CN104332402A - 大面积硅旁路二极管的制备方法 - Google Patents

大面积硅旁路二极管的制备方法 Download PDF

Info

Publication number
CN104332402A
CN104332402A CN201310308162.7A CN201310308162A CN104332402A CN 104332402 A CN104332402 A CN 104332402A CN 201310308162 A CN201310308162 A CN 201310308162A CN 104332402 A CN104332402 A CN 104332402A
Authority
CN
China
Prior art keywords
layer
boron
substrate
phosphorus
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310308162.7A
Other languages
English (en)
Other versions
CN104332402B (zh
Inventor
梁存宝
杜永超
欧伟
韩志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cetc Blue Sky Technology Co ltd
Tianjin Hengdian Space Power Source Co ltd
Original Assignee
TIANJIN HENGDIAN SPACE POWER SOURCE Co Ltd
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN HENGDIAN SPACE POWER SOURCE Co Ltd, CETC 18 Research Institute filed Critical TIANJIN HENGDIAN SPACE POWER SOURCE Co Ltd
Priority to CN201310308162.7A priority Critical patent/CN104332402B/zh
Publication of CN104332402A publication Critical patent/CN104332402A/zh
Application granted granted Critical
Publication of CN104332402B publication Critical patent/CN104332402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种大面积硅旁路二极管的制备方法,包括在衬底一面进行硼扩散形成硼扩散层、衬底另一面制出氧化环,在氧化环内衬底的裸露面上进行磷扩散形成磷扩散层;磷扩散层上制出上电极、硼扩散层上制出下电极,其特点是:在衬底和氧化环之间的衬底上扩散出一个P+硼隔离环;在磷扩散层上依次蒸镀成Ti-Pd-Ag上电极系统;在硼扩散层上依次蒸镀成Al-Ti-Pd-Ag下电极系统。本发明通过制作Ti-Pd-Ag上电极系统和Al-Ti-Pd-Ag下电极系统,提高了电极的抗拉力强度,增强了电极的牢固度,电极不变形、不脱落;制作了在氧化环保护下的P+硼隔离环,使得反向漏电流小于1μA,提高了产品的可靠性和稳定性。

Description

大面积硅旁路二极管的制备方法
技术领域
本发明属于二极管技术领域,特别是涉及一种大面积硅旁路二极管的制备方法。
背景技术
为了防止太阳电池由于热斑效应而遭受破坏,通常在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。其应用原理是当电池片出现热斑效应不能发电时,起旁路作用的二极管,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。当电池片正常工作时,旁路二极管反向截止,对电路不产生任何作用;若与旁路二极管并联的电池片组存在一个非正常工作的电池片时,整个线路电流将由最小电流电池片决定,而电流大小由电池片遮蔽面积决定,若反偏压高于电池片最小电压时,旁路二极管导通,此时,非正常工作电池片被短路。因此,对于太阳电池阵来讲,旁路二极管是必不可少,其作用十分关键。随着太阳电池片尺寸的不断加大,常用的3mm×3mm尺寸的小面积旁路二极管,已不适应缺角面积尺寸更大的太阳电池需求。
通常,大面积硅旁路二极管的电极大多采用铝-金电极系统,铝与二极管形成良好的接触,再用点焊或球焊等方法将金丝或铝丝与焊点连接引出电极。但是铝电极在潮湿的环境中容易发生化学反应,导致铝电极腐蚀造成二极管输出电性能下降以至完全失效。
目前公知的大面积硅旁路二极管,其上、下表面通过焊接具有导电性能和可焊性良好的金属银作为电极材料,避免了电极腐蚀造成的二极管失效。但是由于金属银和硅没有很好的附着性,导致二极管电极的抗拉力性能差,牢固度低;并且反向漏电流相对较大,为减小反向漏电流,在二极管的上下电极之间固定一层氧化环,虽然反向漏电流有所减小,但是仍然大于1μA,降低了二极管在太阳电池阵中应用的可靠性和稳定性。
发明内容
本发明为解决公知技术中存在的技术问题而提供一种电极抗拉力强度好、牢固度高,反向漏电流小于1μA,并且可靠性高、稳定性好的大面积硅旁路二极管的制备方法。
本发明为解决公知技术中存在的技术问题,采用如下技术方案:
大面积硅旁路二极管的制备方法,包括在衬底一面去掉氧化层后进行硼扩散形成硼扩散层,衬底另一面边缘留出一圈氧化层作为氧化环后,去掉氧化环圈内衬底上的氧化层后进行磷扩散形成磷扩散层;磷扩散层上制出上电极、硼扩散层上制出下电极,其特征在于:还包括以下制备过程:
⑴在衬底和氧化环之间的衬底上扩散出一个P+硼隔离环;
⑵在磷扩散层上的上电极为依次蒸镀上电极Ti层、上电极Pd层和上电极Ag层,构成Ti-Pd-Ag上电极系统;
⑶在硼扩散层上的下电极为依次蒸镀下电极Al层、下电极Ti层、下电极Pd层和下电极Ag层,构成Al-Ti-Pd-Ag下电极系统。
本发明还可以采用如下技术措施:
所述硼扩散层为p+硼重掺层;所述磷扩散层为n+磷重掺层。
所述⑴中P+硼隔离环的制作过程为:在作为衬底的P型硅片单面抛光面上制作氧化层;在氧化层上涂布光刻胶、刻出刻隔离槽的图形、去掉靠近衬底边缘的光刻胶和氧化层露出衬底裸露面,对裸露面进行硼扩散形成P+硼隔离环。
本发明具有的优点和积极效果是:
1、本发明采用Ti-Pd-Ag上电极和Al-Ti-Pd-Ag下电极形成的电极系统,大幅提高了电极的抗拉力强度,增强了电极的牢固度,具有电极不变形、不脱落的特点。
2、本发明采用了在氧化环保护下的P+硼隔离环,由于P+硼隔离环的扩散使隔离槽成为P+区,该P+区一方面与底部的N型材料形成P/N结,利用半导体的光生伏特效应产生光生电压;另一方面,P+又与周围的N型区域形成P/N结,达到隔离反向漏电流的目的,使得反向漏电流小于1μA。
3、本发明具有可靠性高、稳定性好的特点,能够满足大面积太阳电池阵的需要。
附图说明
图1是本发明制备的大面积硅旁路二极管的主视剖面示意图;
图2是本发明大面积硅旁路二极管如图1中A-A层剖视俯视示意图。
图中,1-上电极Ag层,2-上电极Pd层,3-上电极Ti层,4-n+磷重掺层,5-衬底,6-p+硼重掺层,7-下电极Al层,8-下电极Ti层,9-下电极Pd层,10-下电极Ag层,11-氧化环,12-P+硼隔离环。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
大面积硅旁路二极管的制备方法,包括在衬底一面去掉氧化层后进行硼扩散形成硼扩散层,衬底另一面边缘留出一圈氧化层作为氧化环后,去掉氧化环圈内衬底上的氧化层后进行磷扩散形成磷扩散层;磷扩散层上制出上电极、硼扩散层上制出下电极;
本发明的创新点是还包括以下制备过程:
⑴在衬底和氧化环之间的衬底上扩散出一个P+硼隔离环;
⑵在磷扩散层上的上电极为依次蒸镀上电极Ti层、上电极Pd层和上电极Ag层,构成Ti-Pd-Ag上电极系统;
⑶在硼扩散层上的下电极为依次蒸镀下电极Al层、下电极Ti层、下电极Pd层和下电极Ag层,构成Al-Ti-Pd-Ag下电极系统;
所述硼扩散层为p+硼重掺层;所述磷扩散层为n+磷重掺层;
所述⑴中P+硼隔离环的制作过程为:在作为衬底的P型硅片单面抛光面上制作氧化层;在氧化层上涂布光刻胶、刻出刻隔离槽的图形、去掉靠近衬底边缘的光刻胶和氧化层露出衬底裸露面,对裸露面进行硼扩散形成P+硼隔离环。
实施例:
首先,将直角边大于10.9mm×10.9mm的直角三角形状P型硅片单面抛光,制成晶向<100>,电阻率2Ω·cm±1Ω·cm,厚度0.13m±0.03mm型的硅片作为图1和图2所示的衬底5,然后按以下步骤依次进行产品制作:
步骤1、制作隔离槽
⑴氧化衬底抛光面:
氧化炉内升温的同时,以1900-2000mL/min的速度向氧化炉中通干氧,温度升至700℃时,氧化炉内已充满氧气;衬底的抛光面朝上放入氧化石英舟中,将氧化石英舟置于氧化炉口,预热5-10min,再将氧化石英舟推入氧化炉的恒温区,氧化炉加热,当石英舟中衬底的温度达到1015-1025℃时,通过氧气气体流量计控制进氧量,以1800-1850mL/min的速度,先后向氧化炉的恒温区通干氧10min、湿氧58min、干氧10min,对氧化炉的恒温区降温,当衬底温度降至400℃时,取出衬底,衬底抛光面表面形成氧化层;该氧化层起掩蔽膜的作用,当后序进行硼扩散时,保护n+磷重掺层扩散面;
⑵光刻隔离槽:
将衬底放在匀胶机上,在⑴完成的氧化层上手动涂布BP218光刻胶后,以3000rpm进行匀胶15s-20s,氧化层上面形成3.5μm±0.5μm厚的光刻胶;然后将衬底置于热阻式烘箱中进行90℃烘干,用光刻版在光刻胶上刻出刻隔离槽的图形;根据图形,用光刻机刻蚀掉光刻胶和氧化层,衬底抛光面层的边缘形成一圈0.2mm宽的衬底裸露面,该裸露面作为硼扩散形成P+硼隔离环的隔离槽;
步骤2、硼扩散
⑴去掉衬底非剖光面氧化层
将衬底非剖光面放入35-45℃的HF缓冲液中3-4min,腐蚀掉非剖光面氧化层,取出甩干,再置于丙酮中,取出用去离子水冲洗干净、甩干,衬底非剖光形成硅裸露面;
⑵硼扩散
将步骤2⑴完成后的衬底和硼片放在石英舟中,衬底的非剖光形成的硅裸露面和隔离槽作为扩硼面紧贴着硼片,石英舟放入扩散炉内,开启扩散炉加热电源,待扩散炉内温度升至920℃-930℃,以2000-2500mL/min流量向扩散炉内充入氮气,对衬底的扩硼面进行40-45min硼扩散;关闭扩散炉加热电源,将氮气改换为氧气,并控制氧气的流量为1900-2100mL/min,待扩散炉内温度降至500℃后取出衬底,衬底的非剖光面扩散出p+硼重掺层6、衬底隔离槽扩散出P+硼隔离环12;
步骤3、制作氧化环
⑴将两片p+硼重掺层面对面贴在一起的衬底以插入氧化石英舟中,氧化石英舟置于氧化炉口,预热5-10min,将氧化石英舟推入氧化炉的恒温区,对衬底进行1015-1025℃、70min的氧化,氧化期间,氧化炉中的干氧流量保持在800-1200mL/min;氧化后保持氧化炉温度,将通入的干氧改为通入流量为800-1200mL/min的氩气;关闭加热,继续通入氩气,自然降温至700℃以下后,将氧化舟移至炉口,衬底扩散出的P+硼隔离环被氧化;
⑵将衬底的p+硼重掺层面放在匀胶机上,衬底另一面手动涂布BP218光刻胶,匀胶机转速设定在3000rpm,进行15-20s匀胶;
⑶将匀胶后的衬底置于热阻式烘箱中进行90℃烘干;
⑷以P+硼隔离环内圈为界限,用光刻版在光刻胶上刻出磷扩散面的图形,刻蚀掉磷扩散面图形的氧化层形成硅裸露面,保留在P+硼隔离环上的氧化层即为氧化环11;
步骤4、磷扩散:
将步骤3形成的硅裸露面朝外,两片衬底的p+硼重掺层贴在一起,放入扩散石英舟中,石英舟放入充有稀释氮气N22的扩散炉炉口,扩散炉恒温区加热至820℃时,将石英舟和放有POCl3液的开口容器推入扩散炉恒温区,保持15-20min,以向恒温区充入500-600mL/min流量的携源氮气N21和250-mL/min流量的反应氧气O2,POCl3对硅裸露面进行22-30min的磷扩散;停止充入N21和O2,转为充入5-10min的2000-3000mL/min流量的稀释氮气N22,取出衬底,硅裸露上形成一层n+磷重掺层4,该层实现了二级管PN结构中的N型扩散;
步骤5、蒸镀上电极系统:
衬底的n+磷重掺层面朝下放在模具上卡好;将清洁处理好的钛、钯、银膜料分别放入坩埚内,模具和坩埚均放入存有电极蒸镀程序的高真空镀膜机真空室中,真空室的起始真空度不低于3×10-4Pa,上电极蒸镀程序设定为Ti的速率为Pd的速率为Ag的速率为抽真空后,启动高真空镀膜机中的上电极蒸镀程序,自动在n+磷重掺层上依次蒸镀厚度为的上电极Ti层3、的上电极Pd层2和的上电极Ag层1,形成Ti-Pd-Ag上电极系统;
步骤6、蒸镀下电极系统:
衬底的p+硼重掺层面朝下放在模具上卡好;将清洁处理好的铝、钛、钯、银膜料分别放入坩埚内,模具和坩埚均放入存有电极蒸镀程序的高真空镀膜机真空室中,真空室的起始真空度不低于2×10-4Pa,下电极蒸镀程序设定为Al的速率为Ti的速率为Pd的速率为 Ag的速率为抽真空后,启动高真空镀膜机中的下电极蒸镀程序,自动在p+硼重掺层上依次蒸镀厚度为的下电极Al层7、的下电极Ti层8、的下电极Pd层9和的下电极Ag层10,形成Al-Ti-Pd-Ag下电极系统;制成如图1所示的大面积硅旁路二极管的半成品;
步骤7、划片:
最后用自动砂轮划片机,对大面积硅旁路二极管的半成品进行划片,完成如图2所示两直角边为10.9mm×10.9mm的三角形状大面积硅旁路二极管的制作过程。
工作原理:
1、本发明制备的二极管采用与上电极接触面的n+磷重掺层是N型掺杂,由于N型掺杂不能直接和铝接触,因此上电极系统采用了Ti-Pd-Ag结构;Ti-Pd-Ag结构是利用三层金属各自的特点来实现其高可靠性的,金属钛对N型掺杂的硅有良好的附着性,可以形成欧姆接触并可以高强度与硅连接;金属钯化学性质极不活泼,起钝化作用,对内层金属起保护作用;金属银导电性能优越,并有良好的可焊性,可以很容易实现与外部的电连接。而与下电极接触面的p+硼重掺层是P型掺杂,由于铝属于P型材料,与p+硼重掺层具有良好的接触,因此下电极采用了最为理想的Al-Ti-Pd-Ag电极系统。经83N/cm2,45°抗拉力测试,电极不变形、不脱落;对公知的大面积硅旁路二极管进行5N/cm2,45°抗拉力测试,电极即产生变形甚至脱落;实验证明,本发明采用Ti-Pd-Ag和Al-Ti-Pd-Ag构成的电极系统,大幅提高了电极的抗拉力强度和牢固度,大大增强了本发明制作产品的可靠性和稳定性。
2、本发明采用了在氧化环下面增加P+硼隔离环的方式,由于硼扩散使隔离槽成为P+区,该P+区一方面与底部的N型材料形成P/N结,利用半导体的光生伏特效应产生光生电压;另一方面,P+又与周围的N型区域形成P/N结,达到隔离反向漏电流的目的,经测试,加反向电压为4V的条件下,制成的二极管反向漏电流小于1μA,远好于单纯用氧化环隔离边缘漏电的效果好。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式,这些均属于本发明的保护范围之内。

Claims (3)

1.大面积硅旁路二极管的制备方法,包括在衬底一面去掉氧化层后进行硼扩散形成硼扩散层,衬底另一面边缘留出一圈氧化层作为氧化环后,去掉氧化环圈内衬底上的氧化层后进行磷扩散形成磷扩散层;磷扩散层上制出上电极、硼扩散层上制出下电极,其特征在于:还包括以下制备过程:
⑴在衬底和氧化环之间的衬底上扩散出一个P+硼隔离环;
⑵在磷扩散层上的上电极为依次蒸镀上电极Ti层、上电极Pd层和上电极Ag层,构成Ti-Pd-Ag上电极系统;
⑶在硼扩散层上的下电极为依次蒸镀下电极Al层、下电极Ti层、下电极Pd层和下电极Ag层,构成Al-Ti-Pd-Ag下电极系统。
2.根据权利要求1所述的大面积硅旁路二极管的制备方法,其特征在于:所述硼扩散层为p+硼重掺层;所述磷扩散层为n+磷重掺层。
3.根据权利要求1所述的大面积硅旁路二极管的制备方法,其特征在于:所述⑴中P+硼隔离环的制作过程为:在作为衬底的P型硅片单面抛光面上制作氧化层;在氧化层上涂布光刻胶、刻出刻隔离槽的图形、去掉靠近衬底边缘的光刻胶和氧化层露出衬底裸露面,对裸露面进行硼扩散形成P+硼隔离环。
CN201310308162.7A 2013-07-22 2013-07-22 大面积硅旁路二极管的制备方法 Active CN104332402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310308162.7A CN104332402B (zh) 2013-07-22 2013-07-22 大面积硅旁路二极管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310308162.7A CN104332402B (zh) 2013-07-22 2013-07-22 大面积硅旁路二极管的制备方法

Publications (2)

Publication Number Publication Date
CN104332402A true CN104332402A (zh) 2015-02-04
CN104332402B CN104332402B (zh) 2017-06-27

Family

ID=52407111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310308162.7A Active CN104332402B (zh) 2013-07-22 2013-07-22 大面积硅旁路二极管的制备方法

Country Status (1)

Country Link
CN (1) CN104332402B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081786A (zh) * 2019-12-24 2020-04-28 中国电子科技集团公司第十八研究所 一种平面串联耐高压二极管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020144724A1 (en) * 1998-08-20 2002-10-10 Kilmer Louis C. Solar cell having a front-mounted bypass diode
US20030140962A1 (en) * 2001-10-24 2003-07-31 Sharps Paul R. Apparatus and method for integral bypass diode in solar cells
CN101752302A (zh) * 2008-12-04 2010-06-23 上海空间电源研究所 高效太阳电池新型圆角集成旁路二极管的制造方法
CN102157607A (zh) * 2011-01-14 2011-08-17 中山大学 一种具有旁路二极管的晶体硅太阳电池组件的制备方法
CN103155173A (zh) * 2010-12-08 2013-06-12 薄膜硅公司 具有内置旁路二极管的光伏模块和用于制造具有内置旁路二极管的光伏模块的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020144724A1 (en) * 1998-08-20 2002-10-10 Kilmer Louis C. Solar cell having a front-mounted bypass diode
US20030140962A1 (en) * 2001-10-24 2003-07-31 Sharps Paul R. Apparatus and method for integral bypass diode in solar cells
CN101752302A (zh) * 2008-12-04 2010-06-23 上海空间电源研究所 高效太阳电池新型圆角集成旁路二极管的制造方法
CN103155173A (zh) * 2010-12-08 2013-06-12 薄膜硅公司 具有内置旁路二极管的光伏模块和用于制造具有内置旁路二极管的光伏模块的方法
CN102157607A (zh) * 2011-01-14 2011-08-17 中山大学 一种具有旁路二极管的晶体硅太阳电池组件的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081786A (zh) * 2019-12-24 2020-04-28 中国电子科技集团公司第十八研究所 一种平面串联耐高压二极管及其制备方法
CN111081786B (zh) * 2019-12-24 2023-09-29 中国电子科技集团公司第十八研究所 一种平面串联耐高压二极管及其制备方法

Also Published As

Publication number Publication date
CN104332402B (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN102222726B (zh) 采用离子注入法制作交错背接触ibc晶体硅太阳能电池的工艺
CN104272475B (zh) 背接触太阳能光伏模块用半导体晶片的电池和模块加工
CN107968127A (zh) 一种钝化接触n型太阳能电池及制备方法、组件和系统
TWI643351B (zh) 太陽能電池金屬化及互連方法
JP5449849B2 (ja) 太陽電池およびその製造方法
WO2016045227A1 (zh) 无主栅、高效率背接触太阳能电池模块、组件及制备工艺
CN108666376B (zh) 一种p型背接触太阳电池及其制备方法
CN107394012A (zh) 一种硅片激光掺杂se的扩散工艺
CN103489934A (zh) 一种双面透光的局部铝背场太阳能电池及其制备方法
TW201445764A (zh) 結晶矽系太陽能電池之製造方法及結晶矽系太陽能電池模組之製造方法
CN108666386B (zh) 一种p型背接触太阳电池及其制备方法
CN104992988B (zh) 一种具有良好导电性能的晶体硅太阳电池表面钝化层及钝化方法
CN203434160U (zh) 太阳电池阵用大面积硅旁路二极管
CN108666377A (zh) 一种p型背接触太阳电池及其制备方法
CN203812893U (zh) 一种n型背结太阳能电池
CN208422924U (zh) 一种钝化接触n型太阳能电池、组件和系统
CN101611487B (zh) 薄膜太阳能模块
CN103594532B (zh) 一种n型晶体硅太阳能电池的制备方法
CN105742375B (zh) 一种背接触晶硅电池及其制备方法
CN208538871U (zh) 一种p型背接触太阳电池
CN104332402A (zh) 大面积硅旁路二极管的制备方法
CN103035771B (zh) N型mwt太阳能电池结构及其制造工艺
CN104851925B (zh) 一种局部背接触太阳能电池的背面开口结构
CN103474481A (zh) 一种高效背接触晶体硅太阳能电池及其制作方法
CN203445133U (zh) 一种高效背接触晶体硅太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221117

Address after: Room 106-107, 109-136, 140-158, 201-252, Solar Cell and Controller Plant, No. 6, Huake 7th Road, Haitai, Huayuan Industrial Zone (outside the ring), Binhai New Area, Tianjin, 300384

Patentee after: TIANJIN HENGDIAN SPACE POWER SOURCE Co.,Ltd.

Patentee after: CETC Energy Co.,Ltd.

Address before: No. 6, Haitai Huake 7th Road, Huayuan Industrial Zone (outside the ring), Binhai New Area, Tianjin, 300384

Patentee before: TIANJIN HENGDIAN SPACE POWER SOURCE Co.,Ltd.

Patentee before: The 18th Research Institute of China Electronics Technology Group Corporation

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Room 106-107, 109-136, 140-158, 201-252, Solar Cell and Controller Plant, No. 6, Huake 7th Road, Haitai, Huayuan Industrial Zone (outside the ring), Binhai New Area, Tianjin, 300384

Patentee after: TIANJIN HENGDIAN SPACE POWER SOURCE Co.,Ltd.

Patentee after: CETC Blue Sky Technology Co.,Ltd.

Address before: Room 106-107, 109-136, 140-158, 201-252, Solar Cell and Controller Plant, No. 6, Huake 7th Road, Haitai, Huayuan Industrial Zone (outside the ring), Binhai New Area, Tianjin, 300384

Patentee before: TIANJIN HENGDIAN SPACE POWER SOURCE Co.,Ltd.

Patentee before: CETC Energy Co.,Ltd.