CN104332637A - 一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法 - Google Patents

一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法 Download PDF

Info

Publication number
CN104332637A
CN104332637A CN201410481660.6A CN201410481660A CN104332637A CN 104332637 A CN104332637 A CN 104332637A CN 201410481660 A CN201410481660 A CN 201410481660A CN 104332637 A CN104332637 A CN 104332637A
Authority
CN
China
Prior art keywords
charcoal
catalyst
precious metal
metal nano
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410481660.6A
Other languages
English (en)
Other versions
CN104332637B (zh
Inventor
秦海英
倪华良
迟洪忠
何燕
王娟
陈凯建
季振国
刘嘉斌
何垚橙
王烨润
高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wei Ying
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201410481660.6A priority Critical patent/CN104332637B/zh
Publication of CN104332637A publication Critical patent/CN104332637A/zh
Application granted granted Critical
Publication of CN104332637B publication Critical patent/CN104332637B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提出一种多孔石墨烯负载贵金属纳米复合催化剂的制备方法。该方法是将竹子、松木的屑粉或者边角料等在缺氧气氛下高温煅烧,然后浸没到含贵金属离子溶液中保持1~1000分钟后取出,缺氧气氛高温煅烧;再浸没到强氧化性溶液,使竹炭或木炭石墨结构充分氧化为氧化石墨;然后取出置于缺氧气氛下500~1000℃高温煅烧0.01~0.5小时即可。本发明所制备的石墨烯为多孔结构,具备良好的透水透气特性,能实现电极反应所需要的快速质量传导要求;贵金属纳米颗粒牢牢地附着在石墨烯孔道内壁,与传导进来的水、气和电子反应,构成无数的微三相反应区,极大地增加了反应活性面积,具备优异的催化反应活性。

Description

一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法
技术领域
本发明属于电化学催化领域,具体涉及一种用于质子交换膜燃料电池催化剂的制备方法,尤其是一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法。 
背景技术
燃料电池是一种直接将储存在燃料中的化学能转变为电能的能量转换装置,由于其无需经过卡诺循环,能量密度和能量转换效率高,是一种新型的绿色能源技术。燃料电池根据电池使用的电解质的性质不同,可分为五类:以氢氧化钾为电解质的碱性燃料电池,以浓磷酸为电解质的磷酸燃料电池,以全氟或部分氟化磺酸型质子交换膜为电解质的质子交换膜燃料电池(PEMFC),以熔融锂-钾碳酸盐或锂-钠碳酸盐为电解质的熔融碳酸盐燃料电池,和以固体氧化物为氧离子导体的固体氧化物燃料电池。PEMFC与其他类型的燃料电池相比,具有室温快速启动和可按负载要求快速改变输出功率的优点,是电动车、军事装备等各种便携式电源和移动式电源的最佳候选电源技术之一。 
目前,虽然常温下工作的PEMFC的结构设计和制备技术方面已经取得了很多进展,但是,与已经实用化的蓄电池相比,PEMFC商业化的难度还很大。关键需要研究解决的问题之一是其通常以贵金属材料为催化剂,寻找新的价格较低的高效非贵金属催化剂对于降低催化剂成本具有重要意义。 
通常的质子交换膜燃料电池电极往往通过催化剂颗粒与碳粉混合并结合适当的导电粘结剂将催化剂颗粒与碳粉混合在一起,绝大部分的催化剂颗粒被包埋在粘结剂内部,无法接触到氧气和质子及电子。采用此类制备方法所获得的电极仅仅在电极与质子交换膜接触的表面的那部分催化剂能够获得电子、氧气以及从质子交换膜传来的质子从而实现氧气的还原反应,才是真正有效的三相催化反应区。未能与质子交换膜接触的催化剂颗粒无法参与催化反应。由此造成极大的材料浪费,并且严重限制了三相催化反应区,无法显著提高电极的催化活性。 
发明内容
本发明的目的是针对现有技术的不足,提供一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法。 
该方法具体是: 
步骤(1).将竹子、松木的屑粉或者边角料等在缺氧气氛下在500~1500℃下高温煅烧0.5~100小时后,得到自生多孔性竹炭或木炭;
步骤(2).将步骤(1)得到的自生多孔性竹炭或木炭浸没到浓度0.01~10 mol/L的含贵金属离子溶液中保持1~1000分钟;然后取出该竹炭或木炭置于缺氧气氛下500~1000℃高温煅烧0.5~100小时;
所述的含贵金属离子溶液中贵金属离子为Pd、Au或Pt离子;
步骤(3).将步骤(2)处理后的竹炭或木炭浸没到强氧化性溶液,使步骤(2)处理后的竹炭或木炭石墨结构充分氧化为氧化石墨;然后取出竹炭或木炭置于缺氧气氛下500~1000℃高温煅烧0.01~0.5小时,得到石墨烯负载贵金属纳米颗粒的复合材料。
所述的强氧化性溶液为钠硝酸、硫酸、高锰酸钾与双氧水的混合溶液;其中钠硝酸、硫酸、高锰酸钾与双氧水的质量体积比为1~3g:20~100 mL:3~10g:50~100mL。 
通过上述步骤所制备得到的石墨烯负载贵金属纳米颗粒的复合材料,可作为多孔石墨烯负载贵金属纳米复合催化剂;其中石墨烯为多孔结构,孔径在0.5~2000 纳米范围,孔道具有各向同性,通孔占所有孔道比例的60﹪以上,盲孔所占比例在40﹪以下;其中贵金属纳米颗粒尺寸在2~100 纳米范围,且相互重叠的颗粒占总颗粒比例的20﹪以下;贵金属纳米颗粒附着在石墨烯孔道内壁,而非堆积在孔道中。 
本发明具有的有益效果是: 
1、石墨烯具有超高导电性,有利于迅速导走电极产生的电子,保障良好的电传导;2、本发明所制备的石墨烯为多孔结构,具备良好的透水透气特性,能实现电极反应所需要的快速质量传导要求;3、贵金属纳米颗粒牢牢地附着在石墨烯孔道内壁,与传导进来的水、气和电子反应,构成无数的微三相反应区,极大地增加了反应活性面积,具备优异的催化反应活性;4、使用竹木屑或者边角料作为原料,来源丰富、成本节约且环保无毒。
附图说明
图1为本发明石墨烯负载贵金属纳米复合催化剂的透射电子显微镜图; 
图2为本发明石墨烯负载贵金属纳米复合催化剂的高分辨透射电子显微镜图;
图3为本发明石墨烯负载贵金属纳米复合催化剂与商业Pt/C的线性伏安曲线。
具体实施方式
下面结合具体实施例对本发明做进一步的分析。 
实施例1. 
(1)自生多孔性竹炭或木炭制备:将竹子、松木的屑粉或者边角料等在缺氧气氛下高温(1500摄氏度)煅烧0.5小时。
(2)Pd纳米颗粒制备:将步骤(1)制得的竹炭或木炭浸入含Pd离子的溶液(浓度0.01 mol/L)保持1000分钟,取出该竹炭或木炭并再次放入缺氧气氛下高温(1000摄氏度)煅烧0.5小时。 
(3)多孔石墨烯的制备:将步骤(2)制得的该竹炭或木炭浸入强氧化性溶液24小时,使石墨结构充分氧化为氧化石墨;取出该竹炭或木炭在缺氧气氛下高温(1000摄氏度)煅烧0.01小时。 
上述强氧化性溶液为1g 钠硝酸、46 mL硫酸、6g高锰酸钾和80mL双氧水的混合溶液。 
实施例2. 
其它同实施例1,所浸入的贵金属离子溶液为含Au离子的溶液。
实施例3. 
其它同实施例1,所浸入的贵金属离子溶液为含Pt离子的溶液。
实施例4. 
其它同实施例1,步骤(1)的煅烧条件为500摄氏度煅烧100小时;步骤(2)的煅烧条件为500摄氏度煅烧100小时;步骤(3)的煅烧条件为500摄氏度煅烧0.5小时。
实施例5. 
其它同实施例1,步骤(1)的煅烧条件为800摄氏度煅烧10小时;步骤(2)的煅烧条件为800摄氏度煅烧10小时;步骤(3)的煅烧条件为800摄氏度煅烧0.1小时。
实施例6. 
其它同实施例1,所浸入的Pd离子溶液浓度为1mol/L,保持时间为100分钟。
实施例7. 
其它同实施例1,所浸入的Au离子溶液浓度为10mol/L,保持时间为1分钟。
实施例8. 
其它同实施例1,所浸入的强氧化性溶液为3g 钠硝酸、20 mL硫酸、3g高锰酸钾和100mL双氧水的混合溶液。
实施例9. 
其它同实施例1,所浸入的强氧化性溶液为2g 钠硝酸、100 mL硫酸、10g高锰酸钾和50mL双氧水的混合溶液。
为了评价本发明多孔石墨烯负载贵金属纳米复合催化剂制备的可行性和贵金属纳米粒子在石墨烯多孔网络中的形态及分布,本发明利用高分辨透射电子显微镜对多孔石墨烯负载贵金属纳米复合材料进行表征。通过高分辨透射电子显微镜观察发现,图1显示石墨烯为多孔网络结构,孔径在0.5~2000 纳米范围,这种结构使得石墨烯本身具有极大的比表面积,可以更好的吸附纳米粒子。在石墨烯网络中均匀分布大量的贵金属纳米颗粒,颗粒尺寸在2~50 纳米范围,且相互重叠的颗粒占总颗粒比例的20﹪以下。图2显示纳米颗粒内部晶格排列规则,结晶性良好。纳米颗粒周围的石墨烯片层数约为1~5层。 
为了考察本发明多孔石墨烯负载贵金属纳米复合催化剂的电催化性能,将本发明所制备的催化剂直接作为阴极与常用阳极装配为质子交换膜燃料电池,在常温下测试电池功率密度、寿命、极化等性能,如表1所示。可见本发明所制备的多孔石墨烯负载贵金属纳米复合催化剂具有与商业Pt/C催化剂相当甚至更优的催化活性和稳定性。 
表1 电池性能测试结果 
采用线性伏安法测试本多孔石墨烯负载贵金属纳米复合催化剂对氧气的还原活性并与商业Pt/C催化剂进行对比,结果如图3所示。本多孔石墨烯负载贵金属纳米复合催化剂不仅在C1’处具有与商业Pt/C催化剂相当的氧化还原电位和电流,并在CII,CIV处额外地出现氧化还原峰,表明本多孔石墨烯负载贵金属纳米复合催化剂具有商业Pt/C催化剂所不具备的额外的催化还原能力。
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。 

Claims (3)

1.一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法,其特征在于该方法包括以下步骤:
步骤(1).将竹子、松木的屑粉或者边角料等在缺氧气氛下在500~1500℃下高温煅烧0.5~100小时后,得到自生多孔性竹炭或木炭;
步骤(2).将步骤(1)得到的自生多孔性竹炭或木炭浸没到浓度为0.01~10 mol/L的贵金属离子溶液中保持1~1000分钟后,取出该竹炭或木炭置于缺氧气氛下500~1000℃高温煅烧0.5~100小时;
步骤(3).将步骤(2)处理后的竹炭或木炭浸没到强氧化性溶液,使步骤(2)处理后的竹炭或木炭石墨结构充分氧化为氧化石墨;然后取出竹炭或木炭置于缺氧气氛下500~1000℃高温煅烧0.01~0.5小时,得到石墨烯负载贵金属纳米颗粒的复合材料。
2.如权利要求1所述的一种多孔石墨烯负载贵金属纳米复合催化剂的制备方法,其特征在于步骤(2)所述的含贵金属离子溶液中贵金属离子为Pd、Au或Pt离子。
3.如权利要求1所述的一种多孔石墨烯负载贵金属纳米复合催化剂的制备方法,其特征在于步骤(3)所述的强氧化性溶液为钠硝酸、硫酸、高锰酸钾与双氧水的混合溶液;其中钠硝酸、硫酸、高锰酸钾与双氧水的质量体积比为1~3g:20~100 mL:3~10g:50~100mL。
CN201410481660.6A 2014-09-20 2014-09-20 一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法 Expired - Fee Related CN104332637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410481660.6A CN104332637B (zh) 2014-09-20 2014-09-20 一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410481660.6A CN104332637B (zh) 2014-09-20 2014-09-20 一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法

Publications (2)

Publication Number Publication Date
CN104332637A true CN104332637A (zh) 2015-02-04
CN104332637B CN104332637B (zh) 2016-08-17

Family

ID=52407323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410481660.6A Expired - Fee Related CN104332637B (zh) 2014-09-20 2014-09-20 一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法

Country Status (1)

Country Link
CN (1) CN104332637B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759616A (zh) * 2015-03-03 2015-07-08 中国科学院合肥物质科学研究院 贵金属纳米颗粒-多孔石墨烯复合材料及其制备方法和用途
CN106498502A (zh) * 2016-12-06 2017-03-15 南京理工大学 一种利用金属辅助刻蚀具有木材反向结构硅表面的方法
CN105720273B (zh) * 2016-03-22 2018-07-13 大连理工大学 一种高载量、高分散担载型金纳米催化剂的一步可控制备方法和应用
CN108550870A (zh) * 2018-04-18 2018-09-18 广东高明产业创新研究院 一种多孔石墨烯/钌硒复合催化剂及其制备方法和应用
CN111785980A (zh) * 2020-06-16 2020-10-16 华东理工大学 一种直接甲酸燃料电池阳极用生物质基催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101912777A (zh) * 2010-07-30 2010-12-15 清华大学 氧化石墨烯三维自组装体及其制备方法与应用
KR20120119393A (ko) * 2011-04-21 2012-10-31 광주과학기술원 촉매 담지용 그래핀의 제조방법 및 이를 이용한 연료전지
CN104016341A (zh) * 2014-07-01 2014-09-03 济南圣泉集团股份有限公司 一种多孔石墨烯的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101912777A (zh) * 2010-07-30 2010-12-15 清华大学 氧化石墨烯三维自组装体及其制备方法与应用
KR20120119393A (ko) * 2011-04-21 2012-10-31 광주과학기술원 촉매 담지용 그래핀의 제조방법 및 이를 이용한 연료전지
CN104016341A (zh) * 2014-07-01 2014-09-03 济南圣泉集团股份有限公司 一种多孔石墨烯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田春贵等: "石墨烯制备及其在低温燃料电池阳极催化中的应用进展", 《黑龙江大学自然科学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759616A (zh) * 2015-03-03 2015-07-08 中国科学院合肥物质科学研究院 贵金属纳米颗粒-多孔石墨烯复合材料及其制备方法和用途
CN104759616B (zh) * 2015-03-03 2017-01-11 中国科学院合肥物质科学研究院 贵金属纳米颗粒-多孔石墨烯复合材料的制备方法
CN105720273B (zh) * 2016-03-22 2018-07-13 大连理工大学 一种高载量、高分散担载型金纳米催化剂的一步可控制备方法和应用
CN106498502A (zh) * 2016-12-06 2017-03-15 南京理工大学 一种利用金属辅助刻蚀具有木材反向结构硅表面的方法
CN108550870A (zh) * 2018-04-18 2018-09-18 广东高明产业创新研究院 一种多孔石墨烯/钌硒复合催化剂及其制备方法和应用
CN111785980A (zh) * 2020-06-16 2020-10-16 华东理工大学 一种直接甲酸燃料电池阳极用生物质基催化剂及其制备方法

Also Published As

Publication number Publication date
CN104332637B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
Guo et al. Co2P–CoN double active centers confined in N‐doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting
Ye et al. A high‐efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries
Liu et al. Facilitated oxygen chemisorption in heteroatom‐doped carbon for improved oxygen reaction activity in all‐solid‐state zinc–air batteries
Zhu et al. Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities
Li et al. Retracted: colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc–air battery
Sajid et al. A perspective on development of fuel cell materials: Electrodes and electrolyte
Li et al. Zn, Co, and Fe tridoped N–C core–shell nanocages as the high-efficiency oxygen reduction reaction electrocatalyst in zinc–air batteries
Zhu et al. A fuel cell with a single component functioning simultaneously as the electrodes and electrolyte
Xu et al. Atomically dispersed cobalt in core-shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries
CN104332637B (zh) 一种贵金属纳米颗粒负载于多孔石墨烯的催化剂制备方法
Li et al. Ni-Co-N doped honeycomb carbon nano-composites as cathodic catalysts of membrane-less direct alcohol fuel cell
Hu et al. Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells
CN104971760A (zh) 含硫、氮和过渡金属元素大孔碳氧化原催化剂的制备方法
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
Du et al. Bottom-up synthesis of iron and nitrogen dual-doped porous carbon nanosheets for efficient oxygen reduction
CN104525185A (zh) 一种碳基复合物燃料电池阴极氧还原催化剂及其制备方法
Tang et al. Enhancing the Power Output of Direct Carbon Solid Oxide Fuel Cell Using Ba‐Loaded Activated Carbon Fuel
CN104332636B (zh) 一种多孔石墨烯负载过渡金属纳米复合催化剂的制备方法
Hossain et al. Evolution of vanadium redox flow battery in electrode
Wang et al. Structure-dependent electrocatalytic activity of La 1-x Sr x MnO 3 for oxygen reduction reaction
Yue et al. Ultrafine, dual-phase, cation-deficient PrBa0. 8Ca0. 2Co2O5+ δ air electrode for efficient solid oxide cells
Li et al. Advanced Architectures of Air Electrodes in Zinc–Air Batteries and Hydrogen Fuel Cells
Hyun et al. The influence of porous Co/CeO1. 88-nitrogen-doped carbon nanorods on the specific capacity of Li-O2 batteries
CN100463275C (zh) 一种硼氢化物碱性燃料电池
CN104638277A (zh) 一种碳基固体氧化物燃料电池用梯度功能阳极及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Wei Ying

Inventor before: Qin Haiying

Inventor before: Wang Yerun

Inventor before: Gao Sen

Inventor before: Ni Hualiang

Inventor before: Chi Hong Zhong

Inventor before: He Yan

Inventor before: Wang Juan

Inventor before: Chen Kaijian

Inventor before: Ji Zhenguo

Inventor before: Liu Jiabin

Inventor before: He Yaocheng

CB03 Change of inventor or designer information
TR01 Transfer of patent right

Effective date of registration: 20180207

Address after: No. 14, unit 28, hospital No. 1, Xinhua Street, Xincheng, the Inner Mongolia Autonomous Region, the Inner Mongolia Autonomous Region

Patentee after: Wei Ying

Address before: Unit 2301-D No. 9 Beek building 518000 Guangdong city of Shenzhen province Nanshan District Guangdong streets High-tech Zone Central Road Research

Patentee before: Shenzhen Gao Hang Intellectual Property Operation Co.,Ltd.

Effective date of registration: 20180207

Address after: Unit 2301-D No. 9 Beek building 518000 Guangdong city of Shenzhen province Nanshan District Guangdong streets High-tech Zone Central Road Research

Patentee after: Shenzhen Gao Hang Intellectual Property Operation Co.,Ltd.

Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park No. 2 street

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20210920

CF01 Termination of patent right due to non-payment of annual fee