CN104293380B - 一种劣质重油的加氢处理方法 - Google Patents

一种劣质重油的加氢处理方法 Download PDF

Info

Publication number
CN104293380B
CN104293380B CN201310303656.6A CN201310303656A CN104293380B CN 104293380 B CN104293380 B CN 104293380B CN 201310303656 A CN201310303656 A CN 201310303656A CN 104293380 B CN104293380 B CN 104293380B
Authority
CN
China
Prior art keywords
content
catalyst
weight
metal component
benchmark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310303656.6A
Other languages
English (en)
Other versions
CN104293380A (zh
Inventor
胡大为
孙淑玲
杨清河
刘佳
聂红
王奎
刘学芬
戴立顺
刘涛
李大东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201310303656.6A priority Critical patent/CN104293380B/zh
Publication of CN104293380A publication Critical patent/CN104293380A/zh
Application granted granted Critical
Publication of CN104293380B publication Critical patent/CN104293380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种劣质重油的加氢处理方法,包括在加氢处理反应条件下,将重质原料油依次与包括加氢处理催化剂Ⅰ、加氢处理催化剂Ⅱ和加氢处理催化剂Ⅲ的催化剂组合接触,以体积计并以所述催化剂组合的总量为基准,所述加氢处理催化剂Ⅰ的含量为5-60%,加氢处理催化剂Ⅱ的含量为5-50%,加氢处理催化剂Ⅲ的含量为10-60%;其中,所述加氢处理催化剂I含有成型氧化铝载体和选自至少一种第VIB族和至少一种第VB族的加氢活性金属组分;所述催化剂Ⅱ含有载体、金属组分钼、钴和镍,以氧化物计并以催化剂Ⅱ为基准,所述钼的含量为5~20重量%,钴和镍的含量之和为1~6重量%,其中,钴和镍的原子比为2~4。与现有技术相比,本发明具有更好的渣油加氢处理性能。

Description

一种劣质重油的加氢处理方法
技术领域
本发明是涉及烃油加氢处理方法。
背景技术
随着世界范围内的原油重质化、劣质化与石油化工产品需求多样化、轻质化的矛盾日益尖锐,石油化工行业的主要任务将集中在重油轻质化上。重质原料油分子量大、含金属、硫、氮等杂质的复杂物种富集在重油之中,这些杂质对后续的加工过程以及产品性质具有重要影响,因而必须先通过加氢处理将这些杂质脱除。与馏分油相比,重油中除了具有硫、氮等杂质外,还含有较高比例的Ni、V等金属杂质,并且沥青质含量高、残炭值较高。其中Ni、V等金属杂质若得不到有效脱除,会对下游催化剂产生不利影响,堵塞下游催化剂孔道,从而引起下游催化剂的失活。因此,开发活性、稳定性突出的重油加氢处理催化剂及工艺方法可以有效延长下游催化剂的使用寿命,改善加氢生产油产品性质,提升加工过程的经济效益。
发明内容
本发明要解决的技术问题是针对现有技术需求,提供一种新的、适合于劣质重质原料油的加氢处理方法。
本发明涉及以下内容:
1、一种劣质重油的加氢处理方法,包括在加氢处理反应条件下,将重质原料油依次与包括加氢处理催化剂Ⅰ、加氢处理催化剂Ⅱ和加氢处理催化剂Ⅲ的催化剂组合接触,以体积计并以所述催化剂组合的总量为基准,所述加氢处理催化剂Ⅰ的含量为5-60%,加氢处理催化剂Ⅱ的含量为5-50%,加氢处理催化剂Ⅲ的含量为10-60%;其中,所述加氢处理催化剂I含有成型氧化铝载体和选自至少一种第VIB族和至少一种第VB族的加氢活性金属组分,以氧化物计并以催化剂I为基准,所述第VIB族金属组分的含量为0.2-15重量%,第VB族金属组分的含量为0.2-12重量%;所述催化剂Ⅱ含有载体、金属组分钼、钴和镍,以氧化物计并以催化剂Ⅱ为基准,所述钼的含量为5~20重量%,钴和镍的含量之和为1~6重量%,其中,钴和镍的原子比为2~4。
2、根据1所述的方法,其特征在于,以体积计并以所述催化剂组合的总量为基准,所述加氢处理催化剂Ⅰ的含量为10-50%,加氢处理催化剂Ⅱ的含量为10-40%,加氢处理催化剂Ⅲ的含量为20-50%;所述加氢处理催化剂I中的第VIB族的金属组分选自钼和/或钨,第VB族的金属组分选自钒和/或铌,以氧化物计并以催化剂I为基准,所述第VIB族金属组分的含量为0.5-12重量%,第VB族金属组分的含量为0.5-9重量%;以氧化物计并以催化剂Ⅱ为基准,所述催化剂Ⅱ中钼的含量为8~15重量%,钴和镍的含量之和为1.5~4重量%,其中,钴和镍的原子比为2.2~3.2。
3、根据1或2所述的方法,其特征在于,所述加氢处理催化剂I中的所述第VIB族的金属组分为钼或钨,第VB族金属组分为钒,以氧化物计并以催化剂I为基准,所述第VIB族金属组分的含量为5-12重量%,第VB族金属组分的含量为1-9重量%;以氧化物计并以催化剂Ⅱ为基准,所述镍的含量小于1.2%。
4、根据3所述的方法,其特征在于,以氧化物计并以催化剂Ⅱ为基准,所述镍的含量为0.5~1.1%。
5、根据1所述的方法,其特征在于,以压汞法表征,所述加氢处理催化剂I中成型氧化铝载体的孔容为0.95-1.2毫升/克,比表面为50-300米2/克,所述载体在直径为10-30nm和直径为300-500nm呈双峰孔分布,直径10-30nm的孔占总孔容的55-80%,直径300-500nm的孔占总孔容的10-35%。
6、根据5所述的方法,其特征在于,以压汞法表征,所述成型氧化铝载体的孔容为0.95-1.15毫升/克,比表面积为80-200米2/克,直径为10-30nm孔的孔体积占总孔容的60-75%,直径为300-500nm孔的孔体积占总孔容的15-30%。
7、根据1或5所述的方法,其特征在于,所述加氢处理催化剂I中的成型氧化铝载体含有选自第ⅣB族的金属组分,以氧化物计并以含选自第ⅣB族金属组分的成型氧化铝载体为基准,所述选自第ⅣB族的金属组分的含量为0.1-6重量%。
8、根据7所述的方法,其特征在于,所述选自第ⅣB族的金属组分为钛、锆、铪中的一种或几种,以氧化物计并以含选自第ⅣB族金属组分的成型氧化铝载体为基准,所述选自第ⅣB族的金属组分的含量为0.3-4重量%。
9、根据8所述的方法,其特征在于,所述选自第ⅣB族的金属组分为钛,以氧化物计并以含选自第ⅣB族金属组分的成型氧化铝载体为基准,所述选自第ⅣB族的金属组分的含量为0.5-2.5重量%。
10、根据1或2所述的方法,其特征在于,所述催化剂Ⅱ含有选自磷和硼的助剂组分,以氧化物计并以所述催化剂Ⅱ为基准,所述选自磷和硼的助剂组分的含量为0.5-5重量%。
11、根据10所述的方法,其特征在于,以氧化物计并以所述催化剂Ⅱ为基准,所述选自磷和硼的助剂组分的含量为1-4重量%。
12、根据1所述的方法,其特征在于,所述催化剂Ⅲ含有选自氧化铝和/或氧化硅-氧化铝的载体,选自镍和/或钴、钼和/或钨的加氢活性金属组分,含或不含选自氟、硼和磷中一种或几种助剂组分,以氧化物计并以催化剂Ⅲ为基准,所述镍和/或钴的含量为1-5重量%,钼和/或钨的含量为10-35重量%,以元素计的选自氟、硼和磷中一种或几种助剂组分的含量为0-9重量%。
13、根据12所述的方法,其特征在于,所述催化剂Ⅲ中的载体选自氧化铝。
14、根据13所述的方法,其特征在于,所述氧化铝的孔容不小于0.35毫升/克,孔直径为40~100埃孔的孔容占总孔容的80%以上。
15、根据1所述的方法,其特征在于,所述加氢处理反应的反应条件为:氢分压6-20MPa,温度为300-450℃,液时体积空速为0.1-1h-1,氢油体积比为600-1500。
16、根据15所述的方法,其特征在于,所述加氢处理反应的反应条件为:氢分压10-18MPa,温度为350-420℃,液时体积空速为0.2-0.6h-1,氢油体积比为800-1100。
发明人发现,在将加氢活性金属组分为选自至少一种第VIB族的金属组分与至少一种选自第VB族的金属组分的催化剂与本发明所述加氢处理催化剂Ⅱ和加氢处理催化剂Ⅲ的组合用于重质油加氢处理时,具有很好的重质油加氢处理性能,特别适合用于劣质重质油的加氢处理。
按照本发明提供的方法,其中,所述催化剂I的制备方法包括制备载体并在该载体上负载加氢活性金属组分。其中,所述载体可以选自任意的制备重油加氢用的成型氧化铝载体。在优选的实施方式中,所述催化剂I选择的载体为一种孔容为0.95-1.2毫升/克,比表面为50-300米2/克,所述载体在直径为10-30nm和直径为300-500nm呈双峰孔分布,直径10-30nm的孔占总孔容的55-80%,直径300-500nm的孔占总孔容的10-35%,进一步优选为孔容为0.95-1.15毫升/克,比表面积为80-200米2/克,直径为10-30nm孔的孔体积占总孔容的60-75%,直径为300-500nm孔的孔体积占总孔容的15-30%的成型氧化铝载体。
在进一步优选的实施方式中,所述加氢处理催化剂I中的成型氧化铝载体含有第ⅣB族的金属组分,例如,选自钛、锆、铪中的一种或几种的金属组分,优选其中的钛,以氧化物计并以含第ⅣB族金属组分的成型氧化铝载体为基准,所述选自第ⅣB族的金属组分的含量为0.1-6重量%,优选为0.3-4重量%,进一步优选为0.5-2.5重量%。
具有上述属性的成型氧化铝载体的制备包括将含有拟薄水铝石的水合氧化铝P1和P1的改性物P2混合,之后成型、干燥并焙烧。
所述P1和P2的重量混合比为20-95:5-80,优选为70-95:5-25。所述P1和P2的重量混合比是指每百份所述P1和P2的混合物中P1和P2分别所占重量份数之比。P2的κ值为0至小于等于0.9,优选为0至小于等于0.6。所述κ=DI2/DI1。DI1为含有拟薄水铝石的水合氧化铝P1的酸胶溶指数,DI2为含有拟薄水铝石的水合氧化铝P1的改性物P2的酸胶溶指数。
所述酸胶溶指数DI是指含有拟薄水铝石的水合氧化铝按一定酸铝比加入硝酸后,在一定的反应时间内被胶溶的含有拟薄水铝石的水合氧化铝以Al2O3计的百分数,DI=(1-W2/W1)×100%,W1和W2分别为拟薄水铝与酸反应前和与酸反应后以Al2O3计的重量。
DI的测定包括:⑴测定含有拟薄水铝石的水合氧化铝的灼烧基(也称为干基,灼烧基含量是指将定量的拟薄水铝石于600℃焙烧4小时,其烧后重量与烧前重量之比),计为a;⑵用分析天平称取含有拟薄水铝石的水合氧化铝W0克,W0的量满足以Al2O3计的W1为6克(W1/a=W0),称取去离子水W克,W=40.0-W0,搅拌下将称取的含有拟薄水铝石的水合氧化铝和去离子水加入烧杯中混合;⑶用20mL移液管移取20mL、浓度为0.74N的稀硝酸溶液,将该酸溶液加入到步骤(2)的烧杯中,搅拌下反应8分钟;⑷将步骤(3)反应后的浆液在离心机中进行离心分离,将沉淀物置入已称重的坩埚中,之后,将其于125℃干燥4小时,于马弗炉中850℃焙烧3小时,称重得到灼烧样品量W2克;(5)按照公式DI=(1-W2/W1)×100%计算得到。
其中,所述干燥的条件包括:温度为40-350℃,时间为1-24小时,优选为温度为100-200℃,时间为2-12小时;所述焙烧的条件包括:温度为大于500至小于等于1200℃,时间为1-8小时,优选为温度为大于800至小于等于1000℃,焙烧时间为为2-6小时。
这里,将P1改性为P2的方法之一是将所述含有拟薄水铝石的水合氧化铝P1成型、干燥,之后将其全部或部分进行研磨、筛分,得到粉体物为P2,所述干燥的条件包括:温度为40-350℃,时间为1-24小时;方法之二是将方法一得到的成型物焙烧,焙烧温度为大于350至小于等于1400℃,焙烧时间为1-8小时,之后将其全部或部分进行研磨、筛分,得到粉体物为P2;方法之三是将含有拟薄水铝石的水合氧化铝P1闪干,闪干温度为大于150至小于等于1400℃,闪干时间为0.05-1小时,得到粉体物为P2;方法之四是将方法之一、方法之二和与方法之三得到的改性物中的一种或几种混合得到。优选地,所述方法一中的干燥的条件包括:温度为100-200℃,时间为2-12小时;方法之二中的焙烧温度为500-1200℃,焙烧时间为0.1-6小时;方法之三中的闪干温度为200-1000℃,闪干时间为0.1-0.5小时。
在具体实施中,所述P2可以由下列方法方便得到:
⑴基于干燥得到P2,包括由含有拟薄水铝石的水合氧化铝P1按常规方法成型制备常规氧化铝载体过程中,经干燥副产的尾料,例如:在挤条成型中,条形成型物在干燥、整型过程副产的尾料(习惯上称为干燥废料),将该尾料进行碾磨,过筛得到P2。
⑵基于焙烧得到,包括由含有拟薄水铝石的水合氧化铝P1按常规方法成型制备常规氧化铝载体过程中,经焙烧副产的尾料(习惯上称为焙烧废料),例如,在滚球成型中,球形颗粒在焙烧过程中副产的尾料,将该尾料进行碾磨,过筛得到P2;或者是直接将P1闪干得到,在直接将P1闪干时,闪干时间优选为0.05-1小时,进一步优选为0.1-0.5小时。
⑶基于前述方法得到的改性物P2中的两种或几种的混合得到。
当采用混合方法获得P2时,可视需要任意地对前述几种方法分别得到的改性物P2的混合比例进行调整,本发明对此没有限制。
在足以使最终载体满足本发明要求的前提下,本发明对所述含有拟薄水铝石的水合氧化铝P1没有特别要求,可以是任意现有技术制备的拟薄水铝石,也可以是拟薄水铝石与其他的水合氧化铝的混合物,所述其他的水合氧化铝选自一水氧化铝、三水氧化铝及无定形水合氧化铝中的一种或几种。例如,孔容为0.9-1.4毫升/克,比表面为100-350米2/克,最可及孔直径8-30nm;优选孔容为0.95-1.3毫升/克,比表面为120-300米2/克,最可及孔直径10-25nm的含有拟薄水铝石的水合氧化铝就特别适合用于本发明。本发明中,含有拟薄水铝石的水合氧化铝的孔容、比表面积和最可及孔径,是将所述含有拟薄水铝石的水合氧化铝于600℃焙烧4小时后,由BET氮吸附表征得到。
在进一步优选的实施方式中,以X衍射表征,所述含有拟薄水铝石的水合氧化铝中拟薄水铝石含量不小于50%,进一步优选为不小于60%。
优选的所述P2为80-300目的颗粒物,进一步优选的所述P2为100-200目的颗粒物。这里,所述80-300目的颗粒,优选100-200目的颗粒是指所述改性物经过筛(必要时包括破碎或研磨的步骤),其筛分物(筛下物)满足80-300目的颗粒,优选100-200目的颗粒物占总量的百分数(以重量计)不小于60%,进一步优选不小于70%。
视不同要求其中的载体可制成各种易于操作的成型物,例如球形、蜂窝状、鸟巢状、片剂或条形(三叶草、蝶形、圆柱形等)。其中,将所述含有拟薄水铝石的水合氧化铝P1和P1的改性物P2混合的方法为常规方法,例如,将粉体的P1和P2按照投料比例投入搅拌式混料机中混合。
所述成型按常规方法进行。在成型时,例如挤条成型,为保证所述成型顺利进行,可以向所述的混合物中加入水、助挤剂和/或胶粘剂、含或不含扩孔剂,然后挤出成型,之后进行干燥并焙烧。所述助挤剂、胶溶剂的种类及用量为本领域技术人员所公知,例如常见的助挤剂可以选自田菁粉、甲基纤维素、淀粉、聚乙烯醇、聚乙醇中的一种或几种,所述胶溶剂可以是无机酸和/或有机酸,所述的扩孔剂可以是淀粉、合成纤维素、聚合醇和表面活性剂中的一种或几种。其中的合成纤维素优选为羟甲基纤维素、甲基纤维素、乙基纤维素、羟基纤维脂肪醇聚乙烯醚中的一种或几种,聚合醇优选为聚乙二醇、聚丙醇、聚乙烯醇中的一种或几种,表面活性剂优选为脂肪醇聚乙烯醚、脂肪醇酰胺及其衍生物、分子量为200-10000的丙烯醇共聚物和顺丁烯酸共聚物中的一种或几种。
当所述催化剂I的成型载体中含有第ⅣB族的金属组分时,在所述载体的制备中包括引入第ⅣB族的金属组分的步骤。所述第ⅣB族的金属组分的引入方法为常规方法。例如,在一个具体的制备载体的实施方式中,向所述含有拟薄水铝石的水合氧化铝P1和P1的改性物P2的混合物中引入含第ⅣB族的金属组分化合物的方法是将含第ⅣB族的金属组分化合物配制成水溶液,将该水溶液在所述P1和P1混合的同时混入或者是在所述P1和P1混合后再将该水溶液混入,之后成型、干燥并焙烧。所述含第ⅣB族的金属组分化合物可以是任意的第ⅣB族的金属组分的水溶性化合物中的一种或几种。例如,第ⅣB族金属的水溶性无机盐中的一种或几种。
在足以将所述的加氢活性金属组分负载于所述载体上的前提下,本发明对所述催化剂I制备中加氢活性金属组分的负载方法没有特别限制,优选的方法为浸渍法,包括配制含所述金属的化合物的浸渍溶液,之后用该溶液浸渍所述的载体,之后进行干燥、焙烧或不焙烧。所述的浸渍方法为常规方法,例如,可以是过量液浸渍、孔饱和法浸渍法。所述干燥条件包括:温度为100-250℃,时间为1-10小时;所述焙烧条件包括:温度为360-500℃,时间为1-10小时。优选所述干燥条件包括:温度为100-140℃,时间为1-6小时;所述焙烧条件包括:温度为360-450℃,时间为2-6小时。
其中,含所述金属的化合物选自它们的水溶性化合物中的一种或几种(包括在助溶剂存在下可溶于水的化合物)。以第VIB族的钼为例,可以选自如氧化钼、钼酸盐、仲钼酸盐中的一种或几种,优选其中的氧化钼、钼酸铵、仲钼酸铵;以第VIB族的钨为例,可以选自如钨酸盐、偏钨酸盐、乙基偏钨酸盐中的一种或几种,优选其中的偏钨酸铵、乙基偏钨酸铵;以第VB族的钒为例,可以选自如五氧化二钒、钒酸铵、偏钒酸铵、硫酸钒、钒杂多酸中的一种或几种,优选其中的偏钒酸铵、钒酸铵。
本发明中,所述催化剂Ⅱ的作用在于进一步脱除原料中的有机金属杂质Ni和V,沥青质和胶质等大分子物种以及部分硫化物。
按照本发明提供的方法,其中,在满足本发明对所述加氢处理催化剂Ⅱ要求的前提下,所述加氢处理催化剂Ⅱ可以是市售的商品,也可以采用任意的现有技术制备。例如,20110276687.3和201110039566.1公开的催化剂及其制备方法完全适合用于本发明。关于上述催化剂更详细的制备方法,在上述专利文献中均有记载,这里一并将它们作为本发明内容的一部分引用。
本发明中,所述催化剂Ⅲ的作用在于饱和多环芳烃等大分子化合物,使其中更难脱除的硫、氮等杂质进一步脱除,同时脱除原料油中的残炭,提高产品性质。在足以实现上述功能的前提下,本发明对所述催化剂Ⅲ没有其他限制,即催化剂Ⅲ可以选自任意的现有技术提供的加氢精制、加氢处理等催化剂。它们可以是市售的商品或采用任意现有方法制备。
一般地,此类催化剂通常含有耐热无机氧化物载体、加氢活性金属组分。例如,所述催化剂Ⅲ含有选自氧化铝和/或氧化硅-氧化铝的载体,选自镍和/或钴、钼和/或钨的加氢活性金属组分,含或不含选自氟、硼和磷中一种或几种助剂组分,以氧化物计并以催化剂Ⅲ为基准,所述镍和/或钴的含量为1-5重量%,钼和/或钨的含量为10-35重量%,以元素计的选自氟、硼和磷中一种或几种助剂组分的含量为0-9重量%。
例如,ZL97112397公开的一种加氢精制催化剂,其组成为氧化镍1~5重%,氧化钨12~35重%,氟1~9重%,其余为氧化铝,该氧化铝是由一种或多种小孔氧化铝与一种或多种大孔氧化铝按照75∶25~50∶50的重量比复合而成的,其中小孔氧化铝为孔直径小于80埃孔的孔体积占总孔体积95%以上的氧化铝,大孔氧化铝为孔直径60~600埃孔的孔体积占总孔体积70%以上的氧化铝。
ZL00802168公开了一种加氢精制催化剂,该催化剂含有一种氧化铝载体和负载在该氧化铝载体上的至少一种第ⅥB族金属和/或至少一种第Ⅷ族金属。所述氧化铝载体的孔容不小于0.35毫升/克,孔直径为40~100埃孔的孔容占总孔容的80%以上,它采用特殊的方法制备。
ZL200310117323公开了一种加氢精制催化剂,该催化剂含有一种氧化铝载体和负载在该载体上的钼、镍和钨金属组分,以氧化物计并以催化剂为基准,所述催化剂含有0.5-10重量%的钼,1-10重量%的镍,12-35重量%的钨和平衡量的载体,所述催化剂的制备方法包括依次用含钼化合物的溶液和含镍、钨化合物的溶液浸渍氧化铝载体,其中所述的氧化铝载体在用含钼化合物的溶液浸渍后进行干燥,在用含镍、钨化合物的溶液浸渍后进行干燥和焙烧,干燥温度为100-300℃,干燥时间为1-12小时,焙烧温度为320-500℃,焙烧时间为1-10小时。
这些催化剂均可作为所述催化剂Ⅲ用于本发明。关于上述催化剂的更详细的制备方法,在上述专利文献中均有记载,这里一并将它们作为本发明内容的一部分引用。
按照本发明提供的方法,所述包括加氢处理催化剂I、加氢处理催化剂Ⅱ和加氢处理催化剂Ⅲ可以依次分层装填于同一个反应器中,也可以是依次装填于几个串联的反应器中使用,对此本发明没有特别限制。
按照本发明提供的方法,其中,在包括加氢处理催化剂I、加氢处理催化剂Ⅱ和加氢处理催化剂Ⅲ的催化剂组合之前、之后或它们两两之间,可以包括任何有助于改善所述催化剂组合性能的其他催化剂或填料。例如,在所述加氢脱金属催化剂I之前添加如瓷球、活性支撑物等填料,以改善原料油在反应器中的分布等。关于这种填料的使用等为本领域技术人员所公知,这里不赘述。
按照本领域中的常规方法,所述加氢处理催化剂在使用之前,通常可在氢气存在下,于140-370℃的温度下用硫、硫化氢或含硫原料进行预硫化,这种预硫化可在器外进行也可在器内原位硫化,将其所负载的活性金属组分转化为金属硫化物。
按照本发明提供的方法,所述加氢处理反应的反应条件为重油加氢处理的常规条件,例如,所述的反应条件包括:氢分压6-20MPa,温度为300-450℃,液时体积空速为0.1-1.0h-1,氢油体积比为600-1500,其中优选氢分压10-18MPa,温度为350-420℃,液时体积空速为0.2-0.6h-1,氢油体积比为800-1100。
按照本发明提供的方法,特别适合用来加工沥青含量较高的原料油,它们可以选自原油、减压渣油、深拔蜡油、轻脱沥青油、焦化蜡油等中的一种或几种。
根据所述方法得到的加氢处理后油的重量可达到:沥青质含量为1.2%以下,金属Ni+V含量为20μg/g以下,硫含量0.5%以下,残炭含量为6.0%以下。
具体实施方式
下面的实施例将对本发明做进一步的说明。
实例中所用试剂,除特别说明的以外,均为化学纯试剂。
实施例1-5说明制备本发明所述催化剂I载体用的P1和P2及其制备方法。
在以下的实施例中使用的拟薄水铝石包括:
P1-1:长岭催化剂分公司生产的干胶粉(孔容为1.2毫升/克,比表面为280米2/克,最可及孔直径15.8nm。干基为73%,其中拟薄水铝石含量为68%,三水铝石含量为5重量%,余量为无定形氧化铝,DI值15.8)。
P1-2:烟台恒辉化工有限公司生产的干胶粉(孔容为1.1毫升/克,比表面为260米2/克,最可及孔直径12nm。干基为71%,其中拟薄水铝石含量为67%,三水铝石含量为5重量%,余量为无定形氧化铝,DI值17.2)。
实施例1
称取1000克P1-1,之后加入含硝酸(天津化学试剂三厂产品)10毫升的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到干燥条,将干燥条整形,过筛,将长度小于2mm的干燥条物料(一般称为工业干燥条废料)进行碾磨,过筛,取其中100~200目筛分,得到P1-1的改性物P2A。P2A的k值见表1。
实施例2
称取1000克P1-1,于240℃闪干6分钟,得到P1-1的改性物P2B。P2B的k值见表1。
实施例3
将实施例1得到的P2A和实施例2得到的P2B各200克均匀混合,得到P1-1的改性物P2C。P2C的k值见表1。
实施例4
称取1000克P1-2,之后加入含硝酸(天津化学试剂三厂产品)10毫升的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,1200℃焙烧4小时,得到载体,将载体条整形,过筛,将长度小于2mm的载体条物料(一般称为工业载体废料)进行碾磨,过筛,取其中100~200目筛分,即得P1-2的改性物P2D。P2D的k值见表1。
实施例5
称取1000克P1-2,于650℃闪干10分钟,得到P1-2的改性物P2E。P2E的k值见表1。
表1
实施例 原料 k
1 P2A 0.5
2 P2B 0.4
3 P2C 0.4
4 P2D 0
5 P2E 0.3
实施例6-13说明制备本发明所述催化剂I用的载体及其制备方法。对比例1-2说明参比催化剂用的载体及其制备方法
实施例6
称取800克P1-1,与实施例1制得的200克原料P2A均匀混合后,加入含硝酸(天津化学试剂三厂产品)10毫升、含四氯化钛16.6g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物900℃焙烧3小时,得到载体ZⅠ1。载体ZⅠ1的性质列于表2。
实施例7
称取200克P1-1,与实施例2制得的800克原料P2B均匀混合后,加入含硝酸天津化学试剂三厂产品)10毫升、含四氯化钛16.6g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物900℃焙烧3小时,得到载体ZⅠ2。载体ZⅠ2的性质列于表2。
实施例8
称取500克P1-1,与实施例3制得的500克原料P2C均匀混合后,加入含硝酸天津化学试剂三厂产品)10毫升、含四氯化钛16.6g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物950℃焙烧3小时,得到载体ZⅠ3。载体ZⅠ3的性质列于表2。
对比例1
称取1000克P1-1,加入含硝酸天津化学试剂三厂产品)10毫升、含四氯化钛16.6g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物900℃焙烧3小时,得到载体DZⅠ1。载体DZⅠ1的性质列于表2。
实施例9
称取800克P1-2,与实施例4制得的200克原料P2D均匀混合后,加入含硝酸(天津化学试剂三厂产品)10毫升、含四氯化钛29.9g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物1000℃焙烧3小时,得到载体ZⅠ4。载体ZⅠ4的性质列于表2。
实施例10
称取900克P1-1,与实施例5制得的100克原料P2E均匀混合后,加入含硝酸天津化学试剂三厂产品)10毫升、含四氯化钛29.9g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物1000℃焙烧3小时,得到载体ZⅠ5。载体ZⅠ5的性质列于表2。
实施例11
称取850克P1-2,与实施例3制得的150克原料P2C均匀混合后,加入含硝酸天津化学试剂三厂产品)10毫升、含四氯化钛29.9g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物850℃焙烧3小时,得到载体ZⅠ6。载体ZⅠ6的性质列于表2。
对比例2
称取1000克P1-2,加入含硝酸天津化学试剂三厂产品)10毫升、含四氯化钛29.9g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物1000℃焙烧3小时,得到载体DZⅠ2。载体DZⅠ2的性质列于表2。
实施例12
称取900克P1-2,与实施例4制得的100克原料P2D均匀混合后,加入含硝酸天津化学试剂三厂产品)10毫升、含四氯化钛41.6g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物1000℃焙烧3小时,得到载体ZⅠ7。载体ZⅠ7的性质列于表2。
实施例13
称取850克P1-2,与实施例5制得的150克原料P2E均匀混合后,加入含硝酸天津化学试剂三厂产品)10毫升、含四氯化钛41.6g的水溶液1440毫升,在双螺杆挤条机上挤成外径φ1.4mm的蝶形条。湿条于120℃干燥4小时,得到成型物,将该成型物900℃焙烧3小时,得到载体ZⅠ8。载体ZⅠ8的性质列于表2。
表2
实施例14~21用于说明本发明所述催化剂I及其制备方法。对比例3-5说明参比催化剂及其制备方法。
其中,催化剂中活性金属组分的含量采用X射线荧光光谱仪测定(所有仪器为日本理学电机工业株式会社3271型X射线荧光光谱仪,具体方法见石油化工分析方法RIPP133-90)。
实施例14
取200克载体ZⅠ1,用220毫升含MoO380克/升,V2O516克/升的七钼酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂CⅠ1,CⅠ1的组成列于表3中。
实施例15
取200克载体ZⅠ2,用220毫升含MoO380克/升,V2O516克/升的七钼酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂CⅠ2,CⅠ2的组成列于表3中。
实施例16
取200克载体ZⅠ3,用220毫升含MoO380克/升,V2O516克/升的七钼酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂CⅠ3,CⅠ3的组成列于表3中。
对比例3
取200克载体ZⅠ1,用220毫升含MoO380克/升,NiO16克/升的七钼酸铵和硝酸镍混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧2小时,得到加氢脱金属催化剂DCⅠ1,DCⅠ1的组成列于表3中。
对比例4
取200克DZⅠ1,用220毫升含MoO380克/升,NiO16克/升的七钼酸铵和硝酸镍混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧2小时,得到加氢脱金属催化剂DCⅠ2,DCⅠ2的组成列于表3中。
对比例5
取200克载体DZⅠ2,用500毫升含MoO380克/升,V2O516克/升的七钼酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂DCⅠ3,DCⅠ3的组成列于表3中。
实施例17
取200克载体ZⅠ4,用220毫升含MoO390克/升,V2O520克/升的七钼酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂CⅠ4。加氢脱金属催化剂CⅠ4的组成列于表3中。
实施例18
取200克ZⅠ5,用220毫升含WO390克/升,V2O520克/升的钨酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂CⅠ5。加氢脱金属催化剂CⅠ5的组成列于表2中。
实施例19
取200克ZⅠ6,用220毫升含WO3100克/升,V2O530克/升的钨酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂CⅠ6。加氢脱金属催化剂CⅠ6的组成列于表2中。
实施例20
取200克ZⅠ7,用220毫升含MoO360克/升,V2O560克/升的钨酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂CⅠ7。加氢脱金属催化剂CⅠ7的组成列于表2中。
实施例21
取200克ZⅠ8,用220毫升含WO360克/升,V2O560克/升的钨酸铵和偏钒酸铵混合溶液浸渍1小时,120℃烘干4小时,400℃焙烧3小时,得到加氢脱金属催化剂CⅠ8。加氢脱金属催化剂CⅠ8的组成列于表2中。
表3
实施例22-23说明适合用于制备加氢处理催化剂Ⅱ的载体及其制备方法。
实施例22
将300克长岭催化剂厂生产的拟薄水铝石干胶粉RPB110和10克的田菁粉混合均匀,在室温下将该混合物与360毫升的浓度为1%的硝酸水溶液,混合均匀,在双螺杆挤条机上继续混捏为可塑体后,挤成ф1.5毫米的三叶形条,湿条经120℃干燥3小时后,于700℃焙烧3小时得到载体ZⅡ1。测定ZⅡ1的比表面、孔容和孔径分布,结果见表4。
载体比表面、孔容和孔径分布采用BET低温氮吸附法测定。
实施例23
将300克长岭催化剂厂生产的拟薄水铝石干胶粉RPB90的拟薄水铝石干胶粉)和10克田菁粉混合均匀,加入330毫升浓度为1%的硝酸水溶液,混合均匀,在双螺杆挤条机上继续混捏为可塑体后,挤成ф1.1毫米的蝶形条,湿条经110℃干燥2小时后,于600℃焙烧4小时得到载体ZⅡ2。测定ZⅡ2的比表面、孔容和孔径分布,结果如表4所示。
表4
实施例24-27说明由本发明用的催化剂Ⅱ及其制备方法。
实施例24
取实施例22制备的载体ZⅡ1200克,用500毫升含MoO3120克/升,NiO8克/升,CoO20克/升的钼酸铵、硝酸镍、硝酸钴混合溶液浸渍1小时,过滤后于120℃烘干2小时,450℃焙烧4小时,得到催化剂CⅡ1。以催化剂的总重量为基准,采用X射线荧光光谱仪测定催化剂CⅡ1中的氧化钼、氧化钴、氧化镍的含量,测定结果如表5所示。(所有仪器为日本理学电机工业株式会社3271型X射线荧光光谱仪,具体方法见石油化工分析方法RIPP133-90)
实施例25
取实施例22制备的载体Z2200克,用220毫升含MoO3172克/升,NiO9克/升,CoO32克/升的氧化钼、碱式碳酸镍、碱式碳酸钴的混合溶液浸渍2小时,于120℃烘干2小时,500℃焙烧2小时,得到催化剂CⅡ2。按照与实施例3相同的方式测定催化剂CⅡ2中的氧化钼、氧化钴、氧化镍的含量,结果如表5所示。
实施例26
取实施例23制备的载体Z2200克,用200毫升含MoO3122克/升,NiO9克/升,CoO18克/升的氧化钼、碱式碳酸镍、碱式碳酸钴的混合溶液浸渍1小时,于120℃烘干2小时,480℃焙烧4小时,得到催化剂CⅡ3。按照与实施例3相同的方式测定催化剂CⅡ3中的氧化钼、氧化镍和氧化钴的含量,结果如表5所示。
实施例27
取实施例22制备的载体Z1200克,用500毫升含CoO12克/升的硝酸钴混合溶液浸渍1小时,过滤后于110℃烘干3小时,350℃焙烧2小时,用200毫升含MoO392克/升,NiO7克/升的氧化钼、碱式碳酸镍混合溶液浸渍1小时,于120℃烘干2小时,480℃焙烧4小时,得到催化剂CⅡ4。按照与实施例3相同的方式测定催化剂CⅡ4中的氧化钼、氧化镍和氧化钴的含量,结果如表5所示。
表5
实施例28-32说明本发明提供方法加氢处理重质原料的效果。对比例6-8说明参比方法加氢处理重质原料的效果。
以沥青质含量为7.4%,Ni+V含量为112ppm、硫含量为4.2%、残碳为14.5%的混合渣油为原料,在500毫升固定床反应器上评价催化剂。
油样中镍和钒的含量采用电感耦合等离子体发射光谱仪(ICP-AES)测定(所用仪器为美国PE公司PE-5300型等离子体光量计,具体方法见石油化工分析方法RIPP124-90)
油样中沥青质含量采用正庚烷沉淀方法(具体方法见石油化工分析方法RIPP10-90)。
油样中硫含量使用电量法测定(具体方法见石油化工分析方法RIPP62-90)。
油样中残炭含量使用微量法测定(具体方法见石油化工分析方法RIPP149-90)。
加氢处理催化剂Ⅲ:
加氢处理催化剂Ⅲ-1,按照专利ZL97112397.7中的实施例6制备,其组成为氧化镍2.3重%,氧化钨22.0重%,氟4重%,其余为氧化铝。
加氢处理催化剂Ⅲ-2,按照专利ZL00802168.6中的实施例37制备,其组成为氧化镍2.6重%,氧化钼23.6重%,氟2.3重%,其余为氧化铝。
加氢处理催化剂Ⅲ-3,按照专利ZL200310117323.0中的实施例3制备,其组成为氧化镍2.1重%,氧化钼2.5重%,氧化钨25.4重%,其余为氧化铝。
催化剂使用比例及工艺条件列于表6中,运转1000小时后产品性质列于表7中。
对比例6
催化剂采用DCI1、CII1、CⅢ1的组合,各催化剂用量的体积比及工艺条件列于表6中,运转1000小时后取样分析,结果列于表7。
对比例7
催化剂采用DCI2、CII2、CⅢ2的组合,各催化剂用量的体积比及工艺条件列于表6中,运转1000小时后后取样分析,结果列于表7。
对比例8
催化剂采用DCI3、CII3、CⅢ3的组合,各催化剂用量的体积比及工艺条件列于表6中,运转1000小时后后取样分析,结果列于表7。
表6
表7
可以看出,采用新催化剂及相关技术后,运转1000小时后加氢处理产品的沥青、金属、硫、残炭等杂质含量明显降低,作为FCC进料,产品性质得到明显改善。

Claims (15)

1.一种劣质重油的加氢处理方法,包括在加氢处理反应条件下,将重质原料油依次与包括加氢处理催化剂Ⅰ、加氢处理催化剂Ⅱ和加氢处理催化剂Ⅲ的催化剂组合接触,以体积计并以所述催化剂组合的总量为基准,所述加氢处理催化剂Ⅰ的含量为5-60%,加氢处理催化剂Ⅱ的含量为5-50%,加氢处理催化剂Ⅲ的含量为10-60%;其中,所述加氢处理催化剂I含有成型氧化铝载体和选自至少一种第VIB族和至少一种第VB族的加氢活性金属组分,以氧化物计并以催化剂I为基准,所述第VIB族金属组分的含量为0.2-15重量%,第VB族金属组分的含量为0.2-12重量%,以压汞法表征,所述加氢处理催化剂I中成型氧化铝载体的孔容为0.95-1.2毫升/克,比表面为50-300米2/克,所述载体在直径为10-30nm和直径为300-500nm呈双峰孔分布,直径10-30nm的孔占总孔容的55-80%,直径300-500nm的孔占总孔容的10-35%;所述催化剂Ⅱ含有载体、金属组分钼、钴和镍,以氧化物计并以催化剂Ⅱ为基准,所述钼的含量为5~20重量%,钴和镍的含量之和为1~6重量%,其中,钴和镍的原子比为2~4。
2.根据权利要求1所述的方法,其特征在于,以体积计并以所述催化剂组合的总量为基准,所述加氢处理催化剂Ⅰ的含量为10-50%,加氢处理催化剂Ⅱ的含量为10-40%,加氢处理催化剂Ⅲ的含量为20-50%;所述加氢处理催化剂I中的第VIB族的金属组分选自钼和/或钨,第VB族的金属组分选自钒和/或铌,以氧化物计并以催化剂I为基准,所述第VIB族金属组分的含量为0.5-12重量%,第VB族金属组分的含量为0.5-9重量%;以氧化物计并以催化剂Ⅱ为基准,所述催化剂Ⅱ中钼的含量为8~15重量%,钴和镍的含量之和为1.5~4重量%,其中,钴和镍的原子比为2.2~3.2。
3.根据权利要求1或2所述的方法,其特征在于,所述加氢处理催化剂I中的所述第VIB族的金属组分为钼或钨,第VB族金属组分为钒,以氧化物计并以催化剂I为基准,所述第VIB族金属组分的含量为5-12重量%,第VB族金属组分的含量为1-9重量%;以氧化物计并以催化剂Ⅱ为基准,所述镍的含量小于1.2%。
4.根据权利要求3所述的方法,其特征在于,以氧化物计并以催化剂Ⅱ为基准,所述镍的含量为0.5~1.1%。
5.根据权利要求1所述的方法,其特征在于,以压汞法表征,所述加氢处理催化剂I成型氧化铝载体的孔容为0.95-1.15毫升/克,比表面积为80-200米2/克,直径为10-30nm孔的孔体积占总孔容的60-75%,直径为300-500nm孔的孔体积占总孔容的15-30%。
6.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂I中的成型氧化铝载体含有选自第ⅣB族的金属组分,以氧化物计并以含选自第ⅣB族金属组分的成型氧化铝载体为基准,所述选自第ⅣB族的金属组分的含量为0.1-6重量%。
7.根据权利要求6所述的方法,其特征在于,所述选自第ⅣB族的金属组分为钛、锆、铪中的一种或几种,以氧化物计并以含选自第ⅣB族金属组分的成型氧化铝载体为基准,所述选自第ⅣB族的金属组分的含量为0.3-4重量%。
8.根据权利要求7所述的方法,其特征在于,所述选自第ⅣB族的金属组分为钛,以氧化物计并以含选自第ⅣB族金属组分的成型氧化铝载体为基准,所述选自第ⅣB族的金属组分的含量为0.5-2.5重量%。
9.根据权利要求1或2所述的方法,其特征在于,所述催化剂Ⅱ含有选自磷和硼的助剂组分,以氧化物计并以所述催化剂Ⅱ为基准,所述选自磷和硼的助剂组分的含量为0.5-5重量%。
10.根据权利要求9所述的方法,其特征在于,以氧化物计并以所述催化剂Ⅱ为基准,所述选自磷和硼的助剂组分的含量为1-4重量%。
11.根据权利要求1所述的方法,其特征在于,所述催化剂Ⅲ含有选自氧化铝和/或氧化硅-氧化铝的载体,选自镍和/或钴、钼和/或钨的加氢活性金属组分,含或不含选自氟、硼和磷中一种或几种助剂组分,以氧化物计并以催化剂Ⅲ为基准,所述镍和/或钴的含量为1-5重量%,钼和/或钨的含量为10-35重量%,以元素计的选自氟、硼和磷中一种或几种助剂组分的含量为0-9重量%。
12.根据权利要求11所述的方法,其特征在于,所述催化剂Ⅲ中的载体选自氧化铝。
13.根据权利要求12所述的方法,其特征在于,所述氧化铝的孔容不小于0.35毫升/克,孔直径为40~100埃孔的孔容占总孔容的80%以上。
14.根据权利要求1所述的方法,其特征在于,所述加氢处理反应的反应条件为:氢分压6-20MPa,温度为300-450℃,液时体积空速为0.1-1h-1,氢油体积比为600-1500。
15.根据权利要求14所述的方法,其特征在于,所述加氢处理反应的反应条件为:氢分压10-18MPa,温度为350-420℃,液时体积空速为0.2-0.6h-1,氢油体积比为800-1100。
CN201310303656.6A 2013-07-18 2013-07-18 一种劣质重油的加氢处理方法 Active CN104293380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310303656.6A CN104293380B (zh) 2013-07-18 2013-07-18 一种劣质重油的加氢处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310303656.6A CN104293380B (zh) 2013-07-18 2013-07-18 一种劣质重油的加氢处理方法

Publications (2)

Publication Number Publication Date
CN104293380A CN104293380A (zh) 2015-01-21
CN104293380B true CN104293380B (zh) 2016-02-24

Family

ID=52313344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310303656.6A Active CN104293380B (zh) 2013-07-18 2013-07-18 一种劣质重油的加氢处理方法

Country Status (1)

Country Link
CN (1) CN104293380B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204314A2 (en) * 1985-06-05 1986-12-10 Nippon Oil Co. Ltd. Catalyst for hydrotreatment of heavy oils
US5300212A (en) * 1992-10-22 1994-04-05 Exxon Research & Engineering Co. Hydroconversion process with slurry hydrotreating
CN1782031A (zh) * 2004-11-30 2006-06-07 中国石油化工股份有限公司 一种渣油加氢脱金属催化剂及其制备方法
CN103059929A (zh) * 2011-10-18 2013-04-24 中国石油化工股份有限公司 一种重质渣油的加氢处理方法
CN103059928A (zh) * 2011-10-24 2013-04-24 中国石油化工股份有限公司 一种加氢处理装置及其应用和渣油加氢处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042617A2 (fr) * 2009-10-08 2011-04-14 IFP Energies Nouvelles Procede d'hydroconversion de charges lourdes carbonees integrant une technologie a lit bouillonnant et une technologie en slurry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204314A2 (en) * 1985-06-05 1986-12-10 Nippon Oil Co. Ltd. Catalyst for hydrotreatment of heavy oils
US5300212A (en) * 1992-10-22 1994-04-05 Exxon Research & Engineering Co. Hydroconversion process with slurry hydrotreating
CN1782031A (zh) * 2004-11-30 2006-06-07 中国石油化工股份有限公司 一种渣油加氢脱金属催化剂及其制备方法
CN103059929A (zh) * 2011-10-18 2013-04-24 中国石油化工股份有限公司 一种重质渣油的加氢处理方法
CN103059928A (zh) * 2011-10-24 2013-04-24 中国石油化工股份有限公司 一种加氢处理装置及其应用和渣油加氢处理方法

Also Published As

Publication number Publication date
CN104293380A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
CN103357445A (zh) 一种重油加氢脱沥青质催化剂及其制备与应用
CN104437517A (zh) 一种重油加氢处理催化剂及其制备与应用
CN104226342A (zh) 一种重油加氢处理催化剂及其制备和应用
CN103865568A (zh) 以含vb金属组分的加氢催化剂及其制备和应用
CN104226323B (zh) 一种重油加氢处理催化剂及其制备和应用
CN104226297B (zh) 一种重油加氢处理催化剂及其制备与应用
CN104293389B (zh) 一种渣油加氢处理方法
CN104293383B (zh) 一种优化催化裂化原料性质的加氢处理方法
CN104293390B (zh) 一种渣油加氢处理方法
CN103923692B (zh) 一种重质原料油的加氢处理方法
CN104293380B (zh) 一种劣质重油的加氢处理方法
CN104293381B (zh) 一种改善重油加氢产品性质的方法
CN104226298A (zh) 一种重油加氢处理催化剂及其制备与应用
CN103923697B (zh) 一种高金属含量的重质油加氢处理方法
CN104293379B (zh) 一种重质原料油的加氢处理方法
CN104449815A (zh) 一种烃油加氢处理方法
CN104449832A (zh) 一种催化裂化原料油加氢预处理方法
CN104368392A (zh) 一种加氢活性保护催化剂及其制备与应用
CN104437520A (zh) 一种重油加氢处理催化剂及其制备和应用
CN103861603A (zh) 一种重油加氢脱沥青质催化剂及其制备与应用
CN103861651A (zh) 一种重油加氢脱沥青质催化剂及其制备与应用
CN103861607B (zh) 一种加氢脱沥青质催化剂及其制备与应用
CN104293378B (zh) 一种含沥青质重质油的加氢处理方法
CN104449833B (zh) 一种烃油加氢处理方法
CN104293382B (zh) 一种催化裂化原料预处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant