CN104334767B - 利用氢形成透明导电氧化物的方法和设备 - Google Patents

利用氢形成透明导电氧化物的方法和设备 Download PDF

Info

Publication number
CN104334767B
CN104334767B CN201380013032.9A CN201380013032A CN104334767B CN 104334767 B CN104334767 B CN 104334767B CN 201380013032 A CN201380013032 A CN 201380013032A CN 104334767 B CN104334767 B CN 104334767B
Authority
CN
China
Prior art keywords
substrate
layer
limited proportionality
hydrogen
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380013032.9A
Other languages
English (en)
Other versions
CN104334767A (zh
Inventor
邵锐
赵志波
马库斯·格洛克勒
大卫·黄
本雅明·布勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Solar Inc
Original Assignee
First Solar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Solar Inc filed Critical First Solar Inc
Publication of CN104334767A publication Critical patent/CN104334767A/zh
Application granted granted Critical
Publication of CN104334767B publication Critical patent/CN104334767B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种通过在存在氢气的情况下对包含镉和锡的非晶层热处理来形成光伏器件的晶体锡酸镉层的方法和设备。

Description

利用氢形成透明导电氧化物的方法和设备
技术领域
公开的实施例涉及包括光伏电池和包含多个电池的光伏模块的光伏器件的领域,更具体地讲,涉及一种利用氢气形成透明导电氧化物的方法和设备。
背景技术
光伏器件可以包括沉积在诸如玻璃的基底上方的半导体材料,例如,具有用作窗口层的半导体材料的第一层和用作吸收层的半导体材料的第二层。半导体窗口层与半导体吸收层形成结,在所述结处入射光被转换成电。
光伏器件还可以包括透明导电氧化物(TCO)层以引导电荷。经常使用的一种TCO材料是晶体锡酸镉。这是因为晶体锡酸镉的低的片电阻(sheet resistance)和高的透光率。
形成晶体TCO层的一种传统的方法是将镉和氧化锡的非晶层沉积到基底上,然后将沉积的非晶层转变成晶体形式。这通过在高温(例如,通常大于550℃的温度)下在低的氧分压环境(例如,氧不足或还原性的气氛)中使非晶层退火足够的退火时间(例如,至少10分钟)来完成。
为了提供低的氧分压环境,当前的光伏器件制造工艺提倡在非晶TCO层进行退火之前,在该非晶TCO层上形成可以由硫化镉制成的半导体窗口层。这样做剥夺了可以用于周围处理气氛中的非晶层的氧。此外,非晶TCO层上方的硫化镉层使可以存在于非晶TCO层中的任何氧从其扩散出。具体地,从非晶TCO层扩散出的氧可以与硫化镉反应以形成可以在大约600℃和以上的温度下蒸发的氧化镉以及将扩散到沉积环境中的二氧化硫。于是该反应在非晶层中产生氧空位。每个氧空位用作只要非晶TCO层转变成晶体形式就有助于导电性的电子施主。因此,由于窗口层创建了促进TCO层中的氧空位所需要的氧不足的气氛,因此窗口层用作还原剂。
然而,在使非晶TCO层退火之前在TCO层上形成硫化镉窗口层与以另外的方式将需要的时间或温度相比,需要较长的退火时间或较高的退火温度,或者既需要较长的退火时间又需要较高的退火温度,以将非晶层转变成晶体形式。长时间段地利用高温会损坏玻璃基底。例如,玻璃基底通常将在大约550℃和以上的温度下开始软化。因此,使玻璃基底经受这样高的退火温度(即,大于550℃)这样相对长的时间(即,10分钟或更长)增大了损坏基底的风险。具体地,玻璃基底会在这样长的退火时间段所施加的高退火温度下开始软化并翘曲。另外,高的退火温度具有使存在于玻璃基底中的钠原子或分子可以随着时间而扩散到器件的其他层的离子化的趋势。钠离子在器件的某些层中的扩散会不利地影响器件性能。此外,长的退火时间降低了生产率并且还使退火室经受有助于室劣化的条件,这会需要补救。最后,用于使非晶层转变成晶体的高退火温度是器件会在被进行处理的同时所经受的多个高温中的一个。例如,其他层必须在高温下退火。因此,会使器件经受多个高的热循环。这些热循环会弱化玻璃并使其受到高程度的破坏。
因此,期望缓解这些潜在问题的使非晶TCO层转变成晶体形式的方法。
附图说明
图1A是局部构建的光伏器件的示意图。
图1B是局部构建的光伏器件的示意图。
图2A是根据实施例的多区炉的示意图。
图2B是根据实施例的多区炉的示意图。
图3是根据实施例的转变区。
图4是根据实施例的光伏器件的示意图。
图5是示出氢的退火温度效果的曲线图。
具体实施方式
在下面的具体实施方式中,参照形成具体实施方式的一部分的附图,并且在附图中通过示出可以实施的具体实施例的方式来示出。足够详细地描述这些实施例,以使本领域技术人员能够制出并利用这些实施例,并且将理解的是,在不脱离本发明的精神和范围的情况下,可以对公开的具体实施例做出结构上的改变、逻辑上的改变或程序上的改变。
这里描述的实施例提供了一种通过对镉和氧化锡的非晶TCO层进行热处理或退火来形成TCO层(例如,在氢存在的条件下使非晶TCO层至少部分地(如果不是彻底地)转变成晶体形式)的方法。根据公开的实施例,可以在形成窗口层之前使非晶TCO层退火。这允许低得多的退火温度。可以在与例如多区炉相同的环境中但是在半导体沉积工艺(例如,气相传输沉积、近距离升华、蒸发、溅射或其他半导体沉积工艺)之前进行在氢存在的条件下的非晶TCO层退火。
另外,正如在利用硫化镉作为还原剂的情况下,也将氢气用作还原剂。例如,与硫化镉相似,氢气防止非晶TCO层受存在于沉积环境中的任何氧的影响,并因此创建了氧不足的环境。此外,氢气扩散到非晶TCO层中,在非晶TCO层中氢气与非晶TCO层中的氧反应以在非晶TCO层上或内形成水,其中,水在退火工艺期间蒸发。此外,正如在利用硫化铬作为还原剂的情况下,已经与氢气反应的氧分子将在非晶TCO层中产生空位。这些氧分子将用作电子施主,其中,只要非晶TCO层被变成晶体形式,这些电子施主将有助于导电性。
现在参照图1A,描绘了部分构造的光伏器件100。部分构造的光伏器件100包括邻近于基底层110的TCO堆叠件170。基底层110可以是器件100的最外层,并且在使用中可以暴露于各种温度和各种形式的沉淀物,例如,雨、雪、雨夹雪和冰雹。因此,在其他用途中,基底层110用作保护层。基底层110还可以是入射光在到达器件110时遇到的第一层。因此期望选择一种用于基底层110的既耐用又高度透明的材料。出于这些原因,基底层110可以包括例如硼硅酸盐玻璃、钠钙玻璃或浮法玻璃。
TCO堆叠件170可以邻近于基底层110形成并且可以包括多个层。例如,TCO堆叠件170可以包括:阻挡层120,邻近于基底层110;非晶TCO层130,邻近于阻挡层120;缓冲层140,邻近于非晶TCO层130,但是可以省略缓冲层140。阻挡层120用于减轻来自基底层110的钠或其他污染物到器件100的其他层的扩散。这些其他层可以包括半导体材料180(参见图4)的层。阻挡层可以由包括氮化硅、二氧化硅、掺杂铝的氧化硅、掺杂硼的氮化硅、掺杂磷的氮化硅、氮氧化硅或者它们的任意组合或合金的各种材料形成。缓冲层140用于减少可能在半导体材料180(参见图4)的层的形成期间出现的不规则。缓冲层140可以由包括氧化锡(例如,锡(IV)氧化物)、氧化锌锡、氧化锌、硫氧化锌和氧化锌镁在内的各种合适的材料形成。如上面所提到的,非晶TCO层130可以由镉和锡形成。TCO堆叠件170可以通过一系列的制造步骤形成,其中,每个接连的层邻近于先前的层形成在器件100上。
可以利用诸如以如在2010年8月20日提交的命名为“Doped TransparentConductive Oxide(掺杂的透明导电氧化物)”的美国专利申请12/860,115中描述的溅射为例的任何合适的技术来形成TCO堆叠件170中的层120、130和140,该美国专利申请通过引用全部包含于此。TCO堆叠件170的层还可以利用诸如以低压化学气相沉积、大气压化学气相沉积、等离子体增强化学气相沉积、热化学气相沉积、旋涂沉积和喷雾热解为例的其他沉积技术来形成。
非晶TCO层130可以具有任何合适的厚度。例如,非晶TCO层130可以具有大约10nm至大约1000nm的厚度。非晶TCO层130可以包括适用于产生锡酸镉的镉与锡的任意比例。例如,镉比锡的原子比可以为大约2:1。非晶TCO层130还可以具有任意的表面粗糙度(Ra)以及任意合适的平均光学吸收。非晶TCO层130可以在大约400nm至850nm的波长范围内具有小于大约20%的平均光学吸收以及小于大约1nm的表面粗糙度。
在形成TCO堆叠件170之后(图1A),或者可选择地,如果省略缓冲层140或者还没形成缓冲层140而在形成非晶TCO层之后(图1B),并且在形成窗口层(图4)之前,通过在存在氢的情况下进行热处理来使非晶TCO层转变成晶体锡酸镉。热处理可以发生在与例如多区炉相同的环境中,但是在例如气相传输沉积、近距离升华、蒸发、溅射或其他半导体沉积工艺的半导体沉积工艺之前。可以在500℃和650℃之间的温度下执行热处理。这比传统地当利用硫化镉窗口层作为还原剂时所需要的温度至少低25℃。应该注意的是,钠钙玻璃会在大约550℃以上的温度开始软化。
参照图2A、图2B和图3,通过示例的方式,涂覆有非晶TCO层130的基底401在传输机械装置上被传输通过多区炉400的转变区403。多区炉400可以用于任何半导体沉积技术,例如,真空传输沉积、近距离升华、蒸发、溅射或其他半导体沉积工艺。例如,被涂覆的基底401可以被部分地构造成具有缓冲层140的光伏器件(图1A)或者被部分地构造成没有缓冲层的光伏器件105(图1B)。在各个实施例中,传输机械装置可以是滚轴、带或其他传输机制。多区炉400可以具有任何合适的尺寸和/或容量。多区炉400可以包含分离的加热区以控制其中的温度。多区炉400可以具有入口区402、氢被引入以使非晶TCO层130转变成结晶形式的转变区403、用于半导体形成的半导体沉积区404和405以及出口区406。可选择地,如图2B中所示,转变区409可以是与多区炉500分离的孤立炉,多区炉500在其他方面与多区炉400相同。除了区409与多区炉500分离以外,转变区409与区403相同。
在图3中更具体地示出了总体上如图2A中的403和图2B中的409示出的转变区。如图3中所示,第一气体源245通过用于引入到转变区403中的第一输入线路240来供应氢气、氢气混合物(例如与诸如氮、氩或氦的惰性气体组合的氢)或者能够释放氢的气体(例如,硅烷(SiH4))。如果采用氢气混合物,则可以由第二气体源255来供应惰性气体并通过第二输入线路250来引入惰性气体。氢气/混合物被计量供给到转变区403,并通过扩散器260以一定量在其中扩散,并且在移动的涂覆基底401上方的合适的位置处,以在转变区403内达到氢气的期望浓度。氢气的期望浓度可以是0.01%至大约10%之间的任何浓度。然而,在一些特定的实施例中,可以使用1%浓度的氢气。另外如上面所提及的,转变区403的温度可以是大约500℃和大约650℃之间的任意温度或者低于大约550℃。
可以省略扩散器260,可以通过输入线路240、250中的一个或两个来引入氢气/混合物,并且氢气/混合物在环境条件下在转变区403中扩散。涂覆基底401的传送通过转变区403的速率使得涂覆基底401在转变区403中保持足够长的时间,以发生非晶材料到晶体的转变。
转变区403可以包括一个或更多个加热器230,以使温度上升并维持期望的处理温度(即,介于500℃至650℃之间的温度)。可以根据使用的温度在任何地方进行加热3分钟至25分钟。作为示例,可以对涂覆基底401在大约500℃加热大约25分钟,或者在大约650℃加热大约3分钟。通过一个或更多个加热器230提供的加热可以提供辐射加热、对流加热和/或电阻加热。
多区炉400、500可以是控制环境炉,其中,例如设置在入口区402和出口区406中的装载锁/出口锁(即,包括一个或多个门或气体分离帘(即,惰性气体的快速移动流)的室或区)可以用于使氢气/混合物保持在炉400、500内部。
参照图2A,如果涂覆基底401不包含缓冲层140(图1B),并且在存在氢的情况下在转变区403中发生加热工艺,则可以在区404中沉积窗口层150之前并且在加热步骤之后通过各个区403或404中的溅射设备407a或407b(在图2A中用虚线示出)来形成缓冲层140(图4)。可以提供溅射设备407a和溅射设备407b中的一个以沉积缓冲层140。
再次参照图2B,如果采用转变区409,并且涂覆的基底401不包含缓冲层140,则可以在区404中沉积窗口层150之前并且在加热步骤之后通过相应的区409、402或404中的溅射设备408a、408b或408c(在图2B中用虚线示出)来形成缓冲层140(图4)。可以提供溅射设备407a和溅射设备407b中的一个以沉积缓冲层140。
现在再次参照图2A、图2B和图4,在使非晶TCO层退火之后,可以通过例如气相传输沉积、近距离升化、蒸发、溅射或其他半导体沉积工艺来在多区炉400或多区炉500的区404和区405中形成半导体材料180的层。半导体材料180的层可以包括双层。双层可以包括在区404中的例如由硫化镉或硫化镉锌形成的窗口层150以及在区405中的形成在窗口层150上的例如由碲化镉、联硒化铜铟、二硫化铜铟、联硒化铜铟铝或联硒化铜铟镓(CIGS)的吸收层160。窗口层150和吸收层160可以被布置成彼此接触以产生电场。光子在与吸收层160接触时可以释放电子-空穴对,电场通过将电子发送到n侧(吸收层160)并且将空穴发送到p侧(窗口层150)来使电子空穴分离。造成的电子流动产生电流,与由电场引起的电压结合的所述电流产生能量。结果是光能转换成电能。光伏器件600中的每个层可以依次包括多于一个的层或膜。另外,每个层可以覆盖光伏器件600的全部或一部分和/或覆盖该层的全部或一部分或该层下方的基底的全部或一部分。例如,“层”可以包括与表面的全部或一部分接触的任意量的任意材料。
参照图4,在形成半导体材料180中的层之后,可以将背接触金属190沉积到吸收层160上。背接触金属190可以是提供低电阻欧姆接触的一种或更多种高度导电的材料,例如,钼、铝、铜、银、金或它们的任意组合。背支撑件192可以沉积到背接触金属190上。背支撑件192可以具有包括玻璃(例如,钠钙玻璃)的任意合适的材料。
图5是描绘退火温度(y轴)与进行了退火的器件的层的位置(x轴)的曲线图。在曲线图上,示出了两条线,一条具有用“×”指示的数据点,另一条具有用“□”指示的数据点。具有“×”数据点的线表示利用硫化镉作为还原剂的转化,具有“□”数据点的线表示利用氢气作为还原剂的转化。根据该曲线图,在对TCO层进行退火的区403中,与利用硫化镉作为还原剂时利用使非晶TCO层转变成晶体TCO层的650℃的温度相比,当利用氢气作为还原剂时,利用625℃的温度使非晶TCO层转变成晶体TCO层。
对于利用氢气的TCO转变,将2000sccm(标准立方厘米)的用氦稀释的2.9%氢气流和4000sccm的纯氦注入到转变区403内,以在转变区403中达到0.97%氢气浓度。因此氢气的使用显著降低了TCO退火温度。注意的是,可以通过调整转变区中的氢浓度来改变降低的幅值。
通过示出和示例的方式提供了上面描述的实施例。应该理解的是,上面提供的示例可以在某些方面改变,并且仍然保持在权利要求的范围内。应该理解的是,尽管已经参照上面的示例实施例描述了本发明,但是其他实施例在权利要求的范围内。还应该理解的是,附图不必是按比例绘制的,从而呈现本发明的各个特征和基本构思的稍微简化的图示。

Claims (26)

1.一种形成光伏器件的方法,包括:
在基底上方沉积包含镉和锡的非晶层;
将基底放置在包括转变区和半导体沉积区的多区炉中,其中,转变区包含氢气;
在转变区中对基底进行热处理,以使沉积在基底上方的非晶层转变成结晶化的锡酸镉层;
在热处理之后,在转变区中在结晶化的锡酸镉层上方沉积缓冲层;以及在半导体沉积区中在缓冲层上方沉积半导体材料。
2.如权利要求1所述的方法,其中,通过从由气相传输沉积、近距离升华、蒸发和溅射组成的组中选择的沉积技术来沉积半导体材料。
3.如权利要求2所述的方法,其中,通过气相传输沉积来沉积半导体材料。
4.如权利要求1所述的方法,其中,所述转变区具有其中0.01%至10%的氢浓度。
5.如权利要求4所述的方法,其中,氢浓度为1%。
6.如权利要求1所述的方法,其中,在500℃和650℃之间的温度下对基底进行热处理。
7.如权利要求1所述的方法,其中,对基底进行热处理介于3分钟和25分钟之间的时间。
8.如权利要求1所述的方法,其中,在小于550℃的温度下对基底进行热处理。
9.如权利要求7所述的方法,其中,对基底进行热处理介于15分钟和20分钟之间的时间。
10.如权利要求1所述的方法,其中,在存在包括氢气和惰性气体的气体混合物的条件下对基底进行热处理。
11.如权利要求10所述的方法,其中,惰性气体包括氩、氮和氦中的一种。
12.如权利要求11所述的方法,其中,惰性气体包括氦。
13.如权利要求1所述的方法,还包括利用扩散器使氢气扩散到所述转变区中。
14.一种形成光伏器件的方法,包括:
在基底上方沉积包含镉和锡的非晶层;
在包括转变区和半导体沉积区的多区炉中,在3分钟至25分钟的一段时间,在存在氢气的条件下在500℃和650℃之间的温度下对基底进行热处理,以在转变区中将沉积在基底上方的非晶层转变成结晶化的锡酸镉层;
在热处理之后,在转变区中在结晶化的锡酸镉层上方沉积缓冲层;以及
在半导体沉积区中在缓冲层上方沉积半导体材料。
15.如权利要求14所述方法,其中,在存在包括氢气和惰性气体的气体混合物的条件下对基底进行热处理。
16.一种用于形成光伏器件的设备,包括:
多区炉,包括转变区和半导体区;
用于对多区炉的转变区进行加热的至少一个加热器;
传输机械装置,用于将具有包含镉和锡的非晶层的基底传输通过转变区;
第一气体源,用于将氢气供应至转变区内以与被传输的基底接触,以将非晶层转变成结晶化的锡酸镉层;以及
溅射设备,在转变区中用于在结晶化的锡酸镉层上方沉积缓冲层。
17.如权利要求16所述的设备,其中,半导体区被构造成用于从由气相传输沉积、近距离升华、蒸发和溅射组成的组中选择的半导体沉积技术。
18.如权利要求17所述的设备,其中,半导体区被构造成用于气相传输沉积。
19.如权利要求16所述的设备,还包括布置在多区炉内部用于使氢气扩散到转变区的扩散器。
20.如权利要求16所述的设备,其中,第一气体源被构造成将包括氢气和惰性气体的气体混合物供应至转变区内以与被传输的基底接触。
21.如权利要求20所述的设备,其中,惰性气体包括氩、氮和氦中的一种。
22.如权利要求21所述的设备,其中,惰性气体包括氦。
23.如权利要求16所述的设备,还包括用于将惰性气体供应至转变区内的第二气体源。
24.如权利要求23所述的设备,其中,惰性气体包括氩、氮和氦中的一种。
25.如权利要求24所述的设备,其中,惰性气体包括氦。
26.如权利要求16所述的设备,其中,所述至少一个加热器被构造成将转变区加热至500℃至650℃的温度。
CN201380013032.9A 2012-03-05 2013-03-04 利用氢形成透明导电氧化物的方法和设备 Expired - Fee Related CN104334767B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261606512P 2012-03-05 2012-03-05
US61/606,512 2012-03-05
PCT/US2013/028874 WO2013134127A1 (en) 2012-03-05 2013-03-04 Method and apparatus for forming a transparent conductive oxide using hydrogen

Publications (2)

Publication Number Publication Date
CN104334767A CN104334767A (zh) 2015-02-04
CN104334767B true CN104334767B (zh) 2017-06-09

Family

ID=47892044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380013032.9A Expired - Fee Related CN104334767B (zh) 2012-03-05 2013-03-04 利用氢形成透明导电氧化物的方法和设备

Country Status (4)

Country Link
US (2) US9236523B2 (zh)
EP (1) EP2823081A1 (zh)
CN (1) CN104334767B (zh)
WO (1) WO2013134127A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140134838A1 (en) * 2012-11-09 2014-05-15 Primestar Solar, Inc. Methods of annealing a conductive transparent oxide film layer for use in a thin film photovoltaic device
AU2018225659B2 (en) 2017-02-24 2023-02-02 First Solar, Inc. Doped photovoltaic semiconductor layers and methods of making
CN109037390B (zh) * 2017-06-08 2021-06-01 龙焱能源科技(杭州)有限公司 一种锡酸镉基透明导电膜、其生产工艺及太阳能电池
FR3115149B1 (fr) * 2020-10-09 2024-02-23 St Microelectronics Grenoble 2 Dispositif de mémorisation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811953A (en) * 1971-09-20 1974-05-21 American Cyanamid Co Light-transmitting electrically conducting cadmium stannate and methods of producing same
US6137048A (en) * 1996-11-07 2000-10-24 Midwest Research Institute Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby
US20020064944A1 (en) * 2000-11-24 2002-05-30 Chung Seung-Pil Method of manufacturing a contact of a semiconductor device using cluster apparatus having at least one plasma pretreatment module
US20100319775A1 (en) * 2009-06-22 2010-12-23 First Solar, Inc. Method and Apparatus for Annealing a Deposited Cadmium Stannate Layer
US20120003772A1 (en) * 2010-07-02 2012-01-05 Primestar Solar, Inc. Apparatus and methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL96561A0 (en) 1989-12-28 1991-09-16 Minnesota Mining & Mfg Amorphous silicon sensor
US6221495B1 (en) * 1996-11-07 2001-04-24 Midwest Research Institute Thin transparent conducting films of cadmium stannate
US5922142A (en) * 1996-11-07 1999-07-13 Midwest Research Institute Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making
WO2003032406A2 (en) 2001-10-05 2003-04-17 Solar Systems & Equipments S.R.L. A process for large-scale production of cdte/cds thin film solar cells
KR100615232B1 (ko) 2004-07-20 2006-08-25 삼성에스디아이 주식회사 발광형 투명 도전층 및 이를 구비한 전자 방출 소자
KR100684655B1 (ko) * 2005-05-04 2007-02-22 (주)울텍 태양전지 디바이스 제조용 인라인 장치
US20090104733A1 (en) 2007-10-22 2009-04-23 Yong Kee Chae Microcrystalline silicon deposition for thin film solar applications
TW201027779A (en) 2008-11-19 2010-07-16 First Solar Inc Photovoltaic devices including heterojunctions
US8741687B2 (en) * 2010-03-18 2014-06-03 First Solar, Inc. Photovoltaic device with crystalline layer
US8053350B2 (en) 2010-03-30 2011-11-08 Primestar Solar, Inc Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
TW201203590A (en) 2010-04-02 2012-01-16 First Solar Inc Photovoltaic device with transparent conducting layer
US8525019B2 (en) 2010-07-01 2013-09-03 Primestar Solar, Inc. Thin film article and method for forming a reduced conductive area in transparent conductive films for photovoltaic modules
WO2012024557A2 (en) * 2010-08-20 2012-02-23 First Solar, Inc. Photovoltaic device front contact
US8476105B2 (en) * 2010-12-22 2013-07-02 General Electric Company Method of making a transparent conductive oxide layer and a photovoltaic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811953A (en) * 1971-09-20 1974-05-21 American Cyanamid Co Light-transmitting electrically conducting cadmium stannate and methods of producing same
US6137048A (en) * 1996-11-07 2000-10-24 Midwest Research Institute Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby
US20020064944A1 (en) * 2000-11-24 2002-05-30 Chung Seung-Pil Method of manufacturing a contact of a semiconductor device using cluster apparatus having at least one plasma pretreatment module
US20100319775A1 (en) * 2009-06-22 2010-12-23 First Solar, Inc. Method and Apparatus for Annealing a Deposited Cadmium Stannate Layer
US20120003772A1 (en) * 2010-07-02 2012-01-05 Primestar Solar, Inc. Apparatus and methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device

Also Published As

Publication number Publication date
CN104334767A (zh) 2015-02-04
US9236523B2 (en) 2016-01-12
EP2823081A1 (en) 2015-01-14
US20130230945A1 (en) 2013-09-05
US20170133246A1 (en) 2017-05-11
WO2013134127A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
US20120018828A1 (en) Sodium Sputtering Doping Method for Large Scale CIGS Based Thin Film Photovoltaic Materials
US20070184573A1 (en) Method of making a thermally treated coated article with transparent conductive oxide (TCO) coating for use in a semiconductor device
US20130104972A1 (en) Se OR S BASED THIN FILM SOLAR CELL AND METHOD OF MANUFACTURING THE SAME
CN103283031B (zh) 包含n型掺杂剂源的光伏装置
CN102206801B (zh) 基于碲化镉的薄膜光伏器件所用的导电透明氧化物膜层的形成方法
US9318642B2 (en) Method and apparatus providing single step vapor chloride treatment and photovoltaic modules
JP2014513413A (ja) 五元化合物半導体CZTSSeおよび薄膜太陽電池の製造方法
CN104334767B (zh) 利用氢形成透明导电氧化物的方法和设备
CN104737303A (zh) 对光伏装置提供氯化物处理的方法和氯化物处理过的光伏装置
WO2019153668A1 (zh) 铜铟镓硒吸收层及其制备方法、太阳能电池及其制备方法
US20140261685A1 (en) Thin film photovoltaic device wtih large grain structure and methods of formation
US20120067414A1 (en) CdZnO OR SnZnO BUFFER LAYER FOR SOLAR CELL
US8008198B1 (en) Large scale method and furnace system for selenization of thin film photovoltaic materials
US9640679B2 (en) Photovoltaic device with oxide layer
CN102782860A (zh) 具有新型tco层的光伏电池
CN107634122A (zh) 一种氧化钛钝化膜的制备方法及利用该方法制备太阳电池
JP4485642B2 (ja) 透明導電膜付き透明基板の製造方法、およびこれを用いた光電変換装置
CN116395981B (zh) 带有透明导电膜的玻璃基板及其制造方法
ES2971847T3 (es) Proceso para preparar un sustrato de vidrio recubierto
Alves et al. Radio-frequency magnetron sputtering deposition process for In2O3: H transparent conductive oxide films for application in Cu (In, Ga) Se2 solar cells
JPH0536613A (ja) 半導体表面処理方法及び装置
Wang et al. Preparation and characterization of monolithic HgCdTe/CdTe tandem cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170609

Termination date: 20180304