CN104278235B - 一种具有氮化钛陶瓷膜层的刀具及其制备方法 - Google Patents

一种具有氮化钛陶瓷膜层的刀具及其制备方法 Download PDF

Info

Publication number
CN104278235B
CN104278235B CN201310300501.7A CN201310300501A CN104278235B CN 104278235 B CN104278235 B CN 104278235B CN 201310300501 A CN201310300501 A CN 201310300501A CN 104278235 B CN104278235 B CN 104278235B
Authority
CN
China
Prior art keywords
cutter
layer
titanium
titanium nitride
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310300501.7A
Other languages
English (en)
Other versions
CN104278235A (zh
Inventor
苏永要
王锦标
涂铭旌
张进
石东平
蒋义
邓涛
刁敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN201310300501.7A priority Critical patent/CN104278235B/zh
Publication of CN104278235A publication Critical patent/CN104278235A/zh
Application granted granted Critical
Publication of CN104278235B publication Critical patent/CN104278235B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提出了一种新的概念‑耐磨、抑菌刀,属刀具制造领域,采用真空气相沉积技术,在碳钢厨房刀具表面制备纳米级多层、多元氮化钛陶瓷膜。陶瓷膜能显著提高刀具的显微硬度、耐磨损、耐腐蚀性能,有效阻止刀具材料的有害物质渗出,使刀具经久耐用,安全卫生。可根据需要调整刀体颜色,如金黄色、浅黄色、棕色等,美观大方。

Description

一种具有氮化钛陶瓷膜层的刀具及其制备方法
技术领域
本发明属于民用五金刀具功能薄膜的制备方法,具体涉及到刀具表面功能薄膜的制备。
日常使用的刀具,如菜刀、水果刀中,碳钢刀具占据主导地位。虽然这种刀具比较锋利,但是硬度较低,耐磨损性能欠佳,特别是刃部容易发生卷刃、磨损,需要经常修磨;同时碳钢刀的抗腐蚀性能较差,容易生锈,有金属元素的析出,既不美观又缩短了刀具的使用寿命,更重要的会对身体健康造成危害。随着人们生活水平的不断提高,对餐饮器具的要求也随之提高。目前市场上已经出现纯陶瓷厨用刀具,并对传统的碳钢刀具显现巨大的优势,如高硬度、高耐磨性能且不会生锈,这些是普通碳钢刀具无法比拟的。但陶瓷刀具本身存在致命缺陷即韧性不足,在使用过程中容易发生脆断,且价格昂贵,通常为普通碳钢刀具的20-50倍,不适合在日常生活中使用。故目前陶瓷刀具多作为工艺礼品用。
对普通碳钢刀具进行表面改性,使刀具同时具备普通碳钢刀具的韧性和陶瓷刀具的诸多优点,是厨用器具的理想选择。据文献报道已有研究者采用不同的方法对刀具进行表面改性;如在普通刀体上制备钛金层,在刀体表面复合硬质合金层,采用电镀的方法在刀体表面镀镍。这些方法都能对提高硬度和改善耐腐蚀性能起到一定的作用,但也存在一定的问题。如镍虽是人体必需的一种微量元素,但过度的摄入容易诱发癌症;电镀方法对环境污染大,耗能高,已逐步被淘汰等。
真空气相沉积技术是利用气相中发生的物理、化学过程,改变工件表面成分,在表面形成具有特殊性能的金属或化合物涂层。按照成膜机理,一般分为物理气相沉积(PVD)和化学气相沉积(CVD)两类。物理气相沉积是把固态或液态成膜材料通过某种物理方式(高温蒸发、溅射、等离子体、离子束、激光束、电弧等)产生气相原子、分子、离子(气态、等离子态),再经过输运在基体表面沉积,或与其他活性气体反应形成反应产物在基体上沉积为固相薄膜的过程。本发明涉及到得蒸发源和磁控溅射源属于物理气相沉积范畴。
离子辅助增强磁控溅射与离子蒸发镀二元组合源镀膜设备,主要构件包括真空室、坩埚、辅助阳级、工件台及转动装置、磁场线圈、磁控溅射源、热阴极灯丝、真空泵组及相应电源系统。坩埚位于真空室底板中部,辅助阳极安装在坩埚旁侧;磁场线圈有两个,分别缠绕在真空室上、下两端的外壁上;热阴极丝安装在真空室顶盖中部,并与坩埚相对;4块磁控溅射源均匀分布在真空室壁四周。
使用时,先将处理后的待镀工件固定在位于真空室底部的样品台上,在坩埚中放入适量的钛块;装好溅射靶材;然后开动真空泵组,待真空度达到设定值后,向真空室通入惰性气体,如氩气;同时给热阴极丝和磁场线圈通电,在低电压、大电流的条件下,热阴极发射出强电子束,通过磁场的控制对工件进行加热及刻蚀清洗;完成后,电子束在坩埚电位及磁控的引导下,使坩埚中的金属钛被加热熔化并蒸发,在样品台偏压的作用下沉积在工件表面,形成金属钛层;随后通入氮气,处于蒸发态的钛与氮离子在工件表面反应形成氮化钛;蒸镀完成后,开启与磁控溅射源相匹配的控制电源,使磁控溅射源产生辉光发电,并将钛以原子(离子)的形式从钛靶上溅射出,在溅射靶源附近离化,与氮离子反应,实现磁控溅射制备氮化钛。
TiN涂层是最早应用于工业加工的刀具涂层之一,其显微硬度约为HV2100,为普通碳钢的4倍左右,氧化温度约为500℃,具有较高的抗磨损性能;独特的金黄色、优良的耐腐蚀性能使其在装饰方面得到广泛应用;良好的生物相容性把其应用拓展到生物医学领域。TiN涂层在各个方面的优异性能,使其在民用五金刀具的应用成为可能。
发明内容
本发明提出一种新概念刀具,具有耐磨、抑菌的特性,远离刀具基底表面的最外层为磁控溅射源制备的氮化钛层,具有较高的硬度、耐磨性能和抗腐蚀性能,同时具有一定的抗菌抑菌功能。不仅显著延长刀具的使用寿命,减少修磨次数,有效的避免了碳钢刀表面生锈、金属元素的析出问题,而且能够有效改善刀具使用过程中细菌滋生问题,提高刀具安全卫生标准;同时良好的疏水性能使得刀具的清洗过程变得更加简单。靠近刀具表面的最内层为蒸发源制备的纯钛层,做成粘合层,能有效提高氮化钛功能层与刀具基底的结合力。位于最内层的纯钛层和磁控溅射源制备的氮化钛层之间的中间层是蒸发源制备氮化钛与纯钛复合层,作为过渡层,缓解纯钛层与磁控溅射源制备氮化钛的力学性能差异,减小内应力,提高膜基结合力。
本发明技术方案:
(1)预处理过程:对已精磨成型的刀具进行喷砂,然后依次在无水乙醇、软化水中超声波清洗,烘干后放入镀膜设备的真空室中;
(2)洗气过程:将镀膜设备的真空室气压抽至5.0×10-3Pa后,将氮气、氩气通入真空室,进行洗气;所述氮气的流量为20~60sccm,所述氩气的流量为20~60sccm。
(3)加热过程:关闭氮气,只通入氩气,流量为60~120sccm,然后开启灯丝并调节灯丝电流在120~190A之间,调节聚焦磁控电流为16~20A,使气体离化;将控制旋钮转到加热档进行加热60~90min;
(4)刻蚀清洗过程:加热完成后,将控制旋钮转到刻蚀档,调节真空室内氩气压强到约2.0×10-1Pa,保持灯丝电流不变,调节聚焦磁场电流为6~8A。在样品台施加脉冲偏压500V,持续10-40min;然后在样品台叠加200V直流偏压,刻蚀10-40min;然后关闭脉冲偏压,保留200V直流偏压,持续1040min;
(5)制备过渡层过程:将控制旋钮转到镀膜档,调节真空室内氩气压强到约1.0×10-1Pa,调节控制电子流磁场电流为28A,使镀膜设备中金属钛熔化并蒸发;刀具加上150V的直流偏压,使处于蒸发态的钛在偏压的作用下沉积在刀具表面,形成10100nm厚的纯钛层;
(6)表面氮化钛陶瓷膜层制备过程:将氮气通入真空室,先调节Ar/N2的流量比为2∶1,然后在8min内将Ar/N2的流量比调节到1∶2~1∶4;控制真空室混合气体压强为1.5×10- 1Pa~2.5×10-1Pa,工件台偏压保持100-150V,镀膜时间为20~60min;在镀膜中,按照镀膜要求,每隔1-10分钟关闭氮气1次,进行纯钛膜制备,从而形成复合多层膜;然后降低磁场电流至16-20A,降低刀具偏压至1540V,调节Ar/N2的流量比为2∶1~5∶1,抑制钛的蒸发,同时开启磁控溅射源匹配的电源,溅射电流24.5A,电压350-650V,采用磁控溅射方式制备致密度更高的氮化钛薄膜。镀膜完成后随炉自然冷却,至室温,取出。
采用以上方法具有氮化钛陶瓷膜层的刀具,刀体呈金黄色,美观大气,还可以根据需要调整为红棕、浅黄等颜色。实验表明,表面涂覆后,表面显微硬度达到1800HV,提高2倍以上;磨损量仅为未制备涂层试样的1/5,细菌的粘附量不足未制备涂层试样的1/2.
有益效果:本发明通过制备金属陶瓷薄膜,使刀具表面显微硬度提高,刀具的修磨周期延长,进而延长刀具的使用寿命;金属陶瓷薄膜可显著提高刀具的抗腐蚀能力,有效减少刀体材料中重金属离子的析出,同时金属陶瓷薄膜具有良好的抑菌效果,有利于刀具使用者的身体健康。
具体实施方式
实施例1
准备普通碳钢菜刀进行喷砂,然后分别在无水乙醇、软化水中超声波清洗5分钟,烘干后放入真空室。将设备真空室气压抽至5.2×10-3Pa后,通入氩气,进行洗气;40min后,开启灯丝并调节灯丝电流在160A,同时给磁场线圈进行通电,激发弧光使气体离化;将控制旋钮转到加热档,在工件台上加一定的偏压,进行加热70min。加热完成后,将控制旋钮转到刻蚀档,调节氩气压强到2.1×10-1Pa,在工件台加上150V直流与300V脉冲偏压进行刻蚀清洗,清洗时间20min。清洗完成后,将控制旋钮转到镀膜档,调节调节氩气压强到1.0×10- 1Pa.调节控制电子流磁场电流为28A,使坩埚中的钛蒸发;工件台上加上150V的直流偏压,处于蒸发态的钛,在偏压的作用下沉积在菜刀表面,形成80(±5)nm厚的钛层。然后将氮气通入真空室,先调节Ar/N2的流量比为2∶1,6min将Ar/N2的流量比调节到1∶3。控制真空室混合气体压强为2.0×10-1Pa,工件台偏压值保持150V,镀膜总时间为40min,在镀膜进行20min后再进行纯钛层沉积5min。完成后,调节Ar/N2的流量比调节到5∶1,使坩埚蒸发量迅速减小,直到可忽略;同时,打开磁控溅射源溅射电源,开始溅射镀膜,溅射电流3A,溅射电压580V,工件台偏压40V,溅射镀膜时间40min。镀膜完成后随炉自然冷却,至室温,取出。
实施例2
对已精磨成型的刀具进行喷砂,然后依次在无水乙醇、软化水中超声波清洗,烘干后放入镀膜设备的真空室中。将镀膜设备的真空室气压抽至5.0×10-3Pa后,将氮气、氩气通入真空室,进行洗气;所述氮气的流量为20sccm,所述氩气的流量为20sccm。关闭氮气,只通入氩气,流量为60sccm,然后开启灯丝并调节灯丝电流在120A,调节聚焦磁控电流为16A,使气体离化;将控制旋钮转到加热档进行加热60min。加热完成后,将控制旋钮转到刻蚀档,调节真空室内氩气压强到约2.0×10-1Pa,保持灯丝电流不变,调节聚焦磁场电流为6A。在样品台施加脉冲偏压500V,持续10min;然后在样品台叠加200V直流偏压,刻蚀10min;然后关闭脉冲偏压,保留200V直流偏压,持续10min。制备过渡层过程:将控制旋钮转到镀膜档,调节真空室内氩气压强到约1.0×10-1Pa,调节控制电子流磁场电流为28A,使镀膜设备中金属钛熔化并蒸发;刀具加上150V的直流偏压,使处于蒸发态的钛在偏压的作用下沉积在刀具表面,形成纯钛层。将氮气通入真空室,先调节Ar/N2的流量比为2∶1,然后在8min内将Ar/N2的流量比调节到1∶2;控制真空室混合气体压强为1.5×10-1Pa,工件台偏压保持100V,镀膜时间为20~60min;在镀膜中,按照镀膜要求,每隔1分钟关闭氮气1次,进行纯钛膜制备,从而形成复合多层膜;然后降低磁场电流至16A,降低刀具偏压至15V,调节Ar/N2的流量比为2∶1,减少钛的蒸发,同时开启磁控溅射源匹配的电源,溅射电流2A,电压350V,采用磁控溅射方式制备致密度更高的氮化钛薄膜。镀膜完成后随炉自然冷却,至室温,取出。
实施例3
对已精磨成型的刀具进行喷砂,然后依次在无水乙醇、软化水中超声波清洗,烘干后放入镀膜设备的真空室中。将镀膜设备的真空室气压抽至5.0×10-3Pa后,将氮气、氩气通入真空室,进行洗气;所述氮气的流量为60sccm,所述氩气的流量为60sccm。关闭氮气,只通入氩气,流量为120sccm,然后开启灯丝并调节灯丝电流在190A,调节聚焦磁控电流为20A,使气体离化;将控制旋钮转到加热档进行加热90min。加热完成后,将控制旋钮转到刻蚀档,调节真空室内氩气压强到约2.0×10-1Pa,保持灯丝电流不变,调节聚焦磁场电流为8A。在样品台施加脉冲偏压500V,持续40min;然后在样品台叠加200V直流偏压,刻蚀40min;然后关闭脉冲偏压,保留200V直流偏压,持续40min。制备过渡层过程:将控制旋钮转到镀膜档,调节真空室内氩气压强到约1.0×10-1Pa,调节控制电子流磁场电流为28A,使镀膜设备中金属钛熔化并蒸发;刀具加上150V的直流偏压,使处于蒸发态的钛,在偏压的作用下沉积在刀具表面,形成纯钛层。将氮气通入真空室,先调节Ar/N2的流量比为2∶1,然后在8min内将Ar/N2的流量比调节到1∶4;控制真空室混合气体压强为2.5×10-1Pa,工件台偏压保持150V,镀膜时间为60min;在镀膜中,按照镀膜要求,每隔10分钟关闭氮气1次,进行纯钛膜制备,从而形成复合多层膜;然后降低磁场电流至16-20A,降低刀具偏压至40V,调节Ar/N2的流量比为4∶1,减少钛的蒸发,同时开启磁控溅射源匹配的电源,溅射电流4.5A,电压650V,采用磁控溅射方式制备致密度更高的氮化钛薄膜。镀膜完成后随炉自然冷却,至室温,取出。
实施例4
对已精磨成型的刀具进行喷砂,然后依次在无水乙醇、软化水中超声波清洗,烘干后放入镀膜设备的真空室中。将镀膜设备的真空室气压抽至5.0×10-3Pa后,将氮气、氩气通入真空室,进行洗气;所述氮气的流量为50sccm,所述氩气的流量为40sccm。关闭氮气,只通入氩气,流量为90sccm,然后开启灯丝并调节灯丝电流在150A之间,调节聚焦磁控电流为18A,使气体离化;将控制旋钮转到加热档进行加热70min。加热完成后,将控制旋钮转到刻蚀档,调节真空室内氩气压强到约2.0×10-1Pa,保持灯丝电流不变,调节聚焦磁场电流为7A。在样品台施加脉冲偏压500V,持续20min;然后在样品台叠加200V直流偏压,刻蚀20min;然后关闭脉冲偏压,保留200V直流偏压,持续20min。制备过渡层过程:将控制旋钮转到镀膜档,调节真空室内氩气压强到约1.0×10-1Pa,调节控制电子流磁场电流为28A,使镀膜设备中金属钛熔化并蒸发;刀具加上150V的直流偏压,使处于蒸发态的钛在偏压的作用下沉积在刀具表面,形成纯钛层。将氮气通入真空室,先调节Ar/N2的流量比为2∶1,然后在8min内将Ar/N2的流量比调节到1∶3;控制真空室混合气体压强为2×10-1Pa,工件台偏压保持120V,镀膜时间为30min;在镀膜中,按照镀膜要求,每隔5分钟关闭氮气1次,进行纯钛膜制备,从而形成复合多层膜;然后降低磁场电流至16-20A,降低刀具偏压至30V,调节Ar/N2的流量比为3∶1,减少钛的蒸发,同时开启磁控溅射源匹配的电源,溅射电流3A,电压450V,采用磁控溅射方式制备致密度更高的氮化钛薄膜。镀膜完成后随炉自然冷却,至室温,取出。

Claims (5)

1.一种具有氮化钛陶瓷膜层的刀具,其特征在于,所述氮化钛陶瓷膜层为多层复合陶瓷膜层,所述多层复合陶瓷膜层包括至少两层氮化钛层和至少两层纯钛层,所述氮化钛层至少由两种不同的镀膜方法形成,所述的镀膜方法包括磁控溅射源镀膜、蒸发源镀膜。
2.如权利要求1所述的刀具,其特征在于,远离刀具基底表面的最外层为磁控溅射源制备的氮化钛层。
3.如权利要求2所述的刀具,其特征在于,靠近刀具基底表面的最内层为蒸发源制备的纯钛层。
4.如权利要求3所述的刀具,其特征在于,所述的氮化钛层包括由蒸发镀膜方法制备的至少一层膜层,该膜层与至少一层纯钛层复合,位于最内层和最外层之间。
5.一种制造具有氮化钛陶瓷膜层的刀具的方法,其特征在于包括以下步骤:
(1)预处理过程:对已精磨成型的刀具进行喷砂,然后依次在无水乙醇、软化水中超声波清洗,烘干后放入镀膜设备的真空室中;
(2)洗气过程:将镀膜设备的真空室气压抽至5.0×10-3Pa后,将氮气、氩气通入真空室,进行洗气;所述氮气的流量为20~60sccm,所述氩气的流量为20~60sccm;
(3)加热过程:关闭氮气,只通入氩气,流量为60~120sccm,然后开启灯丝并调节灯丝电流在120~190A之间,调节聚焦磁控电流为16~20A,使气体离化;将控制旋钮转到加热档进行加热60~90min;
(4)刻蚀清洗过程:加热完成后,将控制旋钮转到刻蚀档,调节真空室内氩气压强到2.0×10-1Pa,保持灯丝电流不变,调节聚焦磁场电流为6~8A;在样品台施加脉冲偏压500V,持续10-40min;然后在样品台叠加200V直流偏压,刻蚀10-40min;然后关闭脉冲偏压,保留200V直流偏压,持续10-40min;
(5)制备过渡层过程:将控制旋钮转到镀膜档,调节真空室内氩气压强到1.0×10-1Pa,调节控制电子流磁场电流为28A,使镀膜设备中金属钛熔化并蒸发;刀具加上100-150V的直流偏压,使处于蒸发态的钛,在偏压的作用下沉积在刀具表面,形成10-100nm厚的纯钛层;
(6)表面氮化钛陶瓷膜层制备过程:将氮气通入真空室,先调节Ar/N2的流量比为2∶1,然后在8min内将Ar/N2的流量比调节到1∶2~1∶4;控制真空室混合气体压强为1.5×10-1Pa~2.5×10-1Pa,工件台偏压保持100-150V,镀膜时间为20~60min;在镀膜中,按照镀膜要求,每隔1-10分钟关闭氮气1次,进行纯钛膜制备,从而形成复合多层膜;然后降低磁场电流至16-20A,降低刀具偏压至15-40V,调节Ar/N2的流量比为2∶1~5∶1,抑制钛的蒸发,同时开启磁控溅射源匹配的电源,溅射电流2-4.5A,电压350-650V,采用磁控溅射方式制备致密度更高的氮化钛薄膜。
CN201310300501.7A 2013-07-12 2013-07-12 一种具有氮化钛陶瓷膜层的刀具及其制备方法 Expired - Fee Related CN104278235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310300501.7A CN104278235B (zh) 2013-07-12 2013-07-12 一种具有氮化钛陶瓷膜层的刀具及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310300501.7A CN104278235B (zh) 2013-07-12 2013-07-12 一种具有氮化钛陶瓷膜层的刀具及其制备方法

Publications (2)

Publication Number Publication Date
CN104278235A CN104278235A (zh) 2015-01-14
CN104278235B true CN104278235B (zh) 2017-04-26

Family

ID=52253572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310300501.7A Expired - Fee Related CN104278235B (zh) 2013-07-12 2013-07-12 一种具有氮化钛陶瓷膜层的刀具及其制备方法

Country Status (1)

Country Link
CN (1) CN104278235B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624608B (zh) * 2015-12-29 2018-05-04 上海交通大学 一种高导热石墨膜表面金属涂层的制备方法
CN110699651A (zh) * 2019-09-27 2020-01-17 宁波丽成真空科技有限公司 一种以磁控溅射金属玻璃及其氮化物复合镀层用于非不粘粘加工刀具的应用
CN111893439A (zh) * 2020-08-11 2020-11-06 苏州众智泽智能科技有限公司 具有氮化钛硬质涂层的个人饰品的制备方法
CN112795885B (zh) * 2021-04-09 2021-06-22 中南大学湘雅医院 一种高频电刀防粘涂层及其制备方法
CN115627441A (zh) * 2022-09-30 2023-01-20 珠海大励厨卫科技有限公司 一种工业pvd镀膜产品及其生产工艺

Also Published As

Publication number Publication date
CN104278235A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
CN104278235B (zh) 一种具有氮化钛陶瓷膜层的刀具及其制备方法
Alami et al. High power pulsed magnetron sputtering: Fundamentals and applications
CN103805996B (zh) 一种金属材料表面先镀膜再渗氮的复合处理方法
CN110643939B (zh) 铜基抗菌pvd涂层
CN108914059A (zh) 表面带有镀层的贵金属制品及其制备方法
CN108570641A (zh) 表面带有镀层的贵金属制品及其制备方法
CN108866480A (zh) 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用
CN108893712A (zh) 表面带有镀层的贵金属制品及其制备方法
CN106567036B (zh) 一种手术器械刃口表面的处理方法
TW201326426A (zh) 鍍膜件及其製備方法
JPH10330963A (ja) 被覆を有する物品
CN108930021B (zh) 一种纳米多层AlTiN/AlTiVCuN涂层及其制备方法和应用
CN108866481B (zh) 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用
CN102744926B (zh) 一种基体表面颜色可控的彩色防腐装饰膜及其制备方法
CA2844882C (en) Coated article with dark color
CN110643953B (zh) 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法
CN107675136A (zh) 一种工件表面pvd镀膜的方法
CN208440686U (zh) 表面带有镀层的贵金属制品
CN108265271A (zh) 一种物理气相沉积法在产品上制作蓝色膜的方法
US6586114B1 (en) Coated article having a dark copper color
CN110565051B (zh) 具有颜色层的金刚石涂层刀具及其制备方法、加工设备
CN108930022B (zh) 一种纳米多层AlTiN/MoVCuN涂层及其制备方法和应用
US8007928B2 (en) Coated article with black color
US11821075B2 (en) Anti-microbial coating physical vapor deposition such as cathodic arc evaporation
CN110670019B (zh) 一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170426

Termination date: 20190712