CN104296799B - 微型传感器本体及其制造方法、微型传感器 - Google Patents
微型传感器本体及其制造方法、微型传感器 Download PDFInfo
- Publication number
- CN104296799B CN104296799B CN201410601932.1A CN201410601932A CN104296799B CN 104296799 B CN104296799 B CN 104296799B CN 201410601932 A CN201410601932 A CN 201410601932A CN 104296799 B CN104296799 B CN 104296799B
- Authority
- CN
- China
- Prior art keywords
- microsensor
- colloid
- manufacture method
- sensor
- line film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 239000000084 colloidal system Substances 0.000 claims abstract description 68
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 230000008602 contraction Effects 0.000 claims abstract description 18
- 238000005336 cracking Methods 0.000 claims abstract description 11
- 239000011248 coating agent Substances 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims abstract description 6
- 239000004065 semiconductor Substances 0.000 claims description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 239000007769 metal material Substances 0.000 claims description 9
- 239000002070 nanowire Substances 0.000 claims description 8
- NNLOHLDVJGPUFR-UHFFFAOYSA-L calcium;3,4,5,6-tetrahydroxy-2-oxohexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(=O)C([O-])=O.OCC(O)C(O)C(O)C(=O)C([O-])=O NNLOHLDVJGPUFR-UHFFFAOYSA-L 0.000 claims description 7
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims description 6
- 239000000693 micelle Substances 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002134 carbon nanofiber Substances 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000007733 ion plating Methods 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 238000010574 gas phase reaction Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000002071 nanotube Substances 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 229920006300 shrink film Polymers 0.000 description 2
- 241000208340 Araliaceae Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- HGWOWDFNMKCVLG-UHFFFAOYSA-N [O--].[O--].[Ti+4].[Ti+4] Chemical compound [O--].[O--].[Ti+4].[Ti+4] HGWOWDFNMKCVLG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0018—Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
- B81B3/0021—Transducers for transforming electrical into mechanical energy or vice versa
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00134—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
- B81C1/00142—Bridges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00134—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
- B81C1/00158—Diaphragms, membranes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0617—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S25/30—Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S25/60—Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
- F24S25/63—Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing modules or their peripheral frames to supporting elements
- F24S25/634—Clamps; Clips
- F24S25/636—Clamps; Clips clamping by screw-threaded elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/56—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/01—Suspended structures, i.e. structures allowing a movement
- B81B2203/0109—Bridges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/01—Suspended structures, i.e. structures allowing a movement
- B81B2203/0127—Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0128—Processes for removing material
- B81C2201/013—Etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0174—Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
- B81C2201/0176—Chemical vapour Deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0174—Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
- B81C2201/0181—Physical Vapour Deposition [PVD], i.e. evaporation, sputtering, ion plating or plasma assisted deposition, ion cluster beam technology
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S2025/01—Special support components; Methods of use
- F24S2025/016—Filling or spacing means; Elastic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S2025/80—Special profiles
- F24S2025/801—Special profiles having hollow parts with closed cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S2025/80—Special profiles
- F24S2025/807—Special profiles having undercut grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fluid Mechanics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Measuring Fluid Pressure (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Pressure Sensors (AREA)
Abstract
本发明涉及传感器制造技术领域,公开了一种微型传感器本体及其制造方法,包括以下步骤:S1:在基板上涂布湿润胶体材料形成胶体层,在胶体层的表面覆盖一层一维纳米线膜,形成传感器胚体;S2:干燥传感器胚体的胶体层,使胶体层开裂形成多个胶体岛,一维纳米线膜一部分收缩形成粘附在胶体岛表面的收缩膜片,另一部分拉伸形成连接在相邻收缩膜片之间的连接结构。本发明的传感器本体中,收缩膜片与连接结构由一维纳米线膜抻拉而成,两者连接稳定性好,提高传感器件的稳定性;使用裂化的方法,容易获得大规模稳定悬浮的连接结构阵列传感器本体。本发明还提供一种传感器。
Description
技术领域
本发明涉及传感器制造技术领域,特别是涉及一种微型传感器本体及其制造方法、微型传感器。
背景技术
近年来随着微纳米技术的迅速发展,微尺度环境下的微小值测量逐渐受到重视,基于微机电系统技术制备的微型传感器作为一种重要的测试工具,在微型机器人、微装配系统等方面开始越来越广泛的应用。
目前基于碳纳米管、金属/半导体纳米线的器件主要包括电子器件和传感器等,其中,一种传感器本体采用的是纳米材料一维定向批量组装。如图1所示,是现有技术中以碳纳米管制成的传感器本体,其制造方法是在基板1上加工出多个凸起2,在凸起2的上表面粘附电极片3,在相邻的凸起2上的电极片3之间连接多根谐振梁,一般采用纳米管4,使纳米管4悬浮在凸起2之间的沟槽上方。或者是先在基板1上设置多个电极片3,在电极片3之间先连接多根纳米管4然后通过刻蚀等方法在纳米管4的下方刻蚀出沟槽。但是该种方法制靠的传感器本体,纳米管5仅仅依赖表面氧化层或者金属电极对一维纳米材料制成的纳米管的末端粘附力,可能发生滑脱,常常不足以激发共振或者承载重物,器件结构缺乏稳定性。此外,通过现有方法获得大规模稳定的谐振梁阵列悬浮的传感器本体更是困难。
发明内容
(一)要解决的技术问题
本发明的目的是提供一种传感器本体及其制造方法,提高传感器件的稳定性,且容易获得大规模稳定的连接结构阵列悬浮的传感器本体;同时,本发明还提供一种微型传感器。
(二)技术方案
为了解决上述技术问题,本发明提供一种微型传感器本体的制造方法,包括以下步骤:
S1:在基板上涂布湿润胶体材料形成胶体层,在胶体层的表面覆盖一层一维纳米线膜,形成传感器胚体;
S2:干燥传感器胚体的胶体层,使胶体层开裂形成多个胶体岛,一维纳米线膜一部分收缩形成粘附在胶体岛表面的收缩膜片,另一部分拉伸形成连接在相邻收缩膜片之间的连接结构。
其中,所述步骤S2包括:将传感器胚体放置在干燥器中,调节干燥温度和干燥压力,使干燥温度保持在0~260℃,干燥压力保持在0~10MPa。
其中,步骤S1之前还包括步骤S10,在基板的表面上刻蚀出所需要的凹槽图案。
其中,所述湿润胶体材料包括胶粒和溶剂。
其中,所述胶粒采用宽带隙半导体材料。
其中,所述宽带隙半导体材料为二氧化钛、硫化铋或硫化镉。
其中,所述溶剂采用有机溶剂。
其中,其特征在于,所述一维纳米线膜由纤维状、管状的金属材料或半导体材料制成。
其中,所述半导体材料为碳纳米纤维、纳米碳带、碳纳米管或GaP、InP半导体纳米线;所述金属材料为铂、银金属纳米线。
其中,所述一维纳米线膜通过化学气相反应、真空蒸发、溅射、离子镀或纳米半导体生长工艺制成。
本发明还提供一种微型传感器本体,由上述所述的微型传感器本体的制造方法制成,其包括:基板,贴附在所述基板上的多个胶体岛和贴附在多个所述胶体岛上的触发网,所述触发网包括多个粘附在所述胶体岛表面的收缩膜片以及连接在相邻收缩膜片之间的连接结构;所述触发网由一维纳米线膜裂化形成。
其中,所述触发网由纤维状、管状的金属材料或半导体材料制成。
其中,所述胶体岛由二氧化钛、硫化铋或硫化镉材料制成。
其中,所述基板为硅片、玻璃板或者印刷电路板。
其中,所述基板设有凹槽图案。
本发明还提供一种微型传感器,该微型传感器包括上述所述的微型传感器本体。
(三)有益效果
本发明提供的微型传感器本体及其制造方法,本发明的传感器本体中,收缩膜片与连接结构由一维纳米线膜抻拉而成,两者连接稳定性好,提高传感器件的稳定性;使用裂化的方法,容易获得大规模稳定悬浮的连接结构阵列传感器本体。进一步的,通过选用一维纳米线膜和胶体材料可以制成光、温度、气流传感器。
附图说明
图1为现有技术的传感器本体的立体结构示意图;
图2为本发明实施例的传感器本体的制造方法的实施例1的传感器胚体的示意图;
图3为本发明实施例的传感器本体的制造方法的实施例1的传感器本体的示意图;
图4为本发明实施例的传感器本体的制造方法的实施例2的基板的示意图;
图5为本发明实施例的传感器本体的制造方法的实施例2的传感器本体的示意图。
图中,1:基板;2:凸起;3:电极片;4:纳米管;10:基板;11:凹槽;20:胶体层;21:胶体岛;30:一维纳米线膜;31:触发网;32:收缩膜片;33:连接结构。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实例用于说明本发明,但不用来限制本发明的范围。
实施例1
本发明的微型传感器本体的制造方法,包括以下步骤:
步骤S1:在光滑的基板10上涂布湿润胶体材料形成胶体层20;在胶体层20的表面覆盖一层一维纳米线膜30,形成传感器胚体。参照图2所示,基板10采用硅片、玻璃板或者印刷电路板,基板的上表面为平滑的表面,在基板10的表面涂布湿润胶体材料,形成胶体层20,将一整块平整的一维纳米线膜30铺设在胶体层20的表面,形成传感器胚体。湿润胶体材料可以采用任何在干燥后形成裂块的胶体材料制成。优选的,湿润胶体材料包括胶粒和溶剂,本实施例中,将胶粒与溶剂混合浸润后形成湿润胶体材料。采用二氧化钛、硫化铋或硫化镉等宽带隙半导体材料制成,溶剂采用有机溶剂,如采用甲醇、乙醇、异丙醇等。一维纳米线膜30采用纤维状、管状的金属材料或半导体材料制成。具体的,半导体材料为碳纳米纤维、纳米碳带、碳纳米管或GaP、InP半导体纳米线;金属材料为铂、银金属纳米线。本实施例中,一维纳米线膜30采用碳纳米管材料制成,并通过化学气相反应、真空蒸发、溅射、水热合成、离子镀或纳米半导体生长工艺制成。
步骤S2:干燥传感器胚体的胶体层20,使胶体层20开裂形成多个胶体岛21,一维纳米线膜30一部分收缩形成粘附在胶体岛21表面的收缩膜片32,另一部分拉伸形成连接在相邻收缩膜片32之间的连接结构33,形成传感器本体。干燥传感器胚体的胶体层20可以采用自然干燥,也可以在干燥器中进行干燥。具体的,本实施例的具体步骤如下:将传感器胚体放置在干燥器中,调节干燥温度和干燥压力,使干燥温度保持在0~260℃,干燥压力保持在0~10MPa,干燥2~5小时。在干燥的过程中,湿润胶体材料中的有机溶剂会浸润到一维纳米线膜30中,并渗入它的网络中。当溶剂挥发,胶体层20随即分裂成众多的小裂块,每个小裂块继续收缩形成胶体岛21。胶体层20表面上的一维纳米线膜30在胶体层20分裂的过程中,一部分粘附在小裂块的表面,随着小裂块收缩,收缩形成粘附在胶体岛21表面的收缩膜片32;另一部分连接在相邻小裂块之间,受到小裂块之间收缩的拉伸作用,该部分一维纳米线膜30被拉伸抻直,形成连接结构33,连接结构33连接在相邻的收缩膜片32之间,悬浮于胶体岛21之间。即如图3所示,整个一维纳米线膜30裂化成包括多个收缩膜片32和连接结构33的触发网31。
上述步骤S1和步骤S2生产出来的传感器本体,具有多个收缩膜片,在使用过程中,可以将相邻的胶体岛上的收缩膜片连接作为传感器本体,也可以将整个触发网上两端上的收缩膜片连接作为传感器本体。
在不同的使用使用条件下,需要调节胶体岛21之间的沟槽的宽度,此时,可以通过调节一维纳米线膜30的厚度来进行调节,一维纳米线膜30与胶体层20的厚度比为1/30~1/200。连接结构悬浮阵列密度过大,彼此间会产生屏蔽效应,降低场增强因子,连接结构过于稀疏则场发射面积小,也不利于增大场发射电流。因此,需要通过调节一维纳米膜30的厚度、干燥温度、干燥压力等参数,从而控制胶体层的开裂程度,调节胶体岛21之间的距离。
实施例2
本实施例与实施例1基本相同,所不同之处在于:在步骤S1之前,还包括步骤S10,在基板10的表面上事先刻蚀出所需的凹槽图案。如图4所示,在基板10的表面上刻蚀出9个凹槽11,并设定相邻凹槽之间的距离D。在基板10上涂布胶体材料形成胶体层20,在胶体层20上粘附一层一维纳米线膜30,制成传感器胚体。在胚体干燥的过程中,凹槽上的胶体层20的厚度较大,收缩较慢,其他部分收缩较快,胶体层20沿着凹槽图案开裂,如图5所示,胶体层20开裂形成9个胶体岛21,一维纳米线膜30随之分裂成9个收缩膜片。通过设置凹槽图案,使得胶体岛21的数量、位置以及胶体岛距离进一步可控,能够有效提高制作效率,降低制作成本。凹槽的深度很小,优选为微米级或者纳米级深度。同时,凹槽的面积不能过大,避免在凹槽内形成多个开裂的胶体岛。凹槽的深度和面积的临界大小由具体所采用的材料以及干燥环境决定,可以通过有限次实验获得,在此不再一一赘述。
本发明利用胶体收缩形成胶体岛,胶体岛将原本无序缠绕的一维纳米线膜抻直形成触发网,触发网具有多个收缩膜片和连接在收缩膜片之间的连接结构,连接结构悬浮在胶体岛之间的沟槽之上,且连接结构在整个基板上呈现阵列排布,保证了整体结构的稳定。本方法可以大规模制备连接结构阵列悬浮的传感器本体。本发明的溶剂采用有机溶剂,使一维纳米线膜30更好地被有机溶剂浸润,干燥后能与胶体岛21的表面牢固结合。
以下提供几种具体制造实施方式:
采用上述实施例1或2所述的微型传感器本体的制造方法制造传感器本体。如果一维纳米线膜本身对光吸收较强,那么连接结构自然也具有较强的光响应;反之,若一维纳米线膜本身光吸收较弱,则利用光吸收强的胶体材料来增强光响应。优先选用本身在可见光波段有较宽吸收区的宽带隙半导体材料制备胶体,二氧化钛、硫化铋或硫化镉等等。将宽带隙半导体材料制成量子点,量子点的表面效应和量子尺寸效应使纳米粒子具有同种材质的本体材料和单个分子所不具备的新的光学、电学特性,能够制成光传感器。
采用上述实施例1或2所述的微型传感器本体的制造方法制造传感器本体。其中,一维纳米线膜采用碳纳米管制成,胶体材料采用普通材质。在通电流时,一维纳米材料的轴向导热系数较高,焦耳热效应导致电阻变化,触发网传输的电信号发生变化,实时响应温度变化,可以制成温度传感器。
采用上述实施例1或2所述的微型传感器本体的制造方法制造传感器本体。一维纳米线膜使用碳纳米线制成,悬浮的连接结构的两端连接在收缩膜片上,收缩膜片粘附在胶体岛的表面,十分牢固,不会滑脱。悬浮的连接结构在气流作用下会发生弹性形变,形变拉伸过程中受到较强的轴向应力。一维纳米材料受到拉伸时电阻会有一定程度的变化,由触发网传输的电信号产生相应的变化,因此,可以制成气流传感器。
由此可知,选择不同材料制成微型传感器本体,甚至可以制成具有对光、力、热三重响应的复合传感器。
如图3所示,本发明还提供微型传感器本体,该传感器本体由上述所述的微型传感器本体的制造方法制成,其包括:基板10、贴附在基板10上的多个胶体岛21和贴附在多个胶体岛21上的触发网31。触发网31包括多个粘附在胶体岛21表面的收缩膜片32以及连接在相邻收缩膜片32之间的连接结构33。
如前述的微型传感器本体的制造方法所述,触发网31优选由纤维状、管状的金属材料或半导体材料制成。胶体岛21优选由二氧化钛、硫化铋或硫化镉材料制成。基板10优选为硅片、玻璃板或者印刷电路板。基板10设有凹槽图案,每个凹槽图案具有多个凹槽,每个凹槽中具有一个胶体岛21。
本发明的微型传感器本体,收缩膜片32作为电极,连接结构33作为谐振梁,收缩膜片32和连接结构33为一体结构,且收缩膜片32粘附在胶体岛21的表面,稳定性好。
本发明还提供一种微型传感器,该微型传感器使用上述所述的传感器本体制成。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (16)
1.一种微型传感器本体的制造方法,其特征在于,包括以下步骤:
S1:在基板上涂布湿润胶体材料形成胶体层,在胶体层的表面覆盖一层一维纳米线膜,形成传感器胚体;
S2:干燥传感器胚体的胶体层,使胶体层开裂形成多个胶体岛,一维纳米线膜一部分收缩形成粘附在胶体岛表面的收缩膜片,另一部分拉伸形成连接在相邻收缩膜片之间的连接结构。
2.如权利要求1所述的微型传感器本体的制造方法,其特征在于,所述步骤S2包括:将传感器胚体放置在干燥器中,调节干燥温度和干燥压力,使干燥温度保持在0~260℃,干燥压力保持在0~10MPa。
3.如权利要求1所述的微型传感器本体的制造方法,其特征在于,步骤S1之前还包括步骤S10,在基板的表面上刻蚀出所需要的凹槽图案。
4.如权利要求1至3任一项所述的微型传感器本体的制造方法,其特征在于,所述湿润胶体材料包括胶粒和溶剂。
5.如权利要求4所述的微型传感器本体的制造方法,其特征在于,所述胶粒采用宽带隙半导体材料。
6.如权利要求5所述的微型传感器本体的制造方法,其特征在于,所述宽带隙半导体材料为二氧化钛、硫化铋或硫化镉。
7.如权利要求4所述的微型传感器本体的制造方法,其特征在于,所述溶剂采用有机溶剂。
8.如权利要求1至3任一项所述的微型传感器本体的制造方法,其特征在于,所述一维纳米线膜由纤维状、管状的金属材料或半导体材料制成。
9.如权利要求8所述的微型传感器本体的制造方法,其特征在于,所述半导体材料为碳纳米纤维、纳米碳带、碳纳米管或GaP、InP半导体纳米线;所述金属材料为铂、银金属纳米线。
10.如权利要求1至3任一项所述的微型传感器本体的制造方法,其特征在于,所述一维纳米线膜通过化学气相反应、真空蒸发、溅射、离子镀或纳米半导体生长工艺制成。
11.一种微型传感器本体,其特征在于,包括:基板,贴附在所述基板上的多个胶体岛和贴附在多个所述胶体岛上的触发网,所述触发网包括多个粘附在所述胶体岛表面的收缩膜片以及连接在相邻收缩膜片之间的连接结构;所述触发网由一维纳米线膜裂化形成。
12.如权利要求11所述的微型传感器本体,其特征在于,所述触发网由纤维状、管状的金属材料或半导体材料制成。
13.如权利要求11所述的微型传感器本体,其特征在于,所述胶体岛由二氧化钛、硫化铋或硫化镉材料制成。
14.如权利要求11所述的微型传感器本体,其特征在于,所述基板为硅片、玻璃板或者印刷电路板。
15.如权利要求11所述的微型传感器本体,其特征在于,所述基板设有凹槽图案。
16.一种微型传感器,其特征在于,该微型传感器包括权利要求11至15任一项所述的微型传感器本体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410601932.1A CN104296799B (zh) | 2014-10-30 | 2014-10-30 | 微型传感器本体及其制造方法、微型传感器 |
PCT/CN2015/076636 WO2016065857A1 (zh) | 2014-10-30 | 2015-04-15 | 微型传感器本体及其制造方法、微型传感器 |
EP15762910.6A EP3214037B1 (en) | 2014-10-30 | 2015-04-15 | Microsensor body and method for manufacturing same, and microsensor |
US14/778,721 US9796577B2 (en) | 2014-10-30 | 2015-04-15 | Micro-sensor body and method for manufacturing the same, as well as micro-sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410601932.1A CN104296799B (zh) | 2014-10-30 | 2014-10-30 | 微型传感器本体及其制造方法、微型传感器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104296799A CN104296799A (zh) | 2015-01-21 |
CN104296799B true CN104296799B (zh) | 2016-08-24 |
Family
ID=52316630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410601932.1A Active CN104296799B (zh) | 2014-10-30 | 2014-10-30 | 微型传感器本体及其制造方法、微型传感器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9796577B2 (zh) |
EP (1) | EP3214037B1 (zh) |
CN (1) | CN104296799B (zh) |
WO (1) | WO2016065857A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104296799B (zh) * | 2014-10-30 | 2016-08-24 | 京东方科技集团股份有限公司 | 微型传感器本体及其制造方法、微型传感器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201108252A (en) * | 2009-08-21 | 2011-03-01 | Innolux Display Corp | A conductive plate having a plurity of conductive films |
CN102815666A (zh) * | 2012-05-17 | 2012-12-12 | 浙江大学 | 纳米颗粒膜、多孔膜的制备方法及应用 |
CN103698846A (zh) * | 2013-11-28 | 2014-04-02 | 北京工业大学 | 一种柔性金属光子晶体的制备方法 |
CN103708411A (zh) * | 2012-10-01 | 2014-04-09 | 黄辉 | 一种基于脊形电极结构的纳米线排列与定位方法 |
CN104045054A (zh) * | 2014-05-14 | 2014-09-17 | 中国科学院合肥物质科学研究院 | 利用湿法刻蚀法和反转印法制备高粘附性微纳米阵列结构薄膜的方法 |
CN104112544A (zh) * | 2014-05-14 | 2014-10-22 | 中国科学院合肥物质科学研究院 | 一种防硫化氢气体腐蚀的银纳米线透明导电薄膜的制备方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421213A (en) * | 1990-10-12 | 1995-06-06 | Okada; Kazuhiro | Multi-dimensional force detector |
JPH09126833A (ja) | 1995-10-31 | 1997-05-16 | Olympus Optical Co Ltd | 非晶質合金製の梁構造体とその作製方法 |
KR101074779B1 (ko) * | 2005-12-29 | 2011-10-19 | 삼성에스디아이 주식회사 | 탄소나노튜브를 이용하는 반도체 전극, 그의 제조방법 및그를 포함하는 태양전지 |
KR100923165B1 (ko) * | 2006-12-04 | 2009-10-23 | 한국전자통신연구원 | 부양형 나노선 센서 및 그 제조 방법 |
CN101239712B (zh) | 2007-02-09 | 2010-05-26 | 清华大学 | 碳纳米管薄膜结构及其制备方法 |
US7754600B2 (en) * | 2007-03-01 | 2010-07-13 | Hewlett-Packard Development Company, L.P. | Methods of forming nanostructures on metal-silicide crystallites, and resulting structures and devices |
FR2936362B1 (fr) * | 2008-09-25 | 2010-09-10 | Saint Gobain | Procede de fabrication d'une grille submillimetrique electroconductrice revetue d'une grille surgrille, grille submillimetrique electroconductrice revetue d'une surgrille |
CN102275866B (zh) * | 2011-07-11 | 2014-01-29 | 西安交通大学 | 一种具有加热功能的微流体通道的制造工艺 |
DE102011107649A1 (de) * | 2011-07-12 | 2013-01-17 | RUHR-UNIVERSITäT BOCHUM | Cantilever-basierter Sensor zur Abstandsmessung oder Gasdetektion |
EP2562135A1 (de) * | 2011-08-22 | 2013-02-27 | ETH Zurich | Verfahren zur Herstellung und Ausrichtung von Nanowires und Anwendungen eines solchen Verfahrens |
TWM425340U (en) * | 2011-10-21 | 2012-03-21 | Henghao Technology Co Ltd | Capacitive touch panel and touch display panel using the same |
FR2995692B1 (fr) * | 2012-09-19 | 2014-10-10 | Commissariat Energie Atomique | Capteur de flux thermique a resolution augmentee |
CN103840075B (zh) | 2012-11-27 | 2017-07-11 | 中国科学院微电子研究所 | 微型压电振动能量收集器及其制造方法 |
CN104296799B (zh) * | 2014-10-30 | 2016-08-24 | 京东方科技集团股份有限公司 | 微型传感器本体及其制造方法、微型传感器 |
-
2014
- 2014-10-30 CN CN201410601932.1A patent/CN104296799B/zh active Active
-
2015
- 2015-04-15 WO PCT/CN2015/076636 patent/WO2016065857A1/zh active Application Filing
- 2015-04-15 EP EP15762910.6A patent/EP3214037B1/en active Active
- 2015-04-15 US US14/778,721 patent/US9796577B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201108252A (en) * | 2009-08-21 | 2011-03-01 | Innolux Display Corp | A conductive plate having a plurity of conductive films |
CN102815666A (zh) * | 2012-05-17 | 2012-12-12 | 浙江大学 | 纳米颗粒膜、多孔膜的制备方法及应用 |
CN103708411A (zh) * | 2012-10-01 | 2014-04-09 | 黄辉 | 一种基于脊形电极结构的纳米线排列与定位方法 |
CN103698846A (zh) * | 2013-11-28 | 2014-04-02 | 北京工业大学 | 一种柔性金属光子晶体的制备方法 |
CN104045054A (zh) * | 2014-05-14 | 2014-09-17 | 中国科学院合肥物质科学研究院 | 利用湿法刻蚀法和反转印法制备高粘附性微纳米阵列结构薄膜的方法 |
CN104112544A (zh) * | 2014-05-14 | 2014-10-22 | 中国科学院合肥物质科学研究院 | 一种防硫化氢气体腐蚀的银纳米线透明导电薄膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160052775A1 (en) | 2016-02-25 |
CN104296799A (zh) | 2015-01-21 |
EP3214037B1 (en) | 2019-06-19 |
EP3214037A4 (en) | 2018-05-30 |
EP3214037A1 (en) | 2017-09-06 |
WO2016065857A1 (zh) | 2016-05-06 |
US9796577B2 (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10634482B2 (en) | Flexible sensor apparatus | |
Ma et al. | Flexible, all-inorganic actuators based on vanadium dioxide and carbon nanotube bimorphs | |
CN109520411B (zh) | 基于预拉伸的石墨烯柔性应变传感器及其制备方法 | |
US9095639B2 (en) | Aligned carbon nanotube-polymer materials, systems and methods | |
CN109357796A (zh) | 可穿戴压力传感器及其制造方法 | |
Lee et al. | A novel pressure sensor with a PDMS diaphragm | |
CN110231110A (zh) | 一种高灵敏度电子皮肤及其制备方法 | |
CN110057474A (zh) | 一种新型铜基气凝胶-pdms复合压阻式压力传感材料及其应用 | |
KR101527863B1 (ko) | 탄소나노튜브(cnt) 네트워크 필름을 구비하는 양극성 변형 센서 | |
Liang et al. | Direct stamping multifunctional tactile sensor for pressure and temperature sensing | |
CN106585042B (zh) | 摩擦发电机用复合薄膜电极及其制备方法和应用 | |
CN103336036A (zh) | 一种传感参数可控的钯纳米粒子点阵氢气传感器 | |
CN106092390A (zh) | 压阻式压力传感器及其制备方法 | |
Yu et al. | Two-sided topological architecture on a monolithic flexible substrate for ultrasensitive strain sensors | |
CN109867959B (zh) | 一种在弹性体薄膜表面形成褶皱的方法 | |
CN108519408B (zh) | 一种气体传感器、传感器的制备方法及传感器阵列 | |
Marasso et al. | A new method to integrate ZnO nano-tetrapods on MEMS micro-hotplates for large scale gas sensor production | |
CN107934908A (zh) | 合成纳米材料及其制备方法 | |
CN104296799B (zh) | 微型传感器本体及其制造方法、微型传感器 | |
Salary et al. | A state-of-the-art review on aerosol jet printing (AJP) additive manufacturing process | |
CN209014173U (zh) | 可穿戴压力传感器 | |
CN109399556A (zh) | 一种基于印刷方式的柔性微纳压力传感器的制备方法 | |
Chen et al. | Multifunctional nanocracks in silicon nanomembranes by notch-assisted transfer printing | |
Zhao et al. | Facile preparation of wearable heater based on conductive silver paste with low actuation voltage and rapid response | |
CN108519409B (zh) | 一种翘曲的单悬梁式气体传感器、制备方法及传感器阵列 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |