CN104352234A - 一种生理电信号尖峰奇异点检测方法 - Google Patents

一种生理电信号尖峰奇异点检测方法 Download PDF

Info

Publication number
CN104352234A
CN104352234A CN201410584847.9A CN201410584847A CN104352234A CN 104352234 A CN104352234 A CN 104352234A CN 201410584847 A CN201410584847 A CN 201410584847A CN 104352234 A CN104352234 A CN 104352234A
Authority
CN
China
Prior art keywords
modulus maximum
phase modulus
summit
threshold value
spike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410584847.9A
Other languages
English (en)
Other versions
CN104352234B (zh
Inventor
李鹏
刘鸣
张旭
陈弘达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201410584847.9A priority Critical patent/CN104352234B/zh
Publication of CN104352234A publication Critical patent/CN104352234A/zh
Application granted granted Critical
Publication of CN104352234B publication Critical patent/CN104352234B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms

Abstract

本发明公开了一种生理电信号尖峰奇异点检测方法。所述方法包括:采样得到生理电信号序列;对采样得到的生理电信号序列进行小波变换,获得对应的小波变换系数;根据所述小波变换系数筛选得到对应于生理电信号中尖峰脉冲顶点;根据筛选得到的尖峰脉冲顶点寻找所述小波变换系数中的模极大值对,并计算得到尖峰奇异点潜在位置;对所述尖峰奇异点潜在位置进行时移修正,以确定尖峰奇异点的正确位置。本发明能够提高生理电信号中奇异点检测的精度,同时降低检测方法的复杂度。

Description

一种生理电信号尖峰奇异点检测方法
技术领域
本发明涉及信号处理技术领域,更确切地说是涉及生理电信号处理的技术,是一种适合集成电路及便携式系统实现的低复杂度、高准确率的生理电信号尖峰奇异点检测方法。 
背景技术
生理电信号是由复杂生命体发出的低频微弱信号,极易受到外界的干扰。如何克服外界干扰,从生理电信号中提取出具有医学诊断价值的特征信息是近年来研究的重点。针对心电,神经及脉搏等生理电信号存在尖峰奇异点的特点,研究主要集中在奇异点检测及同类奇异点间距与不同疾病之间的关系等方面。 
目前,奇异点检测方法主要包括三大类-时域算法、频域算法、混合算法。 
时域算法是基于生理电信号中奇异点幅度高、斜率大的特点,进行信号检测。该类算法又包括能量算法,斜率算法及压缩算法等。对于稳定的生理电信号该类算法的检测效果良好,复杂度低,适合工程实现。但是该类算法的抗干扰性能差,需要滤波的预处理,增加了计算量,不利于低功耗实现。 
频域算法种类繁多,包括傅里叶变换算法、滤波器级联算法、小波变换算法等。这些算法将时域信号转换为频域信号进行处理,可以完成检测任务,但计算量较大。同时也由于时移问题,奇异点定位不精确。 
混合算法是在时域和频域同时处理信号,具有奇异点精确定位,抗干扰性能强等优势。但是该类算法的复杂度很高,高复杂度意味着高功耗,不利于集成电路及便携式系统的实现。 
针对上述问题,低复杂度、高抗干扰性、高准确率是生理电信号奇异点检测方法研究的主要方向。 
发明内容
本发明的目的在于解决上述问题,消除基线漂移,工频噪声等各类噪声干扰,以无乘法器结构降低计算复杂度,同时提高奇异点检测准确率。 
为了实现上述目的,本发明提出了一种生理电信号尖峰奇异点检测方法,其特征在于,包括: 
步骤1:采样得到生理电信号序列; 
步骤2:对采样得到的生理电信号序列进行小波变换,获得对应的小波变换系数;具体如下获得小波变换系数: 
y(n)=(x(n)>>a1
WT ( n ) = Σ k = 1 r y k ( n )
其中,a1是抽头系数,x(n)是采样得到的生理电信号序列,y(n)是中间值,WT(n)是小波变换系数,n是采样点,r是小波变换阶数; 
步骤3:根据所述小波变换系数筛选得到对应于生理电信号中尖峰脉冲顶点; 
步骤4:根据筛选得到的尖峰脉冲顶点寻找所述小波变换系数中的模极大值对,并计算得到尖峰奇异点潜在位置; 
步骤5:对所述尖峰奇异点潜在位置进行时移修正,以确定尖峰奇异点的正确位置。 
本发明提出的上述方法和装置为无乘法器结构,用以实现哈尔小波变换,求得小波变换系数,极大地降低了系统计算复杂度;小波系数预处理可以筛选出顶点,去除高幅度的非顶点干扰,模极大值对检测阶段包括阈值自动更新状态机以及模极大值对检测状态机两部分,可以自动调整阈值以及区分奇异点相位正负,在多层面上提高系统的抗干扰性;奇异点位置修正通过平移和开窗比较的方式有效地解决了信号处理过程中的数字时移问题,可以准确确定奇异点的位置,提高系统检测的准确性。 
附图说明
为进一步说明本发明的技术内容,以下结合实施例及附图详细说明如后,其中: 
图1是本发明中生理电信号尖峰奇异点检测方法的流程图; 
图2是本发明中基于哈尔小波变换提出的无乘法器结构图; 
图3是本发明中信号预处理及模极大值对检测整体结构图; 
图4是本发明中模极大值检测状态机的机构图。 
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。 
如图1所示,本发明提供一种低复杂度的生理电信号奇异点检测方法,包括: 
步骤11,生理电信号采样。 
生理电信号种类繁多,包括脑电(EEG),心电(ECG),眼电(EOG),肌电(EMG),神经动作电位(AAP)以及脉搏信号等。针对不同信号的特点,要选择合理的采样方式及采样率。 
步骤12,Harr小波变换,计算小波系数。 
小波变换是该检测方法的核心,同时也是该方法中复杂度最高的部分。采用传统的级联滤波器结构,大量的乘法操作必将增加系统的计算复杂度,不利于长时间监测的便携式系统。本发明从工程实现的角度出发,选用较为简单的哈尔小波作为母波。其计算公式如下: 
y(n)=(x(n)>>a1)                   (1) 
WT ( n ) = Σ k = 1 r y k ( n ) - - - ( 2 )
a1是抽头系数,即小波变换等效频率响应系数,通过哈尔母波进行推导即可获得,x(n)是采样得到的生理电信号,y(n)是中间值,WT(n)是小波变换系数,n是采样点,r是小波变换阶数。 
同时根据其抽头系数绝对值一致的特点,提出了无乘法器结构,如图2所示。根据抽头系数a1,将生理电信号x(n)向右移位抽头系数log2(a1)位即可获得中间值y(n),然后再通过逐级缓存获得相应的yr(n)值,如图2所 示,T为缓存单元,缓存时间为1个时钟周期。y1(n)至yr(n)相加即可求得小波变换系数Y(n)=WT(n)。该结构无需任何乘法操作,只利用加法和减法即可完成小波变换运算。 
步骤13,对小波系数预处理,筛选顶点。具体地:根据尖峰奇异点的凹凸特性,制定如下预处理方式: 
根据公式(3)筛选顶点,Y(n)为输入小波系数,Vertex[n]为输出顶点。如公式(3)所示,当中间点Y(n)大于或者小于相邻两点时,顶点Vertex[n]输出为Y(n),否则其输出为0。这样可以避免高幅度的非顶点产生干扰。 
步骤14,寻找小波系数中的模极大值对,计算尖峰奇异点潜在位置,更新阈值。 
时域尖峰脉冲经哈尔小波变换转变为小波系数,其中正相位时域尖峰脉冲转变为负正相位模极大值对,负相位时域尖峰脉冲转变为正负相位模极大值对,模极大值对间的零点对应于尖峰信号的顶点,即奇异点。如图3所示,步骤13中筛选出的小波系数顶点作为输入信号。首先是训练阶段,自动阈值更新单元对小波系数顶点进行升序排列,然后计算正相位模极大值阈值和负相位模极大值阈值。自动阈值更新单元如下计算上述两个阈值:选取最大的12个顶点,去除两个最大值,去除两个最小值,剩余的8个顶点值作为初始正相位模极大值P_Peak(i);选取最小的12个顶点,去除两个最大值,去除两个最小值,剩余的8个顶点作为初始负相位模极大值N_Peak(i)。正相位模极大值阈值和负相位模极大值阈值的计算方式如公式(4)、(5)所示。 
THP = α 8 Σ i = 1 8 P _ Peak ( i ) - - - ( 4 )
THN = β 8 Σ i = 1 8 N _ Peak ( i ) - - - ( 5 )
THP和THN分别是正相位模极大值阈值和负相位模极大值阈值。选择8个模极大值计算阈值可以降低单个模极大值引入的偶然误差。同时可以减少计算量,向右移3位即可完成除法运算,避免了除法操作。α和β是阈值系数,根据生理电信号的特点,自行调节即可。当然,自动阈值更新单元计算正相位模极大值阈值和负相位模极大值阈值所选取的顶点数目不限于12和8,还可以根据需要进行调整。 
训练结束之后,模极大值检测状态机开始工作。如图4所示,模极大值检测状态机包括六个状态,以筛选出的顶点信号Vertex[n]作为输入信号,以尖峰奇异点的潜在位置t1、尖峰脉冲相位(正或者负)、正相位模极大值P_Peak(i)和负相位模极大值N_Peak(i)作为输出信号。顶点Vertex[n]输入之后,首先进入准备状态。当顶点值大于正相位模极大值阈值THP时,进入状态1,并将该顶点值作为P_Peak(i)。在状态1下,当新输入的顶点值仍然大于THP时,去除之前确定的正相位模极大值点,保留新的正相位模极大值点,即更新正相位模极大值P_Peak(i),直至顶点值小于负相位模极大值阈值THN时,跳转至状态3,将该顶点值作为负相位模极大值N_Peak(i),并确定尖峰脉冲相位为负,将正相位模极大值P_Peak(i)模极大值和负相位模极大值N_Peak(i)间零点的位置作为尖峰奇异顶点的潜在位置。然后进入状态5,计算输出值(t1,P_Peak(i),N_Peak(i))。然后返回准备状态,开始新一轮检测。反之,当顶点值小于阈值THN时,进入状态2,并将当前顶点值作为负相位模极大值N_Peak(i)。在状态2下,当新输入的顶点值仍然小于THN时,去除之前确定的负相位模极大值点,保留新的负相位模极大值点,即更新负相位模极大值N_Peak(i),直至顶点值大于正相位模极大值阈值THP时,跳转至状态4,将该当前顶点值作为正相位模极大值P_Peak(i),并确定尖峰脉冲相位为正。然后进入状态5,计算输出值(t1,N_Peak(i),P_Peak(i))。最终返回准备状态,开始新一轮检测。其中t1和相位作为步骤15的输入,用于确定奇异点的准备位置;模极大值P_Peak(i),N_Peak(i)作为自动阈值更新单元的输入,运用公式(4)和(5)实时计算正相位和负相位阈值。即每当确定出一对P_Peak(i)、N_Peak(i),则利用新确定的模极大值对更新初始模极大值对,然后利用公式(4)和(5)实时计算更新THP和THN。 
步骤15,修正时移问题,确定奇异点位置。 
生理电信号经数字处理后,会存在时移问题,通过步骤14确定的尖峰奇异点潜在位置t1并不准确,存在偏差。该步骤针对此问题,通过理论推导,得出了移位加开窗比较的处理方式。其步骤为:首先将尖峰奇异点潜在位置t1向左平移2j-1(j为整数,是小波变换的尺度)个采样点,得到中间采样点t2。以ECG、EEG等信号作为输入进行实验,实验结果显示,原始尖峰奇异点大部分不在t2位置。对上述实验结果原始波峰位置进行统计,结论为原始生理电信号尖峰奇异点主要集中在[t2-10,t2+10]时间点内。因此比较该时间区间内生理电信号x(n)的幅度值,可以确定奇异点的准确位置。如果奇异点相位为正,则比较区间内幅度最大值位置为奇异点位置,如奇异点相位为负,则比较区间内最小值位置为奇异点位置。 
步骤16,奇异点间距计算。 
生理电信号中的奇异点是多种多样的。以ECG为例,一个完整的ECG信号包括P、R、T三种尖峰波形。同一信号中的PR、RT、PT间距,相邻信号间的PP、RR、TT间距对医疗诊断都具有参考价值。根据步骤15中确定的奇异点位置,可以很容易计算出上述间距,为医疗诊断提供参考。 
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 

Claims (9)

1.一种生理电信号尖峰奇异点检测方法,其特征在于,包括:
步骤1:采样得到生理电信号序列;
步骤2:对采样得到的生理电信号序列进行小波变换,获得对应的小波变换系数;具体如下获得小波变换系数:
y(n)=(x(n)>>a1)
WT ( n ) = Σ k = 1 r y k ( n )
其中,a1是抽头系数,x(n)是采样得到的生理电信号序列,y(n)是中间值,WT(n)是小波变换系数,n是采样点,r是小波变换阶数;
步骤3:根据所述小波变换系数筛选得到对应于生理电信号中尖峰脉冲顶点;
步骤4:根据筛选得到的尖峰脉冲顶点寻找所述小波变换系数中的模极大值对,并计算得到尖峰奇异点潜在位置;
步骤5:对所述尖峰奇异点潜在位置进行时移修正,以确定尖峰奇异点的正确位置。
2.如权利要求1所述的方法,其中,所述生理电信号包括脑电信号、心电信号、眼电信号、肌电信号、神经动作电位信号以及脉搏信号。
3.如权利要求1所述的方法,其中,步骤3中,当对应生理电信号序列当前点的小波变换系数小于或大于其相邻两点的小波变换系数,则确定当前点为顶点。
4.如权利要求1所述的方法,其中,步骤4中所述模极大值对包括正相位模极大值和负相位模极大值。
5.如权利要求4所述的方法,其中,步骤4中,首先选取所确定的顶点中小波变换系数最大的预定数目个顶点,将其小波变换系数作为初始正相位模极大值,选取所确定的顶点中小波变换系数最小的预定数目个顶点,将其小波变换系数作为初始负相位模极大值,然后根据所述初始正相位模极大值和初始负相位模极大值计算得到正相位模极大值阈值和负相位模极大值阈值;最后根据所述正相位模极大值阈值和负相位模极大值阈值筛选得到正相位模极大值和负相位模极大值对,以及尖峰奇异点潜在位置。
6.如权利要求5所述的方法,其中,当确定的顶点序列中,两顶点中前一顶点大于所述正相位模极大值阈值,后一顶点小于负相位模极大值阈值,且两顶点之间不存在其他大于所述正相位模极大值阈值或小于负相位模极大值阈值的顶点时,确定所述两顶点分别为正相位模极大值和负相位模极大值;当确定的顶点序列中,两顶点中前一顶点小于所述负相位模极大值阈值,后一顶点大于正相位模极大值阈值,且两顶点之间不存在其他小于负相位模极大值阈值或大于所述正相位模极大值阈值的顶点时时,确定所述两顶点分别为负相位模极大值和正相位模极大值,且尖峰奇异点潜在位置为所述正相位模极大值与负相位模极大值之间的零点。
7.如权利要求5所述的方法,其中,在根据所述正相位模极大值阈值和负相位模极大值阈值筛选得到正相位模极大值和负相位模极大值对后,利用其更新初始正相位模极大值和初始负相位模极大值,进而更新所述正相位模极大值阈值和负相位模极大值阈值。
8.如权利要求5所述的方法,其中,所述初始正相位模极大值为选取所确定的顶点中小波变换系数最大的预定数目个顶点,并分别剔除对应小波变换系数的两个最大值和两个最小值后得到;所述初始负相位模极大值为选取所确定的顶点中小波变换系数最小的预定数目个顶点,并分别剔除对应小波变换系数的两个最大值和两个最小值后得到。
9.如权利要求1所述的方法,其中,步骤5中如下进行时移修正:
首先将尖峰奇异点潜在位置向左平移2j-1个采样点,得到中间采样点t2,然后比较[t2-10,t2+10]区间内的生理电信号的幅度值,如果所述尖峰奇异点相位为正,则幅度值最大的位置为尖峰奇异点位置,如果所述尖峰奇异点相位为负,则幅度最小值的位置为尖峰奇异点位置。
CN201410584847.9A 2014-10-27 2014-10-27 一种生理电信号尖峰奇异点检测方法 Active CN104352234B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410584847.9A CN104352234B (zh) 2014-10-27 2014-10-27 一种生理电信号尖峰奇异点检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410584847.9A CN104352234B (zh) 2014-10-27 2014-10-27 一种生理电信号尖峰奇异点检测方法

Publications (2)

Publication Number Publication Date
CN104352234A true CN104352234A (zh) 2015-02-18
CN104352234B CN104352234B (zh) 2016-08-17

Family

ID=52519619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410584847.9A Active CN104352234B (zh) 2014-10-27 2014-10-27 一种生理电信号尖峰奇异点检测方法

Country Status (1)

Country Link
CN (1) CN104352234B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107169406A (zh) * 2017-03-28 2017-09-15 中山大学 一种通过力台压力中心数据提取身体平衡振荡起始时间的方法
CN108272451A (zh) * 2018-02-11 2018-07-13 上海交通大学 一种基于改进小波变换的qrs波识别方法
CN111685759A (zh) * 2020-05-12 2020-09-22 河北大学 一种心电信号的p、t特征波检测方法
CN112434634A (zh) * 2020-12-02 2021-03-02 青岛理工大学 一种快速消除土木工程结构健康监测信号尖峰的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167133A (ja) * 1987-03-28 1990-06-27 Toyo Medical Kk 網膜電位図の波形処理方法及び装置
US20120078123A1 (en) * 2010-09-29 2012-03-29 Denso Corporation Pulse wave analyzer and blood pressure estimator using the same
CN102670196A (zh) * 2011-01-18 2012-09-19 王卫东 R波奇异性分析方法
CN103083013A (zh) * 2013-01-18 2013-05-08 哈尔滨工业大学深圳研究生院 基于形态学与小波变换的心电信号qrs复波检测方法
CN104107042A (zh) * 2014-07-10 2014-10-22 杭州电子科技大学 基于粒子群优化-支持向量机的肌电信号步态识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167133A (ja) * 1987-03-28 1990-06-27 Toyo Medical Kk 網膜電位図の波形処理方法及び装置
US20120078123A1 (en) * 2010-09-29 2012-03-29 Denso Corporation Pulse wave analyzer and blood pressure estimator using the same
CN102670196A (zh) * 2011-01-18 2012-09-19 王卫东 R波奇异性分析方法
CN103083013A (zh) * 2013-01-18 2013-05-08 哈尔滨工业大学深圳研究生院 基于形态学与小波变换的心电信号qrs复波检测方法
CN104107042A (zh) * 2014-07-10 2014-10-22 杭州电子科技大学 基于粒子群优化-支持向量机的肌电信号步态识别方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
刁彦华,王玉田,陈国通: "基于小波变换模极大值的信号奇异性检测", 《河北工业科技》 *
张翀: "基于小波分析的心电信号处理技术研究", 《万方数据》 *
张翠芳: "基于小波变换的模极大值降噪法的实现及改进", 《南京邮电大学学报》 *
朱洪俊,等: "小波变换对突变信号峰值奇异点的精确检测", 《机械工程学报》 *
林薇,等: "应用小波变换模极大值检测ECG特征点", 《医疗卫生装备》 *
梁崴巍: "基于小波变换的心电信号预处理与特征识别算法", 《万方数据》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107169406A (zh) * 2017-03-28 2017-09-15 中山大学 一种通过力台压力中心数据提取身体平衡振荡起始时间的方法
CN107169406B (zh) * 2017-03-28 2020-06-30 中山大学 一种通过力台压力中心数据提取身体平衡振荡起始时间的方法
CN108272451A (zh) * 2018-02-11 2018-07-13 上海交通大学 一种基于改进小波变换的qrs波识别方法
CN108272451B (zh) * 2018-02-11 2021-01-22 上海交通大学 一种基于改进小波变换的qrs波识别方法
CN111685759A (zh) * 2020-05-12 2020-09-22 河北大学 一种心电信号的p、t特征波检测方法
CN112434634A (zh) * 2020-12-02 2021-03-02 青岛理工大学 一种快速消除土木工程结构健康监测信号尖峰的方法及系统
CN112434634B (zh) * 2020-12-02 2022-10-11 青岛理工大学 一种快速消除土木工程结构健康监测信号尖峰的方法及系统

Also Published As

Publication number Publication date
CN104352234B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN103989462B (zh) 一种脉搏波形第一特征点和第二特征点的提取方法
CN103549950B (zh) 移动心电监测差分阈值检测改进算法
CN102512158B (zh) 一种基于高维模糊识别的心电信号质量评估方法和装置
CN102835954B (zh) 一种心拍波形模板生成方法及模块
CN102247143B (zh) 一种可集成的心电信号去噪和qrs波识别的快速算法
CN103584854A (zh) 心电信号r波的提取方法
CN103163380A (zh) 基于LabVIEW开发平台的微欧级电阻测量系统
CN104352234A (zh) 一种生理电信号尖峰奇异点检测方法
CN101919704B (zh) 一种心音信号定位、分段方法
CN103405227A (zh) 基于双层形态学滤波的心电信号预处理方法
CN102885616A (zh) 一种去除脉搏波信号基线漂移的方法
CN105212922A (zh) 面向fpga实现心电信号r波自动检测的方法及系统
CN108549875A (zh) 一种基于深度通道注意力感知的脑电癫痫发作检测方法
CN104305992B (zh) 一种交互式胎儿心电快速自动提取方法
CN107622259B (zh) 一种t波检测方法、心电数据分析方法及装置
CN103810393A (zh) 一种基于心电向量的心电波形特征点定位方法
CN105147252A (zh) 心脏疾病识别及评估方法
CN107361764A (zh) 一种心电信号特征波形r波的快速提取方法
CN109512395A (zh) 一种生物信号的分析处理方法、装置及设备
CN103494605B (zh) 心率检测方法及装置
CN113413135B (zh) 一种基于脉搏采集分析的方法、系统、装置及存储介质
CN106137184A (zh) 基于小波变换的心电信号qrs波检测方法
CN103083011A (zh) 利用胸阻抗二阶差分图辅助实时定位心电r波峰的方法
CN103549947A (zh) 智能手机平台心电图波形实时准确绘制方法
CN203290920U (zh) 便携式情感分析仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant