in the main storage FIFO unit 11 according to the clock beat and passes the data to the data conversion unit 15 for parallel-to-serial conversion, and finally the data is transmitted to multiple The multiplexing selector 13 outputs to the digital-to-analog converter 19 and outputs a spoofing signal; on the basis of realizing the distance spoofing, the spoofing unit 27 controls the output frequency of the external digital frequency synthesizer 18 in real time through the SPI interface 28 to achieve superposition on the carrier The purpose of the Doppler frequency is to realize the speed deception function; after the gain control unit 24 receives the control signal of the deception unit 27, it analyzes the data input via the DLVA analog-to-digital converter 25, estimates the power of the input signal at this time and generates a power control The signal is connected to the connector 8 connected to the FPGA module 17, and the signal is used to control the magnification of the pulse signals of different ranges output by the external T/R assembly to the digital-to-analog converter 19, so as to achieve a high degree of deception;

2)在侦查模式中,多路复用器9放行与第一模数转换器16连接的数据转换单元的数据,并将转换后的数据存储至存储器21中,同时屏蔽与第二模数转换器23相连的数据转换单元14的数据。2) In the detection mode, the multiplexer 9 releases the data of the data conversion unit connected to the first analog-to-digital converter 16, and stores the converted data into the memory 21, while shielding and second analog-to-digital conversion The data of the data conversion unit 14 connected to the device 23.

本发明的有益效果是:The beneficial effects of the present invention are:

1)本发明提供的数字存储与转发式干扰系统通过设置多个外部接口,以解决以往设计中时钟不相参、侦查存储波形信噪比低等问题;1) The digital store-and-forward jamming system provided by the present invention solves the problems of incoherent clocks and low signal-to-noise ratio of waveforms in investigation and storage in previous designs by setting multiple external interfaces;

2)解决传统设计中数据位不对齐的问题,提升了设备输出效果,且只对关键波形进行存储,压缩存储量,从而不必像以往设计中需增加外部存储器,解决传统设计中利用外部存储器增大了最小延迟的不足,使得延迟更加的精确;同时,本发明使得多波束雷达欺骗能够进行高度欺骗;2) Solve the problem of misalignment of data bits in the traditional design, improve the output effect of the device, and only store the key waveforms to compress the storage capacity, so that it is not necessary to increase the external memory as in the previous design, and solve the problem of using an external memory in the traditional design. The deficiency of the minimum delay is increased, and the delay is more accurate; at the same time, the present invention enables multi-beam radar deception to be highly deceptive;

3)本发明集侦查、欺骗、干扰于一体,最大存储200us的脉冲波形,波形延迟精度为0.41us;地面控制站可随时控制设备进入开机、待机、侦查、欺骗、干扰模式,可使雷达在开启防干扰模式下进行距离、速度、高度的欺骗,并形成稳定航迹。3) The present invention integrates detection, deception and interference, and can store a maximum pulse waveform of 200us, with a waveform delay accuracy of 0.41us; the ground control station can control the equipment to enter the power-on, standby, detection, deception, and interference modes at any time, enabling the radar to When the anti-jamming mode is turned on, the distance, speed, and altitude can be deceived, and a stable flight path can be formed.

附图说明Description of drawings

图1为通用的存储转发结构框图;Figure 1 is a block diagram of a general store-and-forward structure;

图2为本发明的外部接口示意图;Fig. 2 is a schematic diagram of the external interface of the present invention;

图3为本发明硬件结构示意图;Fig. 3 is a schematic diagram of the hardware structure of the present invention;

图4为本发明中FPGA内部模块结构设计;Fig. 4 is FPGA internal module structure design among the present invention;

图5为具体实施方式提供的数字存储与转发干扰系统的存储延迟转发效果;Fig. 5 is the store-delay-forward effect of the digital store-and-forward interference system provided in the specific embodiment;

图6为具体实施方式提供的数字存储与转发干扰系统的输入波与转发波效果图;Fig. 6 is an effect diagram of the input wave and the forwarding wave of the digital store and forward interference system provided by the specific embodiment;

其中,1:数模转换输出口,2:多普勒倍频基准输出口,3:频综输入口,4:基准频率输入口,5:外部雷达波包络输入口,6:饱和功率中频雷达波输入口,7:低功率中频雷达波输入口,8:接插件,9:内部多路复用器,10:入口FIFO单元,11:主存储FIFO单元,12出口FIFO单元,13:多路复用器,14:数据转换单元,15:数据转换单元,16:第一模数转换器,17:FPGA模块,18:数字频率合成器,19:数模转换器,20:时钟芯片,21:存储器,22:单片机,23:第二模数转换器,24:FPGA内部的增益控制单元,25:DLVA模数转换器,26:FPGA内部的门限判定单元,27:FPGA内部的欺骗控制单元,28:FPGA内部的SPI通信接口,29、30:隔离FIFO单元。Among them, 1: digital-to-analog conversion output port, 2: Doppler frequency multiplication reference output port, 3: frequency synthesis input port, 4: reference frequency input port, 5: external radar wave envelope input port, 6: saturation power intermediate frequency Radar wave input port, 7: low power intermediate frequency radar wave input port, 8: connector, 9: internal multiplexer, 10: entry FIFO unit, 11: main storage FIFO unit, 12 exit FIFO unit, 13: multiple Multiplexer, 14: data conversion unit, 15: data conversion unit, 16: first analog-to-digital converter, 17: FPGA module, 18: digital frequency synthesizer, 19: digital-to-analog converter, 20: clock chip, 21: memory, 22: microcontroller, 23: second analog-to-digital converter, 24: gain control unit inside FPGA, 25: DLVA analog-to-digital converter, 26: threshold determination unit inside FPGA, 27: deception control inside FPGA Unit, 28: SPI communication interface inside FPGA, 29, 30: isolation FIFO unit.

具体实施方式detailed description

下面结合附图和具体实施方式对本实用新型进行详细说明。The utility model will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

本实施方式提供的数字存储与转发式干扰系统主要结构如图2和图3所示,高频信号经由T/R组件接收后通过下变频输出低功率和饱和功率两路100M~500M的中频信号,同时检测高频信号的包络,产生包络信号;低功率信号经由低功率中频雷达波输入口7输入到第二模数转换器23中,再输入至FPGA模块17用于存储及处理产生欺骗信号;饱和功率信号经由饱和功率中频雷达波输入口6输入至第一模数转换器16中进行存储;所产生的包络信号经由外部雷达波包络输入口5输入至DLVA模数转换器25中对脉冲是否到来进行判别;The main structure of the digital store-and-forward jamming system provided by this embodiment is shown in Figure 2 and Figure 3. After the high-frequency signal is received by the T/R component, two channels of 100M-500M intermediate frequency signals with low power and saturated power are output through down-conversion. , while detecting the envelope of the high-frequency signal to generate an envelope signal; the low-power signal is input to the second analog-to-digital converter 23 through the low-power intermediate-frequency radar wave input port 7, and then input to the FPGA module 17 for storage and processing. Spoofing signal; saturated power signal is input to the first analog-to-digital converter 16 through the saturated power intermediate frequency radar wave input port 6 for storage; the generated envelope signal is input to the DLVA analog-to-digital converter through the external radar wave envelope input port 5 In 25, it is judged whether the pulse arrives;

数模转换输出口1作为数模转换器19的输出端,是处理后的中频雷达波输出口,其输出中频信号的频率为100Mhz~500Mhz,功率为-15dbm~0dbm,主杂比大于25dbc;100Mhz多普勒倍频基准输出口2作为数字频率合成器18的输出端,其输出范围为99.9Mhz~100.1Mhz,功率为0dbm;外部1.25G频综输入口3作为时钟芯片20的输入端,为系统内的第一模数转换器16、数模转换器19、第二模数转换器23及DLVA模数转换器25提供节拍频率;外部100Mhz基准频率输入口4作为数字频率合成器18的基准频率输入端,输入功率为-2dbm;外部雷达波包络输入口5作为DLVA模数转换器25的输入端,为判断雷达波主瓣提供依据;饱和功率中频雷达波输入口6作为第一模数转换器16的输入端,输入频率为100Mhz~500Mhz、功率为0dbm的信号,第一模数转换器16对该信号进行采样,并经由FPGA模块17存储至存储器21中作为侦查的雷达波存储;低功率中频雷达波输入口7作为第二模数转换器23的输入端,输入频率为100Mhz~500Mhz、功率为-40dbm~0dbm的信号,第二模数转换器23对输入信号进行采样,通过FPGA模块17进行处理并产生欺骗信号。The digital-to-analog conversion output port 1, as the output port of the digital-to-analog converter 19, is the output port of the processed intermediate frequency radar wave. The frequency of the output intermediate frequency signal is 100Mhz~500Mhz, the power is -15dbm~0dbm, and the main-to-clutter ratio is greater than 25dbc; The 100Mhz Doppler frequency multiplication reference output port 2 is used as the output end of the digital frequency synthesizer 18, and its output range is 99.9Mhz~100.1Mhz, and the power is 0dbm; the external 1.25G frequency synthesis input port 3 is used as the input end of the clock chip 20, Provide beat frequency for the first analog-to-digital converter 16, digital-to-analog converter 19, second analog-to-digital converter 23 and DLVA analog-to-digital converter 25 in the system; the external 100Mhz reference frequency input port 4 is used as the digital frequency synthesizer 18 Reference frequency input port, input power is -2dbm; External radar wave envelope input port 5 is used as the input port of DLVA analog-to-digital converter 25, provides a basis for judging the main lobe of radar wave; Saturation power intermediate frequency radar wave input port 6 is used as the first The input terminal of the analog-to-digital converter 16 receives a signal with a frequency of 100Mhz-500Mhz and a power of 0dbm. The first analog-to-digital converter 16 samples the signal and stores it in the memory 21 via the FPGA module 17 as a radar wave for detection. Storage; the low-power intermediate-frequency radar wave input port 7 is used as the input end of the second analog-to-digital converter 23, and the input frequency is 100Mhz~500Mhz, and the power is a signal of -40dbm~0dbm, and the second analog-to-digital converter 23 samples the input signal , processed by the FPGA module 17 and generate a spoof signal.

系统开始工作时,单片机22配置第二模数转换器23进入测试模式,在测试模式中,第二模数转换器23的四个通道(QD、ID、Q、I,每一路为12bit)会输出固定的测试图样,在一个时钟节拍输出的测试图样具体格式为:T0时刻QD通道为FF7h,ID通道为FEFh,Q通道为008h,I通道为010h;T1时刻重复T0时刻图样;T2时刻QD通道图样与Q通道图样交换,ID通道与I通道图样交换,直到T5时刻各个通道重复T0时刻图样,重复以上循环;When the system starts to work, the single-chip microcomputer 22 configures the second analog-to-digital converter 23 to enter the test mode, and in the test mode, four channels (QD, ID, Q, I, each road is 12bit) of the second analog-to-digital converter 23 will be Output a fixed test pattern. The specific format of the test pattern output in one clock beat is: the QD channel at T 0 is FF7h, the ID channel is FEFh, the Q channel is 008h, and the I channel is 010h; T 1 repeats the T 0 time pattern; At T2, the QD channel pattern is exchanged with the Q channel pattern, and the ID channel is exchanged with the I channel pattern. Until T5, each channel repeats the T0 time pattern, and the above cycle is repeated ;

第二模数转换器23与FPGA模块17内部的数据转换单元14连接,数据转换单元14主要有两个作用:1)将每一个通道的每一个bit位看作是串行数据,进行串并转换以此降低内部处理速率;2)判断输入的数据是否为测试图样,如果不为测试图样,那么对串并转换部分并行数据进行前后移位,继续判断是否为测试图样,通过移位判断,直到最终为测试图样,停止移位,此时配置第二模数转换器23为工作模式,下变频波形从低功率中频雷达波输入口7输入到第二模数转换器23进行采样。The second analog-to-digital converter 23 is connected with the internal data conversion unit 14 of the FPGA module 17, and the data conversion unit 14 mainly has two effects: 1) each bit of each channel is regarded as serial data, and serial-parallel is carried out Convert to reduce the internal processing rate in this way; 2) judge whether the input data is a test pattern, if it is not a test pattern, then shift the parallel data part of the serial-to-parallel conversion back and forth, continue to judge whether it is a test pattern, and judge by shifting, Stop shifting until the final test pattern. At this time, configure the second analog-to-digital converter 23 in the working mode, and the down-converted waveform is input from the low-power intermediate-frequency radar wave input port 7 to the second analog-to-digital converter 23 for sampling.

本实施方式中用于侦查及产生欺骗信号的FPGA模块17的内部结构如图4所示:The internal structure of the FPGA module 17 that is used to detect and generate fraudulent signals in the present embodiment is as shown in Figure 4:

1)在欺骗模式中,数据转换单元14将数据传输给多路复用器9,多路复用器9放行与第二模数转换器23相连的数据转换单元14的数据,并屏蔽与第一模数转换器16连接的数据转换单元的数据;1) In the fraud mode, the data conversion unit 14 transmits data to the multiplexer 9, and the multiplexer 9 releases the data of the data conversion unit 14 connected to the second analog-to-digital converter 23, and shields the data with the second analog-to-digital converter 23. The data of the data conversion unit that an analog-to-digital converter 16 is connected;

DLVA模数转换器25对雷达波包络信号进行采样后,将采样数据输出给FPGA模块17中的门限判定单元26以判断脉冲是否到来;若输入数据超过预设门限,则认为脉冲到来,此时门限判定单元26将输出DLVA信号给入口FIFO单元10;After the DLVA analog-to-digital converter 25 samples the radar wave envelope signal, the sampled data is output to the threshold judging unit 26 in the FPGA module 17 to judge whether the pulse arrives; if the input data exceeds the preset threshold, then it is considered that the pulse arrives. The timing threshold determination unit 26 will output the DLVA signal to the entry FIFO unit 10;

入口FIFO单元10在未收到来自门限判定单元26的DLVA信号时,会屏蔽输入的一切信号;当入口FIFO单元10接收到DLVA信号时,其会放行多路复用器9的信号至主存储FIFO单元11,同时主存储FIFO单元11改变向出口FIFO单元12释放的empty信号的状态,表明开始存储数据;When the entry FIFO unit 10 does not receive the DLVA signal from the threshold determination unit 26, it will shield all input signals; when the entry FIFO unit 10 receives the DLVA signal, it will release the signal of the multiplexer 9 to the main storage FIFO unit 11, while the main storage FIFO unit 11 changes the state of the empty signal released to the outlet FIFO unit 12, indicating that it starts to store data;

出口FIFO单元12检测到主存储FIFO单元11释放的empty信号状态改变后,启动其内部的计时器开始计时;当计时器达到欺骗单元27对其配置的门限时,开始读取主存储FIFO单元11的数据并传输至数据转换单元15进行并串转换;当出口FIFO单元12检测到empty信号状态恢复后,停止读取主存储FIFO单元11的数据;欺骗单元27对增益控制单元24和出口FIFO单元12的控制信号,由FPGA模块17外部的单片机22收到飞控指令后通过SPI接口28传输产生;After the exit FIFO unit 12 detects that the empty signal state that the main storage FIFO unit 11 releases changes, it starts its internal timer and starts counting; when the timer reaches the threshold configured by the cheating unit 27, it starts to read the main storage FIFO unit 11 and transmit the data to the data conversion unit 15 for parallel-to-serial conversion; after the exit FIFO unit 12 detects that the empty signal state recovers, stop reading the data of the main storage FIFO unit 11; the cheating unit 27 controls the gain control unit 24 and the exit FIFO unit The control signal of 12 is generated by the SPI interface 28 transmission after receiving the flight control instruction by the single-chip microcomputer 22 outside the FPGA module 17;

隔离FIFO单元29收到数据转换单元15的数据后,将该数据按照多路复用器13提供的时钟放行给多路复用器13,多路复用器13将输入的数据传输至外部数模转换器19并经由数模转换输出口1输出欺骗信号,该欺骗信号通过全转发或者测周转发模式可达到距离欺骗的功能;在实现距离欺骗的基础上,欺骗单元27通过SPI接口28实时控制外部数字频率合成器18的输出频率,达到在载波上叠加多普勒频率的目的,实现速度欺骗功能;增益控制单元24收到欺骗单元27的控制信号后,分析经由DLVA模数转换器25输入的数据,估算此时输入信号的功率大小并产生功率控制信号至接插件8,该信号用于控制外部R/T组件对数模转换器19输出信号的放大倍数,达到高度欺骗的目的;After the isolation FIFO unit 29 receives the data from the data conversion unit 15, the data is released to the multiplexer 13 according to the clock provided by the multiplexer 13, and the multiplexer 13 transmits the input data to the external data The analog converter 19 outputs a spoofing signal via the digital-to-analog conversion output port 1, and the spoofing signal can reach the function of distance spoofing through full forwarding or cycle measurement forwarding mode; Control the output frequency of the external digital frequency synthesizer 18 to achieve the purpose of superimposing the Doppler frequency on the carrier, and realize the speed deception function; after the gain control unit 24 receives the control signal of the deception unit 27, it analyzes the frequency via the DLVA analog-to-digital converter 25 The input data estimates the power of the input signal at this time and generates a power control signal to the connector 8, which is used to control the amplification factor of the output signal of the digital-to-analog converter 19 by the external R/T component to achieve a high degree of deception;

所述的全转发模式具体如下:DLVA模数转换器25通过CMOS电平转换器件与FPGA模块17通信,DLVA模数转换器25采样后的数据与FPGA模块17中门限判定单元26所设置的门限进行比较,一旦采样后的数据高于门限则延迟转发开始进行,一旦采样后的数据低于门限则系统停止存储,从输入与输出信号上来看,系统操作为转发主瓣与旁瓣;利用这样的方法可以成功在雷达上形成航迹并达到距离与速度欺骗;Described full forwarding mode is specifically as follows: DLVA analog-to-digital converter 25 communicates with FPGA module 17 by CMOS level conversion device, the data after DLVA analog-to-digital converter 25 samples and the threshold that threshold determination unit 26 sets in FPGA module 17 For comparison, once the sampled data is higher than the threshold, the delayed forwarding starts, and once the sampled data is lower than the threshold, the system stops storing. From the perspective of input and output signals, the system operates as forwarding main lobe and side lobe; using this The method can successfully form a track on the radar and achieve distance and speed deception;

所述的测周转发模式具体如下:当DLVA模数转换器25采样后的数据高于所设置的门限,则延迟转发开始,根据侦查到的雷达波特性设置主瓣宽度,则系统转发时间固定;从输入与输出信号上来看,系统操作为只转发主瓣;利用这样的方法可以成功在雷达上形成航迹并达到高度欺骗;Described measurement cycle forwarding mode is specifically as follows: when the data sampled by DLVA analog-to-digital converter 25 is higher than the set threshold, then the delay forwarding begins, and the main lobe width is set according to the detected radar wave characteristics, then the system forwarding time Fixed; from the point of view of the input and output signals, the system operates to only retransmit the main lobe; using this method, it is possible to successfully form a track on the radar and achieve high deception;

2)在侦查模式中,第一模数转换器16采样后的数据经由多路复用选择器9传输至存储器21进行存储。2) In the investigation mode, the data sampled by the first analog-to-digital converter 16 is transmitted to the memory 21 via the multiplexer 9 for storage.

本实施方式的实延迟转发效果如图5所示,测试时在低功率中频雷达波输入口输入48us脉冲调制的300Mhz信号,在外部雷达波包络输入口输入检波后的包络信号,测试数模转换输出口信号如图中所示,图中位于上方的信号为输入的包络信号,下方输出为延迟15us的原始信号(由于延迟信号没有通过检波器,显示结果为调制后的300Mhz信号)。输入波与本发明转发波对比如图6所示,通过上位机实时控制波形延迟转发;图中上方信号为本发明转发的信号,下方为输入的波形信号。The real delay forwarding effect of this embodiment is shown in Figure 5. During the test, the 300Mhz signal of 48us pulse modulation is input at the low-power intermediate frequency radar wave input port, and the envelope signal after detection is input at the external radar wave envelope input port. The signal of the analog conversion output port is shown in the figure. The upper signal in the figure is the input envelope signal, and the lower output is the original signal delayed by 15us (because the delayed signal does not pass through the detector, the displayed result is the modulated 300Mhz signal) . The comparison between the input wave and the forwarding wave of the present invention is shown in Figure 6, and the waveform delay forwarding is controlled by the host computer in real time; the upper signal in the figure is the signal forwarded by the present invention, and the lower part is the input waveform signal.

Claims (7)

1.一种数字存储与转发式干扰系统,包括数模转换输出口(1)、低功率中频雷达波输入口(7)、接插件(8)、第一模数转换器(16)、FPGA模块(17)、数字频率合成器(18)、数模转换器(19)、时钟芯片(20)、存储器(21)、单片机(22)及第二模数转换器(23),其特征在于,还包括多普勒倍频基准输出口(2)、频综输入口(3)、基准频率输入口(4)、外部雷达波包络输入口(5)、饱和功率中频雷达波输入口(6)及DLVA模数转换器(25);1. A digital store-and-forward jamming system, comprising a digital-to-analog conversion output port (1), a low-power intermediate-frequency radar wave input port (7), a connector (8), a first analog-to-digital converter (16), and an FPGA Module (17), digital frequency synthesizer (18), digital-to-analog converter (19), clock chip (20), memory (21), single-chip microcomputer (22) and the second analog-to-digital converter (23), it is characterized in that , also includes Doppler frequency multiplication reference output port (2), frequency synthesis input port (3), reference frequency input port (4), external radar wave envelope input port (5), saturated power intermediate frequency radar wave input port ( 6) and DLVA analog-to-digital converter (25); 所述饱和功率中频雷达波输入口(6)与第一模数转换器(16)连接,所述低功率中频雷达波输入口(7)与第二模数转换器(23)连接,所述第一模数转换器(16)和第二模数转换器(23)分别与FPGA模块(17)连接;The saturated power intermediate-frequency radar wave input port (6) is connected with the first analog-to-digital converter (16), and the low-power intermediate-frequency radar wave input port (7) is connected with the second analog-to-digital converter (23). The first analog-to-digital converter (16) and the second analog-to-digital converter (23) are connected with the FPGA module (17) respectively; 所述外部雷达波包络输入口(5)与DLVA模数转换器(25)连接,DLVA模数转换器(25)的输出端通过CMOS电平转换器件与FPGA模块(17)连接;The external radar wave envelope input port (5) is connected with the DLVA analog-to-digital converter (25), and the output end of the DLVA analog-to-digital converter (25) is connected with the FPGA module (17) by a CMOS level conversion device; 所述单片机(22)分别与FPGA模块(17)、时钟芯片(20)、第二模数转换器(23)连接,所述单片机(22)通过RS422接口与所述接插件(8)连接;Described single-chip microcomputer (22) is connected with FPGA module (17), clock chip (20), the second analog-to-digital converter (23) respectively, and described single-chip microcomputer (22) is connected with described connector (8) by RS422 interface; 所述FPGA模块(17)通过SPI接口与数字频率合成器(18)连接,用于控制数字频率合成器(18)实时产生多普勒倍频基准;所述FPGA模块(17)的通用输出接口与接插件(8)连接用于输出外部功率控制信号;所述数模转换器(19)与FPGA模块(17)通过LVDS信号通信,所述频综输入口(3)与时钟芯片(20)连接,所述基准频率输入口(4)与数字频率合成器(18)连接,所述数字频率合成器(18)的输出端与多普勒倍频基准输出口(2)连接,所述数模转换器(19)的输出端与数模转换输出口(1)连接;Described FPGA module (17) is connected with digital frequency synthesizer (18) by SPI interface, is used to control digital frequency synthesizer (18) to produce Doppler frequency multiplication reference in real time; The general output interface of described FPGA module (17) Connect with connector (8) and be used for outputting external power control signal; Described digital-to-analog converter (19) communicates with FPGA module (17) by LVDS signal, and described frequency synthesis input port (3) and clock chip (20) Connect, the reference frequency input port (4) is connected with the digital frequency synthesizer (18), the output port of the digital frequency synthesizer (18) is connected with the Doppler frequency multiplication reference output port (2), and the digital frequency synthesizer The output terminal of the analog converter (19) is connected with the digital-to-analog conversion output port (1); 所述时钟芯片(20)分别向第一模数转换器(16)、数模转换器(19)、第二模数转换器(23)及DLVA模数转换器(25)提供时钟节拍;整个系统电源由母板通过接插件(8)提供;存储器(21)与FPGA模块(17)连接。Described clock chip (20) provides clock beat to first analog-to-digital converter (16), digital-to-analog converter (19), second analog-to-digital converter (23) and DLVA analog-to-digital converter (25) respectively; The system power supply is provided by the motherboard through the connector (8); the memory (21) is connected with the FPGA module (17). 2.根据权利要求1所述的数字存储与转发式干扰系统,其特征在于,所述数模转换器(19)输出端通过锁延迟环(DLL)与FPGA模块(17)连接以确保FPGA模块(17)与数模转换器(19)的数据时钟节拍对齐。2. digital storage and forwarding type jamming system according to claim 1, is characterized in that, described digital-to-analog converter (19) output end is connected with FPGA module (17) to ensure FPGA module by locking delay loop (DLL) (17) is aligned with the data clock beat of the digital-to-analog converter (19). 3.根据权利要求1所述的数字存储与转发式干扰系统,其特征在于,所述FPGA模块(17)包括第一数据转换单元(14)、第二数据转换单元(15)和第三数据转换单元、第一多路复用器(9)和第二多路复用器(13)、入口FIFO单元(10)、门限判定单元(26)、主存储FIFO单元(11)、出口FIFO单元(12)、欺骗单元(27)、SPI接口(28)以及隔离FIFO单元(29),所述FPGA模块(17)分别工作于侦查模式和欺骗模式的具体过程如下:3. digital storage and forwarding type interference system according to claim 1, is characterized in that, described FPGA module (17) comprises the first data conversion unit (14), the second data conversion unit (15) and the 3rd data Conversion unit, first multiplexer (9) and second multiplexer (13), entry FIFO unit (10), threshold judgment unit (26), main storage FIFO unit (11), exit FIFO unit (12), spoofing unit (27), SPI interface (28) and isolation FIFO unit (29), the specific process of described FPGA module (17) working in reconnaissance mode and spoofing mode respectively is as follows: A.侦查模式:第一多路复用器(9)放行与第一模数转换器(16)连接的第三数据转换单元的数据,并将转换后的数据存储至存储器(21)中,同时屏蔽与外部第二模数转换器(23)相连的第一数据转换单元(14)的数据;A. Investigation mode: the first multiplexer (9) releases the data of the third data conversion unit connected to the first analog-to-digital converter (16), and stores the converted data into the memory (21), Simultaneously shield the data of the first data conversion unit (14) that is connected with the external second analog-to-digital converter (23); B.欺骗模式:第一数据转换单元(14)将外部的第二模数转换器(23)的采样数据传输给第一多路复用器(9),第一多路复用器(9)放行与第二模数转换器(23)相连的第一数据转换单元(14)的数据,并屏蔽与第一模数转换器(16)连接的第三数据转换单元的数据;B. cheating mode: the first data conversion unit (14) transmits the sampling data of the second external analog-to-digital converter (23) to the first multiplexer (9), and the first multiplexer (9) ) release the data of the first data conversion unit (14) connected to the second analog-to-digital converter (23), and shield the data of the third data conversion unit connected to the first analog-to-digital converter (16); 所述的外部DLVA模数转换器(25)对雷达波包络信号进行采样后,将采样数据输出给FPGA模块(17)中的门限判定单元(26)以判断脉冲是否到来;若输入数据超过预设门限,则认为脉冲到来,门限判定单元(26)将输出DLVA信号给入口FIFO单元(10);After the described external DLVA analog-to-digital converter (25) samples the radar wave envelope signal, the sampled data is output to the threshold determination unit (26) in the FPGA module (17) to judge whether the pulse arrives; if the input data exceeds Preset threshold, then consider pulse arrival, threshold determination unit (26) will output DLVA signal to entrance FIFO unit (10); 入口FIFO单元(10)接收到DLVA信号后放行第一多路复用器(9)的信号至主存储FIFO单元(11),此时主存储FIFO单元(11)改变其向出口FIFO单元(12)释放的empty信号的状态,表明开始存储数据;After the entry FIFO unit (10) receives the DLVA signal, the signal of the first multiplexer (9) is released to the main storage FIFO unit (11), and now the main storage FIFO unit (11) changes its direction to the exit FIFO unit (12) ) state of the released empty signal, indicating that data is to be stored; 出口FIFO单元(12)检测到主存储FIFO单元(11)释放的empty信号状态改变后,启动其内部的计时器开始计时;当计时器达到欺骗单元(27)对其配置的门限时,出口FIFO单元(12)开始读取主存储FIFO单元(11)的数据并传输至第二数据转换单元(15)进行并串转换;所述欺骗单元(27)对出口FIFO单元(12)的控制信号由外部的单片机(22)收到飞控指令后通过SPI接口(28)传输产生;After the exit FIFO unit (12) detects that the empty signal state of the main storage FIFO unit (11) has changed, it starts its internal timer and starts counting; when the timer reaches the threshold configured by the cheating unit (27), the exit FIFO Unit (12) starts to read the data of main storage FIFO unit (11) and transmits to the second data conversion unit (15) and carries out parallel-serial conversion; The external single-chip microcomputer (22) generates through SPI interface (28) transmission after receiving the flight control instruction; 隔离FIFO单元(29)收到第二数据转换单元(15)的数据后,将该数据按照第二多路复用器(13)提供的时钟放行给第二多路复用器(13),第二多路复用器(13)将输入的数据传输至外部数模转换器(19)并经由数模转换输出口(1)输出欺骗信号,该欺骗信号通过全转发或者测周转发模式可达到距离欺骗的功能。After the isolation FIFO unit (29) receives the data of the second data conversion unit (15), the data is released to the second multiplexer (13) according to the clock provided by the second multiplexer (13), The second multiplexer (13) transmits the input data to the external digital-to-analog converter (19) and outputs a spoofing signal through the digital-to-analog conversion output port (1). To achieve the function of distance deception. 4.根据权利要求3所述的数字存储与转发式干扰系统,其特征在于,所述欺骗单元(27)通过SPI接口(28)实时控制外部数字频率合成器(18)的输出频率,达到在载波上叠加多普勒频率的目的,配合系统延迟转发实现速度欺骗功能。4. digital storage and forwarding type jamming system according to claim 3, is characterized in that, described fraud unit (27) controls the output frequency of external digital frequency synthesizer (18) in real time by SPI interface (28), reaches in The purpose of superimposing the Doppler frequency on the carrier is to cooperate with the system delay forwarding to realize the speed deception function. 5.根据权利要求3所述的数字存储与转发式干扰系统,其特征在于,所述FPGA模块(17)还包括增益控制单元(24),所述增益控制单元(24)收到欺骗单元(27)的控制信号后,分析经由DLVA模数转换器(25)输入的数据,估算此时输入信号的功率大小并产生功率控制信号至与FPGA模块(17)连接的接插件(8),用于控制外部T/R组件对数模转换器(19)输出的不同程区的脉冲信号的放大倍数,达到高度欺骗的目的。5. digital storage and forwarding type jamming system according to claim 3, is characterized in that, described FPGA module (17) also comprises gain control unit (24), and described gain control unit (24) receives fraudulent unit ( 27) after the control signal, analyze the data input via the DLVA analog-to-digital converter (25), estimate the power size of the input signal at this moment and generate the power control signal to the connector (8) connected with the FPGA module (17), use It is used to control the amplification factor of the pulse signals in different ranges output by the external T/R component to the digital-to-analog converter (19), so as to achieve the purpose of highly deceiving. 6.根据权利要求5所述的数字存储与转发式干扰系统,其特征在于,所述欺骗单元(27)对增益控制单元(24)的控制信号由外部的单片机(22)收到飞控指令后通过SPI接口(28)传输产生。6. digital storage and forwarding type jamming system according to claim 5, is characterized in that, described cheating unit (27) is received flight control instruction by external single-chip microcomputer (22) to the control signal of gain control unit (24) Then generate by SPI interface (28) transmission. 7.根据权利要求3所述的数字存储与转发式干扰系统,其特征在于,所述第二模数转换器(23)和第一数据转换单元(14)在进入正常工作模式前还有测试模式,具体如下:单片机(22)配置第二模数转换器(23)进入测试模式,此时第二模数转换器(23)的四个通道发出特定的测试图样;同时FPGA模块(17)的内部第一数据转换单元(14)接收第二模数转换器(23)传输的采样点,若所述采样点与上述测试图样不同,则FPAG模块(17)通过调节其内部的第一数据转换单元(14)中的串并转换器的并行数据移位控制引脚滑动并行数据,同时检测滑动后的数据是否与测试图样对齐;一旦检测到对齐,FPGA模块(17)将固定并行数据移位控制引脚,同时产生通知信号触发单片机配置第二模数转换器(23)进入正常工作模式。7. The digital store-and-forward jamming system according to claim 3, characterized in that, the second analog-to-digital converter (23) and the first data conversion unit (14) also have a test before entering the normal operating mode Mode, specifically as follows: the single-chip microcomputer (22) configures the second analog-to-digital converter (23) to enter the test mode, and now four channels of the second analog-to-digital converter (23) send specific test patterns; while the FPGA module (17) The internal first data conversion unit (14) of the internal first data conversion unit (14) receives the sampling point transmitted by the second analog-to-digital converter (23), if the sampling point is different from the above-mentioned test pattern, the FPAG module (17) adjusts its internal first data The parallel data shift control pin of the serial-to-parallel converter in the conversion unit (14) slides the parallel data, and detects whether the data after sliding is aligned with the test pattern; once the alignment is detected, the FPGA module (17) shifts the fixed parallel data bit control pin, and simultaneously generate a notification signal to trigger the microcontroller to configure the second analog-to-digital converter (23) to enter the normal working mode.
CN201410679828.4A 2014-11-24 2014-11-24 Digital storage and forwarding type interference system Expired - Fee Related CN104360326B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410679828.4A CN104360326B (en) 2014-11-24 2014-11-24 Digital storage and forwarding type interference system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410679828.4A CN104360326B (en) 2014-11-24 2014-11-24 Digital storage and forwarding type interference system

Publications (2)

Publication Number Publication Date
CN104360326A CN104360326A (en) 2015-02-18
CN104360326B true CN104360326B (en) 2017-05-10

Family

ID=52527606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410679828.4A Expired - Fee Related CN104360326B (en) 2014-11-24 2014-11-24 Digital storage and forwarding type interference system

Country Status (1)

Country Link
CN (1) CN104360326B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676198B (en) * 2016-03-31 2017-12-05 电子科技大学 A kind of echo impulse delay generation device for pulse radar test
CN108008362A (en) * 2016-10-30 2018-05-08 中国船舶重工集团公司第七二三研究所 A kind of if radar target echo and interference generation module
CN106680786B (en) * 2017-03-20 2019-02-05 湖南鼎方量子科技有限公司 A kind of radar jammer real time target information modulator approach
CN110927683B (en) * 2019-10-17 2022-02-22 南京国立电子科技有限公司 Interference signal generating device and method thereof
CN112946585B (en) * 2019-12-11 2024-03-01 东莞天速通信技术有限公司 Jammer and jammer method based on space power synthesis
CN115037408A (en) * 2022-04-19 2022-09-09 上海航天电子通讯设备研究所 Anti-unmanned aerial vehicle electronic reconnaissance and interference attack integrated system and method
CN118963667B (en) * 2024-07-31 2025-06-27 西安电子工程研究所 A radar emitter database storage system and storage method for offline file system recovery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389880B2 (en) * 1999-03-30 2003-03-24 三菱電機株式会社 Radar equipment
CN201497809U (en) * 2009-09-03 2010-06-02 中国电子科技集团公司第十四研究所 Combined interference discriminator
CN202422112U (en) * 2012-02-29 2012-09-05 北京机电工程研究所 Memory with real-time storage forwarding function

Also Published As

Publication number Publication date
CN104360326A (en) 2015-02-18

Similar Documents

Publication Publication Date Title
CN104360326B (en) Digital storage and forwarding type interference system
CN111929649B (en) Radar signal reconnaissance and jamming signal generation calibration method and equipment
CN105629207B (en) Radar signal processing system based on DRFM technology and method for generating dense target interference
CN102707263B (en) Multi-frequency multi-base high-frequency ground wave radar system and operating method thereof
Xie et al. Dual-source detection and identification system based on UAV radio frequency signal
CN105261265B (en) A kind of ECM experiment teaching system
CN111257655B (en) Intercepted distance testing device for radio frequency sensor
CN109164447A (en) The electromagnetic spectrum ferreting device of L-band low-altitude surveillance radar
CN101398481B (en) Digital high precision dynamic cymoscope
CN103675776B (en) Frequency spectrum parameter proving installation and method in digital array module transmission channel arteries and veins
CN105911460A (en) Multichannel logic analyzer with synchronous signal self-calibration function
CN203608206U (en) Universal airborne radio frequency module test platform
CN109116302A (en) A kind of arrival time detection method, device and positioning device
CN115378542A (en) C + X composite waveband interference method and interference equipment
CN117434534A (en) Multichannel SAR imaging near-field test system based on board card vector network
CN213181996U (en) Radar signal reconnaissance and interference signal generation calibration equipment
CN114814848B (en) Airborne weather radar echo simulation device based on software radio
CN108983173A (en) Digital tr component receives board synchronous test system
CN204068988U (en) A kind of number transmission transmitter semi-physical simulation demo plant
CN116015343B (en) An ultra-wideband narrow pulse detection and analog forwarding system and method
CN117192495A (en) Phased array radar equipment complete machine state detection system based on two-way air feed mode
CN202256700U (en) UWB radar life detecting instrument
CN205608179U (en) A two standing posture UHF doppler radar systems for hydrologic monitoring
CN205620545U (en) A Helicopter Guidance Radar Response Signal Generator
CN205450261U (en) Calibration source device based on high frequency over --horizon radar

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170510

Termination date: 20191124