CN104348194A - 电动车充电控制电路及其校准方法 - Google Patents

电动车充电控制电路及其校准方法 Download PDF

Info

Publication number
CN104348194A
CN104348194A CN201310318273.6A CN201310318273A CN104348194A CN 104348194 A CN104348194 A CN 104348194A CN 201310318273 A CN201310318273 A CN 201310318273A CN 104348194 A CN104348194 A CN 104348194A
Authority
CN
China
Prior art keywords
control circuit
voltage
charging
reference voltage
charging control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310318273.6A
Other languages
English (en)
Other versions
CN104348194B (zh
Inventor
戈亦余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRM ICBG Wuxi Co Ltd
Original Assignee
Wuxi China Resources Semico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi China Resources Semico Co Ltd filed Critical Wuxi China Resources Semico Co Ltd
Priority to CN201310318273.6A priority Critical patent/CN104348194B/zh
Publication of CN104348194A publication Critical patent/CN104348194A/zh
Application granted granted Critical
Publication of CN104348194B publication Critical patent/CN104348194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种电动车充电控制电路,其包括带隙基准源、集成运放单元以及数模转换模块,其中集成运放的参考电压由带隙基准源经过数模转换之后提供,所述数模转换模块为可编程数模转换模块,调整数模转换模块可调整所述数模转换模块输出的参考电压。本发明的电动车控制电路与现有的由三端可调基准电压源器件组成的基准电压源、由电阻网络分压产生的参考电压和专用运算放大器电路组成的控制电路相比,使用的元器件少,而且校准效率高。

Description

电动车充电控制电路及其校准方法
技术领域
本发明涉及电路设计领域,特别是关于一种电动车充电控制电路的改进及其校准方法。 
背景技术
电动车充电器控制电路是通过电流负反馈的方式来实现充电端的恒压恒流控制的,请参阅图1所示,其显示现有的电动车充电控制电路的系统框图。如图1中所示,变压器的源端采用电流控制方式的脉宽调制器件101外加场效应开关管102来控制输入功率的大小;变压器次端的输出电压(或电流)经过采样分压后连接到运算放大器103的负端作为采样电压(Vin),三端可调器件产生的基准电压源经过电阻网络分压后连接到运算放大器103的正端作为参考电压(Vref),运算放大器103的输出端接光耦104发光端的负极,运算放大器103的输出电压大小可以改变光耦104的发光强弱,同时也可以控制光耦另一端流过的电流,进而控制变压器源端开关管102导通的频率来影响输入功率。 
在这个系统框图中,基准电压源是由三端可调基准电压源器件(比如可控精密稳压源TL431)、电阻网络和滤波电容组成;Rx为可调电阻,用来在校准阶段手工调整对运放的参考电压进行校准。以恒压阶段为例,整个系统的工作过程大体如下面所描述的:假定电池充满电时的状态为平衡态,此时的Vref-Vin差值为Va;充电阶段开始时,由于此时Vbat小于电池充满电时的电压,因此,Vref-Vin>Va,使得输出的Vout大于平衡态时的电压,因此光耦的发光变弱,Ia变小,脉宽调制(PWM)频率变快,使得输入功率变强, 充电电压逐渐向平衡态时的电压靠近;同样地,若Vbat高于电池充满电的电压,因此Vref-Vin<Va,Vout小于平衡态时的电压,因此光耦发光变强,Ia变强,PWM频率变慢,使得输入功率变弱,充电电压下降,通过这种负反馈的方式可以使最终的充电电压维持在平衡态附近,实现恒压控制。 
以充电恒压阶段为例,由上述分析可知,由于参考电压Vref的大小直接决定了恒压阶段Vbat的大小,理论上讲,相同的Vref必然会产生相同的Vbat,但在实际应用中,由于产生采样电压Vin分压电阻的参数误差以及所用元器件的工艺偏差,使得相同的Vref会产生不同的恒压阶段Vbat的值,由于要求相同产品恒压阶段的Vbat必须一致,所以对每台产品的参考电压Vref都必须进行微调,所以每台产品都需要经过一个校准的过程,Rx的作用就体现在这里。 
图1为目前市场上广泛采用的电动车充电器恒压充电的电路原理框图,图1所示充电器电路有两个突出的问题:一,基准电压源以及参考电压Vref的产生均需要经过电阻网络,这就使得产品的硬件设计需要用到更多的阻容器件,会给产品的尺寸大小、加工焊接带来了更多的成本,更为重要的是,由于不同的电池其恒压恒流的参数各不相同,这就使得针对每种电池需要重新设计电阻网络和调整电阻的参数,这就增加了产品硬件开发的成本和时间;二,特别需要注意的是,由于电阻本身的参数误差以及器件的工艺偏差,使得每件产品均需要对Vref进行微调,这个微调过程是通过调整可变电阻Rx的大小并且由人工完成的!这样就不可避免的造成生产效率的低下和人为错误的产生。 
发明内容
本发明的目的在于提供一种电动车充电器的充电控制电路,其产品器件 少,并且参考电压校准过程效率高。 
本发明的另一目的在于提供一种电动车充电电路,其产品器件少,并且效率高。 
本发明的再一目的在于提供一种电动车充电器的充电控制电路的参考电压校准的方法。 
为实现上述本发明的目的,本发明提供了一种电动车充电控制电路,其包括一个集成运放单元,其中该集成运放单元的一个输入端接收采样到的充电电压,另一个输入端接收参考电压,经比较之后输出充电控制信号;所述充电控制电路的参考电压由带隙基准源经数模转换模块转换之后提供,所述数模转换模块为可编程数模转换模块,调整数模转换模块可调整所述数模转换模块输出的参考电压。 
根据本发明的一个实施例,所述充电控制电路为一个微控制单元,其包括所述带隙基准源、集成运放单元以及数模转换模块,所述集成运放单元为可配置为前述集成运放功能的差分比较器模块。 
根据本发明的一个实施例,所述微处理单元还包括可编程存储器,可以对控制过程进行编程自动控制。 
根据本发明的一个实施例,当充电电池处于恒压充电时,数模转换模块提供恒压充电参考电压,当充电电池处于恒流充电时,数模转换模块提供恒流充电参考电压。 
为达成前述另一目的,本发明提供一种电动车充电电路,其包括:变压器、电流型脉宽调制器件、场效应开关管、充电控制电路以及光藕,其中充电电池的充电电压经过采样分压后连接到充电控制电路,充电控制电路将采样到的充电电压Vin与参考电压Vref比较之后输出控制信号控制光藕的电流 大小,光耦流过的电流控制脉宽调制器件的输出频率,进而控制变压器源端场效应开关管导通的频率来影响变压器的输入功率;所述充电控制电路的参考电压由带隙基准源经过数模转换模块(DAC)转换之后提供。 
根据本发明的一个实施例,所述充电控制电路包括一个集成运放单元,其中该集成运放单元的一个输入端接收所述采样到的充电电压,另一个输入端接收所述参考电压,集成运放单元比较所述充电电压与参考电压之后输出控制信号控制光藕的电流大小。 
根据本发明的一个实施例,所述充电控制电路为一个微控制单元(MCU),其包括所述带隙基准源、集成运放单元以及数模转换模块,所述集成运放单元为可配置为前述集成运放功能的差分比较器模块。 
根据本发明的一个实施例,所述微处理单元还包括可编程存储器,可以对控制过程进行编程自动控制。 
为达成前述再一目的,本发明提供一种电动车充电控制电路参考电压的校准方法,其包括: 
提供一种电动车充电控制电路,其中所述电动车充电控制电路包括带隙基准源、集成运放单元以及数模转换模块,其中该集成运放的一个输入端接收采样到的充电电压,另一个输入端接收参考电压,经比较之后输出充电控制信号,所述参考电压由带隙基准源经过数模转换模块转换后提供; 
向数模转换模块写入一个初始值,使其输出一个低于电池充满电时参考电压的电压值, 
再步进增加数模转换模块的数值,同时测试充电电压的大小,当充电电压等于充满电时的平衡态电压时,记录下当时的数模转换模块的数值,该数值所对应的数模转换模块输出就作为正常工作状态下的参考电压。 
根据本发明的一个实施例,所述电动车充电控制电路为微处理单元,其还包括可编程存储器,可以对控制过程进行编程自动控制。 
本发明提供的利用DAC参与负反馈实现电动车充电控制的方法和电路,以可编程DAC输出的电压替代之前由电阻网络分压产生的充电阶段恒流与恒压参考电压值,可节省许多元器件,如果考虑到贴片加工的成本,则本发明整体方案节省的费用更为可观,同时可以使得产品的布线和外形更为简洁和美观。 
本发明提供的电动车充电器控制电路参考电压自动校准方法,通过设置步进DAC输出电压自动寻找恒流与恒压参考电压替代了之前由人工调整可变电阻器寻找参考电压的校准方法,由于上述校准过程完全可以实现程序自动控制,不需要人工参与,不仅可以节省大量的人工成本,且校准的效率以及可靠性都大大地提高了。 
附图说明
图1是现有的电动车充电器恒压充电的电路原理框图; 
图2是本发明的电动车充电电路的结构示意图; 
图3是本发明的电动车充电电路的控制电路的结构示意图; 
图4是本发明的电动车充电电路的一个具体实施例的结构框图。 
具体实施方式
如图2所示,其显示本发明的电动车充电系统的系统框图,如图2所示,本发明的电动车充电系统其主要包括变压器(未标号)、电流型脉宽调制器件1、场效应开关管2、充电控制电路3以及光藕4。 
其中变压器的源端采用电流控制方式的脉宽调制器件1外加场效应开关管2来控制输入功率的大小;变压器次端的输出电压(或电流)经过采样分 压后连接到充电控制电路3,充电控制电路3将采样到的充电电压Vin与参考电压Vref比较之后输出控制信号控制光藕4的电流大小,同时也可以控制光耦另一端流过的电流,从而控制脉宽调制器件1的输出频率,进而控制变压器源端场效应开关管2导通的频率来影响变压器的输入功率。 
整个系统的工作过程大体如下面所描述的:假定电池充满电时的状态为平衡态,此时的Vref-Vin差值为Va;充电阶段开始时,由于此时Vbat小于电池充满电时的电压,因此,Vref-Vin>Va,使得输出的Vout大于平衡态时的电压,因此光耦的发光变弱,Ia变小,脉宽调制(PWM)频率变快,使得输入功率变强,充电电压逐渐向平衡态时的电压靠近;同样地,若Vbat高于电池充满电的电压,因此Vref-Vin<Va,Vout小于平衡态时的电压,因此光耦发光变强,Ia变强,脉宽调制器件的频率变慢,使得输入功率变弱,充电电压下降,通过这种负反馈的方式可以使最终的充电电压维持在平衡态附近,实现恒压控制。 
请参阅图3所示,其显示本发明的充电系统的充电控制电路的结构框图。为简化说明,此处图示仅仅示出充电控制电路的主要基本结构来进行示例性说明,充电控制电路的其他结构并未在图中示出。如图3所示,本发明的充电控制电路3主要包括一个集成运放31,该集成运放31是一个包括两个输入端一个输出端的电压比较器。其中该集成运放31的一个输入端的输入电压Vin是充电电压Vbat经过分压后的采样电压,集成运放31的另一个输入端输入的电压是标准参考电压Vref。在本发明中所采用的标准参考电压Vref是由带隙基准电压经过数模转换器(DAC)32转换之后输出的参考电压。所述数模转换器32为可编程数模转换器,调整数模转换器可调整所述数模转换器输出的参考电压。 
在本发明的一个施例中,本发明的充电控制电路可以是一个微控制单元(Micro Control Unit,MCU),该MCU是将计算机的CPU、RAM、ROM、定时计数器和多种I/O接口集成在一片芯片上,形成芯片级的计算机,关于MCU的基本结构此处不再详细说明。如前所述,本发明的充电控制电路3主要包括基准电压源、集成运放31以及DAC模块32,所以为实现本发明的充电控制,本发明所使用的MCU必须具备下述功能:自带带隙基准源(温漂系数小于50ppm)、可配置为运放功能的差分比较器模块以及自带DAC模块。另外,较佳地,该MCU还带有可编程存储器,可以对控制过程进行编程自动控制。 
现有的充电控制电路的参考电压的校准是通过手动调整可调电阻来对运放的参考电压进行校准。而本发明的参考电压是由带隙基准电压经过DAC模块转换之后输出提供的,在需要对参考电压进行校准时,通过设置MCU内部的程序,先使MCU进入到校准模式,向DAC写入一个初始值,使其输出一个低于电池充满电时参考电压的电压值,这时,再缓慢的步进增加DAC的数值,步进的频率可以是1位1位的步进,同时测试输出端的电压大小(即图1中电池所在的位置),当输出电压等于平衡态时的电压,记录下当时的DAC数值,该数值所对应的DAC输出就作为正常工作状态下的Vref。由于上述过程完全可以实现程序自动控制,不需要人工参与,因此,校准的效率以及可靠性都大大地增加了。 
这里需要关注一下DAC的精度问题,DAC主要用于产生充电器恒压充电阶段和恒流充电阶段的参考电压,以市场上较为普遍的一款充电器加以说明,该充电器的恒流恒压参数分别为1.8A±0.1A和58.8V±0.3V,允许的误差分别为5.6%和0.5%,因此只需要8位精度(允许误差为1/256,即约等于 0.4%)的DAC即可满足该要求,再考虑到参数冗余,10位精度的DAC可完全满足电动车充电器的应用场合。 
请参阅图4所示,其显示本发明的一个具体实施例的充电系统框图,其中充电控制电路采用的是一款MCU作为该方案的主控芯片,该芯片拥有温漂系数50ppm的内置带隙基准源、1K word的编程空间(满足校准程序与正常工作程序的编程空间需要)、可配置为运放的差分比较器模块以及12bit精度的DAC模块。该电路在校准程序和一些外部设备的帮助下,可完成自动校准功能。具体的实现方案系统框图如图4所示,其中该主控芯片有14个引脚,该芯片的9脚为电压采样输入管脚,11脚为电流采样输入管脚,这两个管脚可通过芯片内部的选择开关分别接到运放的负端(图3中的Vin),当处于充电恒压状态时,设置第9脚与MCU内的差分比较器运放的负端相连,此时设置DAC数值为恒压状态电压参考值,整个系统处于恒压控制状态;当处于充电恒流状态时,设置第11脚与差分比较器运放的负端相连,设置DAC数值为恒流状态电压参考值,此时整个系统处于恒流控制状态。 
本发明提供的利用DAC参与负反馈实现电动车充电控制的方法和电路,以可编程DAC输出的电压替代之前由电阻网络分压产生的充电阶段恒流与恒压参考电压值,采用本发明的方法和电路对于产品硬件设计的精简是显而易见的,与本发明作出之前通用的技术方案比较,本发明至少可节省的元器件见下表: 
电子器件 TL431 LM358 电阻 电容
个数 1 1 8 4
如果考虑到贴片加工的成本,则本发明整体方案节省的费用更为可观,同时可以使得产品的布线和外形更为简洁和美观。 
本发明提供的电动车充电器控制电路参考电压自动校准方法,通过设置步进DAC输出电压自动寻找恒流与恒压参考电压替代了之前由人工调整可变电阻器寻找参考电压的校准方法,由于上述校准过程完全可以实现程序自动控制,不需要人工参与,不仅可以节省大量的人工成本,且校准的效率以及可靠性都大大地提高了。 

Claims (10)

1.一种电动车充电控制电路,其包括一个集成运放单元,其中该集成运放单元的一个输入端接收采样到的充电电压,另一个输入端接收参考电压,经比较之后输出充电控制信号;其特征在于:所述充电控制电路的参考电压由带隙基准源经数模转换模块转换之后提供,所述数模转换模块为可编程数模转换模块,调整数模转换模块可调整所述数模转换模块输出的参考电压。
2.如权利要求1所述的电动车充电控制电路,其特征在于:所述充电控制电路为一个微控制单元,其包括所述带隙基准源、集成运放单元以及数模转换模块,所述集成运放单元为可配置为前述集成运放功能的差分比较器模块。
3.如权利要求2所述的电动车充电控制电路,其特征在于:所述微处理单元还包括可编程存储器,可以对控制过程进行编程自动控制。
4.如权利要求1所述的电动车充电控制电路,其特征在于:当充电电池处于恒压充电时,数模转换模块提供恒压充电参考电压,当充电电池处于恒流充电时,数模转换模块提供恒流充电参考电压。
5.一种电动车充电电路,其包括:变压器、电流型脉宽调制器件、场效应开关管、充电控制电路以及光藕,其中充电电池的充电电压经过采样分压后连接到充电控制电路,充电控制电路将采样到的充电电压Vin与参考电压Vref比较之后输出控制信号控制光藕的电流大小,光耦流过的电流控制脉宽调制器件的输出频率,进而控制变压器源端场效应开关管导通的频率来影响变压器的输入功率;其特征在于:所述充电控制电路的参考电压由带隙基准源经过数模转换模块(DAC)转换之后提供。
6.如权利要求5所述的电动车充电电路,其特征在于:所述充电控制电路包括一个集成运放单元,其中该集成运放单元的一个输入端接收所述采样到的充电电压,另一个输入端接收所述参考电压,集成运放单元比较所述充电电压与参考电压之后输出控制信号控制光藕的电流大小。
7.如权利要求6所述的电动车充电电路,其特征在于:所述充电控制电路为一个微控制单元(MCU),其包括所述带隙基准源、集成运放单元以及数模转换模块,所述集成运放单元为可配置为前述集成运放功能的差分比较器模块。
8.如权利要求7所述的电动车充电电路,其特征在于:所述微处理单元还包括可编程存储器,可以对控制过程进行编程自动控制。
9.一种电动车充电控制电路参考电压的校准方法,其包括:
提供一种电动车充电控制电路,其中所述电动车充电控制电路包括带隙基准源、集成运放单元以及数模转换模块,其中该集成运放的一个输入端接收采样到的充电电压,另一个输入端接收参考电压,经比较之后输出充电控制信号,所述参考电压由带隙基准源经过数模转换模块转换后提供;
向数模转换模块写入一个初始值,使其输出一个低于电池充满电时参考电压的电压值,
再步进增加数模转换模块的数值,同时测试充电电压的大小,当充电电压等于充满电时的平衡态电压时,记录下当时的数模转换模块的数值,该数值所对应的数模转换模块输出就作为正常工作状态下的参考电压。
10.如权利要求9所述的电动车充电控制电路参考电压的校准方法,其特征在于:所述电动车充电控制电路为微处理单元,其还包括可编程存储器,可以对控制过程进行编程自动控制。
CN201310318273.6A 2013-07-26 2013-07-26 电动车充电控制电路及其校准方法 Active CN104348194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310318273.6A CN104348194B (zh) 2013-07-26 2013-07-26 电动车充电控制电路及其校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310318273.6A CN104348194B (zh) 2013-07-26 2013-07-26 电动车充电控制电路及其校准方法

Publications (2)

Publication Number Publication Date
CN104348194A true CN104348194A (zh) 2015-02-11
CN104348194B CN104348194B (zh) 2017-02-15

Family

ID=52503248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310318273.6A Active CN104348194B (zh) 2013-07-26 2013-07-26 电动车充电控制电路及其校准方法

Country Status (1)

Country Link
CN (1) CN104348194B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646241A (zh) * 2015-11-04 2017-05-10 海洋王(东莞)照明科技有限公司 一种电压检测电路及电压测量方法
CN107069846A (zh) * 2017-03-09 2017-08-18 东莞博力威电池有限公司 校正电池的电压电流的方法及电池系统
CN109212423A (zh) * 2018-11-13 2019-01-15 上海艾为电子技术股份有限公司 电池充满检测电路及其检测电池充满的方法、电子装置
CN109212424A (zh) * 2018-11-13 2019-01-15 上海艾为电子技术股份有限公司 电池充满检测电路及其检测电池充满的方法、电子装置
CN109782049A (zh) * 2019-03-12 2019-05-21 苏州浪潮智能科技有限公司 一种充电电路及其电压检测电路
CN110208687A (zh) * 2019-05-27 2019-09-06 宁波芯路通讯科技有限公司 一种模拟电路参数校准的调试系统及方法
CN110943494A (zh) * 2018-09-21 2020-03-31 中光电智能机器人股份有限公司 充电器及其充电电压的控制方法
CN112072762A (zh) * 2020-11-10 2020-12-11 北京思凌科半导体技术有限公司 充电电路和电力终端
CN113009213A (zh) * 2021-02-02 2021-06-22 深圳车库电桩科技有限公司 一种电压变送器
CN113629796A (zh) * 2021-06-25 2021-11-09 北京精密机电控制设备研究所 一种锂离子电池组的并联控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463294A (en) * 1994-06-10 1995-10-31 Westinghouse Electric Corp. Control mechanism for electric vehicle
CN101101492A (zh) * 2007-07-30 2008-01-09 电子科技大学 一种分段线性补偿的cmos带隙基准电压源
CN201352719Y (zh) * 2008-12-31 2009-11-25 佛山市顺德区瑞德电子实业有限公司 一种带自动温度补偿功能的电动车充电器
CN102074983A (zh) * 2010-11-29 2011-05-25 周荻 锂动力电动助力车电气部分的设计

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463294A (en) * 1994-06-10 1995-10-31 Westinghouse Electric Corp. Control mechanism for electric vehicle
CN101101492A (zh) * 2007-07-30 2008-01-09 电子科技大学 一种分段线性补偿的cmos带隙基准电压源
CN201352719Y (zh) * 2008-12-31 2009-11-25 佛山市顺德区瑞德电子实业有限公司 一种带自动温度补偿功能的电动车充电器
CN102074983A (zh) * 2010-11-29 2011-05-25 周荻 锂动力电动助力车电气部分的设计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈军: "高精度实用数模转换电路设计", 《科技创新导报》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646241A (zh) * 2015-11-04 2017-05-10 海洋王(东莞)照明科技有限公司 一种电压检测电路及电压测量方法
CN107069846A (zh) * 2017-03-09 2017-08-18 东莞博力威电池有限公司 校正电池的电压电流的方法及电池系统
CN107069846B (zh) * 2017-03-09 2019-05-24 东莞博力威电池有限公司 校正电池的电压电流的方法及电池系统
CN110943494A (zh) * 2018-09-21 2020-03-31 中光电智能机器人股份有限公司 充电器及其充电电压的控制方法
CN109212423A (zh) * 2018-11-13 2019-01-15 上海艾为电子技术股份有限公司 电池充满检测电路及其检测电池充满的方法、电子装置
CN109212424A (zh) * 2018-11-13 2019-01-15 上海艾为电子技术股份有限公司 电池充满检测电路及其检测电池充满的方法、电子装置
CN109212424B (zh) * 2018-11-13 2024-05-07 上海艾为电子技术股份有限公司 电池充满检测电路及其检测电池充满的方法、电子装置
CN109212423B (zh) * 2018-11-13 2024-03-01 上海艾为电子技术股份有限公司 电池充满检测电路及其检测电池充满的方法、电子装置
CN109782049B (zh) * 2019-03-12 2021-05-07 苏州浪潮智能科技有限公司 一种充电电路及其电压检测电路
CN109782049A (zh) * 2019-03-12 2019-05-21 苏州浪潮智能科技有限公司 一种充电电路及其电压检测电路
CN110208687A (zh) * 2019-05-27 2019-09-06 宁波芯路通讯科技有限公司 一种模拟电路参数校准的调试系统及方法
CN112072762B (zh) * 2020-11-10 2021-01-29 北京思凌科半导体技术有限公司 充电电路和电力终端
CN112072762A (zh) * 2020-11-10 2020-12-11 北京思凌科半导体技术有限公司 充电电路和电力终端
CN113009213A (zh) * 2021-02-02 2021-06-22 深圳车库电桩科技有限公司 一种电压变送器
CN113629796A (zh) * 2021-06-25 2021-11-09 北京精密机电控制设备研究所 一种锂离子电池组的并联控制装置

Also Published As

Publication number Publication date
CN104348194B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN104348194A (zh) 电动车充电控制电路及其校准方法
CN104391534B (zh) 高精度的低压差电压调节器
CN109861329B (zh) 线性充电系统、恒流恒压控制电路及其电压跟随控制方法
CN106160457B (zh) 直流变换装置及其运作方法
CN205040065U (zh) 一种可调输出电流的恒压恒流驱动电路
CN204203828U (zh) 高精度的低压差电压调节器
CN110492744B (zh) 应用于dc-dc变换器的恒功率负载控制方法及电路
CN103970173A (zh) 带隙基准电压电路
CN202127392U (zh) 一种利用模拟数字转换方式设置工作模式的芯片
CN103457465A (zh) 一种具有外部可调限流功能的恒流/恒压dc-dc转换系统
CN101783590A (zh) 一种升压时钟电路和带该升压时钟电路的电荷泵
CN105150962B (zh) 编程电压产生电路以及汽车诊断系统
CN102647824B (zh) Led驱动电路的输出电流分段补偿电路
CN202749886U (zh) 一种锂电池充电电路
CN202634363U (zh) 一种用于振荡器的修调电路
CN204271895U (zh) 一种自举电路
CN203930562U (zh) 带隙基准电压电路
CN106332362A (zh) 一种降低谐波的高压线性led控制电路
CN202257352U (zh) 模拟光能电路
CN206759771U (zh) Led测试负载电路及led电源
CN221127136U (zh) 能准确调节输出电压的电子dc-dc升压器
CN203849636U (zh) 一种负载功率智能调节电路
CN107342757A (zh) 一种基于改进的带隙基准结构的上电复位电路
CN204392088U (zh) 一种可调电压的稳压电路
CN214755608U (zh) 电池单元充放电装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 214135 -6, Linghu Avenue, Wuxi Taihu international science and Technology Park, Wuxi, Jiangsu, China, 180

Patentee after: China Resources micro integrated circuit (Wuxi) Co., Ltd

Address before: No.180-22, Linghu Avenue, Taihu International Science and Technology Park, Wuxi, Jiangsu, 214135

Patentee before: WUXI CHINA RESOURCES SEMICO Co.,Ltd.