CN104252797B - 基于虚拟管制员的空域仿真方法及其装置 - Google Patents

基于虚拟管制员的空域仿真方法及其装置 Download PDF

Info

Publication number
CN104252797B
CN104252797B CN201410487083.1A CN201410487083A CN104252797B CN 104252797 B CN104252797 B CN 104252797B CN 201410487083 A CN201410487083 A CN 201410487083A CN 104252797 B CN104252797 B CN 104252797B
Authority
CN
China
Prior art keywords
aircraft
track
performance data
rule
flight plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410487083.1A
Other languages
English (en)
Other versions
CN104252797A (zh
Inventor
朱晓辉
张学军
韩冬
吴文浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201410487083.1A priority Critical patent/CN104252797B/zh
Publication of CN104252797A publication Critical patent/CN104252797A/zh
Application granted granted Critical
Publication of CN104252797B publication Critical patent/CN104252797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明实施例提供一种基于虚拟管制员的空域仿真方法及其装置,该方法包括:获取预设的飞行计划和航迹冲突规则及风条件;若判断获知飞行计划和航迹冲突规则合法,则获取航空器性能数据;根据飞行计划、风条件及航空器性能数据获得航空器的第一轨迹信息,并检测是否接收到管制指令;若检测到管制指令,则根据航空器性能数据、航迹冲突规则以及管制指令,获得航迹冲突统计信息;若未检测到管制指令,则根据航空器性能数据、航迹冲突规则以及第一轨迹信息,获得航迹冲突统计信息。本发明实施例提供的基于虚拟管制员的空域仿真方法及其装置能够提高仿真的实时性。

Description

基于虚拟管制员的空域仿真方法及其装置
技术领域
本发明实施例涉及航空管理技术,尤其涉及一种基于虚拟管制员的空域仿真方法及其装置。
背景技术
随着我国航空运输业的快速发展,我国每年的航班数量直线上升,由此导致的空域资源与飞行需求之间的矛盾日渐突出。
在实际运行中,空域管理者综合分析航班时刻表、临时飞行计划、空域结构、空管基础设施运行状态和天气条件等因素,结合当前空中交通态势和未来发展,形成空域运行管理方案,据此动态空域调整和飞行流量调配。在空域运行管理方案付诸实施前,需要对其运行效果进行仿真评估,以验证该方案的有效性,并对空域运行管理方案进行优化。现有技术中,使用基于虚拟管制员的推演模式进行仿真运算时,为达到贴近实际的仿真效果,通过对管制员在不同环境下的思维、判断和发出指令的抽象模拟,由虚拟管制员的自主判断来探测和化解飞行冲突,并通过建立管制运行规则库来逼近管制员的探测和化解飞行冲突的行为。
然而,在实际的仿真运算过程中,飞行流量的数据很大,由虚拟管制员的自主判断来探测和化解飞行冲突的方法结构复杂、计算需求量大,导致仿真的实时性较差。
发明内容
本发明实施例提供一种基于虚拟管制员的空域仿真方法及其装置,用以提高仿真的实时性。
一方面,本发明实施例提供一种基于虚拟管制员的空域仿真方法,包括:
获取预设的飞行计划和航迹冲突规则及风条件;
若判断获知所述飞行计划和所述航迹冲突规则合法,则获取航空器性能数据;
根据所述飞行计划、所述风条件及所述航空器性能数据获得所述航空器的第一轨迹信息,并检测是否接收到管制指令;其中,所述管制指令包括改变飞行速度、改变飞行高度或改变航向;
若接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述管制指令,获得航迹冲突统计信息;
若未接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述第一轨迹信息,获得航迹冲突统计信息。
如上所述的空域仿真方法,其中,所述飞行计划包括航空器类型及航线关键点的相关信息;其中,所述航线关键点的相关信息包括关键点的位置、航空器在该关键点的速度、加速度及航向角。
如上所述的空域仿真方法,其中,所述判断获知所述飞行计划和所述航迹冲突规则合法包括:
若所述飞行计划符合逻辑规则和业务规则,则判断获知飞行计划合法;
若所述航迹冲突规则中至少两个航空器之间的距离不小于预设的最小距离,则判断获知所述航迹冲突规则合法。
如上所述的空域仿真方法,其中,所述航迹冲突规则包括至少两个航空器之间的水平纵向间隔、水平横向间隔及垂直方向间隔的距离。
如上所述的空域仿真方法,其中,所述根据所述航空器性能数据、所述航迹冲突规则以及管制指令,获得航迹冲突统计信息,包括:
根据所述管制指令、所述风条件及所述航空器性能数据计算获得第二轨迹信息;
根据所述航空器性能数据、所述航迹冲突规则以及所述第二轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息。
另一方面,本发明实施例提供一种基于虚拟管制员的空域仿真装置,包括:
第一获取模块,用于获取预设的飞行计划和航迹冲突规则及风条件;
判断模块,用于若判断获知所述飞行计划和所述航迹冲突规则合法,则获取航空器性能数据;
检测模块,用于根据所述飞行计划、所述风条件及所述航空器性能数据获得所述航空器的第一轨迹信息,并检测是否接收到管制指令;其中,所述管制指令包括改变飞行速度、改变飞行高度或改变航向;
第二获取模块,用于若接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述管制指令,获得航迹冲突统计信息;
第三获取模块,用于若未接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述第一轨迹信息,获得航迹冲突统计信息。
如上所述的空域仿真装置,其中,所述飞行计划包括航空器类型及航线关键点的相关信息;其中,所述航线关键点的相关信息包括关键点的位置、航空器在该关键点的速度、加速度及航向角。
如上所述的空域仿真装置,其中,所述判断模块包括:
判断飞行计划合法单元,用于若所述飞行计划符合逻辑规则和业务规则,则判断获知飞行计划合法;
判断航迹冲突规则合法单元,用于若所述航迹冲突规则中至少两个航空器之间的距离不小于预设的最小距离,则判断获知所述航迹冲突规则合法。
如上所述的空域仿真装置,其中,所述航迹冲突规则包括至少两个航空器之间的水平纵向间隔、水平横向间隔及垂直方向间隔的距离。
如上所述的空域仿真装置,其中,所述第二获取模块包括:
第一获取单元,用于根据所述管制指令、所述风条件及所述航空器性能数据计算获得第二轨迹信息;
第二获取单元,用于根据所述航空器性能数据、所述航迹冲突规则以及所述第二轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息。
本发明提供的基于虚拟管制员的空域仿真方法及其装置,通过获取预设的飞行计划和航迹冲突规则及风条件,若判断获知飞行计划和航迹冲突规则合法,则获取航空器性能数据,根据飞行计划、风条件及航空器性能数据获得航空器的第一轨迹信息,并检测是否接收到管制指令,若检测到管制指令,则根据航空器性能数据、航迹冲突规则以及管制指令,获得航迹冲突统计信息;若未检测到管制指令,则根据航空器性能数据、航迹冲突规则以及第一轨迹信息,获得航迹冲突统计信息。通过航空器性能数据、航迹冲突规则,以及管制指令或第一轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息,避免了现有技术中通过对管制员在不同环境下的思维、判断和发出指令进行抽象的模拟,由虚拟管制员的自主判断来探测和化解飞行冲突的行为,减小了计算量,可以提高仿真的实时性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明基于虚拟管制员的空域仿真方法实施例一的流程示意图;
图2为本发明实施例提供的模型E冲突区域示意图;
图3为本发明实施例提供的模型V冲突区域示意图;
图4为本发明基于虚拟管制员的空域仿真装置实施例一的结构示意图;
图5为本发明基于虚拟管制员的空域仿真装置实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在对本发明的具体实施方式进行说明之前,先就航空领域的一些概念进行解释:
航线:飞机飞行的路线称为空中交通线,简称航线。飞机的航线不仅确定了飞机飞行具体方向、起讫点和经停点,而且还根据空中交通管制的需要,规定了航线的宽度和飞行高度,以维护空中交通秩序,保证飞行安全。
空域:空域就是飞行所占用的空间。通常以明显地标或导航台为标志。空域同领土、领海一样,是国家的主权范围,也是重要的军用及民航资源。为了便于地面管制员对于飞行流量的管理,空域通常被划分为多个扇区,每个扇区可容纳的飞行流量与扇区的大小、天气情况、管制员数量以及导航设备有关。
进近:进近是指飞机下降时对准跑道飞行的过程,在进近阶段,需要使飞机调整高度,对准跑道,从而避开地面障碍物。
图1为本发明基于虚拟管制员的空域仿真方法实施例一的流程示意图,如图1所示,该方法包括:
步骤101、获取预设的飞行计划和航迹冲突规则及风条件。
具体地,飞行计划包括航空器类型及航线关键点的相关信息,航线关键点的相关信息例如可以是每个关键点的位置、航空器在该关键点的速度、加速度及航向角等信息;需要说明的是,对于某个关键点,飞行计划中的航空器在该关键点的相关信息仅是根据经验进行设定的,在具体的实现过程中,还需要结合风条件进行计算。航迹冲突规则包括至少两个航空器之间的水平纵向间隔、水平横向间隔及垂直方向间隔的距离等信息。风条件包括风环境和大气环境,例如可以是风速、风向、大气湿度及大气温度等。
步骤102、若判断获知飞行计划和航迹冲突规则合法,则获取航空器性能数据。
在本步骤中,航空器性能数据包括发动机的类型、航空器的最大加速度等,具体地,可以从本地数据库获取航空器性能数据,也可以通过航空器自身进行实时发送的方式进行获取。
若获知飞行计划或航迹冲突规则不合法,则仿真结束,同时提示工作人员接收到错误的飞行计划或航迹冲突规则。
步骤103、根据飞行计划、风条件及航空器性能数据获得航空器的第一轨迹信息,并检测是否接收到管制指令。
其中,航空器的第一轨迹信息包括航空器的位置信息和航空器在相应位置的姿态信息。航空器的位置信息即为航空器到达某个关键点时,该关键点的位置信息。另外,根据飞行计划中的航空器类型、航线关键点的位置,航空器性能数据并结合风条件,可以获得航空器在任意关键点时精确的姿态信息,包括航空器在每一个关键点的速度、加速度及航向角等。工作人员可以以飞行计划中该关键点的速度、加速度及航向角作为参考,将计算获得的航空器在每一个关键点的速度、加速度及航向角与飞行计划中该关键点的速度、加速度及航向角相比较,以验证仿真结果的正确性。本领域技术人员可以理解,整个路径飞行过程可以看成是航空器从当前位置飞到下一个关键点,直到最后一个关键点。下面以计算航空器的速度为例,详细进行介绍:
航空器的速度主要通过航空器所在的飞行轨迹段和飞行计划中提供的速度决定,下面按照航空器所在的飞行轨迹段来讨论航空器的速度。
1)弧段
当两个关键点之间的航线被规定为弧段时,航空器按照开始进入弧段时的速度匀速飞行,直到飞出该弧段。
2)直线段
当两个关键点之间的航线被规定为直线段,且飞行器当前速度和飞行计划下一个关键点速度不同时,根据航空器在两个关键点的速度和两关键点之间的距离计算出加速度,如果该加速度大于最大加速度,就以最大加速度飞行,直到下一个关键点的位置,此时的实际速度就是下一段轨迹起点的速度。如果该加速度小于最大加速度,则以计算出的加速度飞行到下一个关键点。如果当前速度和下一个关键点速度相同,则速度保持不变。
其中,飞机的最大加速度可以通过航空器类型和航空器的位置信息从数据库中获取,若获取失败,或者数据库中没有该航空器的相关信息,则通过实际情况,给定一个经验值。
在计算航空器轨迹信息的过程中,空域运行仿真计算引擎同时检测是否接收到管制指令,其中,管制指令例如可以是改变飞行速度、改变飞行高度或改变航向等。
若接收到管制指令,则执行步骤104,否则,执行步骤105。
步骤104、根据航空器性能数据、航迹冲突规则以及管制指令,获得航迹冲突统计信息。
具体地,空域运行仿真计算引擎若接收到管制指令,即航空器根据管制指令改变了航向、飞行的速度或高度等,此时,空域运行仿真计算引擎根据航空器性能数据、航迹冲突规则以及管制指令,采用冲突计算算法判断此航空器是否与其所在空域内的其它航空器发生冲突,由此获得航迹冲突统计信息。
步骤105、根据航空器性能数据、航迹冲突规则以及第一轨迹信息,获得航迹冲突统计信息。
具体地,空域运行仿真计算引擎若没有接收到管制指令,则航空器仍然按照飞行计划中的航向、飞行的速度或高度飞行,此时根据航空器性能数据、航迹冲突规则以及第一轨迹信息,采用冲突计算算法判断此航空器是否与其所在空域内的其它航空器发生冲突,由此获得航迹冲突统计信息。
本发明实施例提供的基于虚拟管制员的空域仿真方法,通过获取预设的飞行计划和航迹冲突规则及风条件,若判断获知飞行计划和航迹冲突规则合法,则获取航空器性能数据,根据飞行计划、风条件及航空器性能数据获得航空器的第一轨迹信息,并检测是否接收到管制指令,若检测到管制指令,则根据航空器性能数据、航迹冲突规则以及管制指令,获得航迹冲突统计信息;若未检测到管制指令,则根据航空器性能数据、航迹冲突规则以及第一轨迹信息,获得航迹冲突统计信息。通过航空器性能数据、航迹冲突规则,以及管制指令或第一轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息,避免了现有技术中通过对管制员在不同环境下的思维、判断和发出指令进行抽象的模拟,由虚拟管制员的自主判断来探测和化解飞行冲突的行为,减小了计算量,可以提高仿真的实时性。
可选地,如上所述的方法实施例,其中,若飞行计划符合逻辑规则和业务规则,则判断获知飞行计划合法;若所述航迹冲突规则中至少两个航空器之间的距离不小于预设的最小距离,则判断获知所述航迹冲突规则合法。
具体地,逻辑规则指航空器的物理特性,业务规则指规定的航线等。例如:预设的飞行计划规则中要求航空器类型为非空字段,而在运行中接收到的飞行计划中的航空器类型为空,则不符合逻辑规则;若接收到的飞行计划中航空器在航线关键点的速度为负数,则不符合业务规则。
航迹冲突规则中规定了两架或多架航空器之间的水平纵向间隔、水平横向间隔及垂直方向间隔可以允许的最小距离,根据国际民航组织的规定,当两架航空器在同一个高度飞行的时候,如果水平纵向间隔或水平横向间隔小于5海里则认为冲突;当两架航空器水平位置相同的时候,在29000英尺以下时两者之间的垂直距离小于1000英尺则认为发生冲突,在29000英尺以上时两者之间的垂直距离小于2000英尺则认为发生冲突。若接收到的航迹冲突规则中至少两个航空器之间的距离不小于预设的最小距离,则获知接收到的航迹冲突规则合法。
可选地,如上所述的方法实施例,其中,若接收到管制指令,则根据管制指令、风条件及航空器性能数据计算获得第二轨迹信息;根据航空器性能数据、航迹冲突规则以及第二轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息。
具体地,第二轨迹信息包括航空器的位置信息和航空器在相应位置的姿态信息。根据航空器性能数据、航迹冲突规则以及获取到的第二轨迹信息中的航空器的位置信息和航空器在相应位置的姿态信息,采用冲突计算算法判断此航空器是否与其所在扇区内的其它航空器发生冲突。下面对冲突计算算法进行详细介绍。
冲突就是不能让两架或多架航空器互相进入允许的最小距离。因为航空器一般不会正好在同一个水平面上或者垂直投影在同一个点,所以讨论冲突的时候是以此为根据建立一个冲突模型,即在航空器周围设定一个三维区域,当另外一架航空器进入这个区域,即认为冲突发生。
对冲突模型,本实施例中以模型E冲突区域和模型V冲突区域为例进行说明,但是本发明并不限于此。
具体地,图2为本发明实施例提供的模型E冲突区域示意图,E模型既考虑了高度维度,又考虑了水平维度。如图2所示,模型E冲突域方程为:
( x - x 0 ) 2 a 2 + ( y - y 0 ) 2 a 2 + ( z - z 0 ) 2 c 2 ≤ 1
其中,(x0,y0,z0)是航空器AC1所在位置的坐标,a为水平冲突距离,例如可以是5海里,c是垂直冲突距离,例如可以是1000英尺。冲突域方程记为其中,如果点满足冲突域方程则认为点在航空器AC1的冲突域内。图中航空器AC2满足冲突域方程,即航空器AC2也在冲突域内,而航空器AC3不满足冲突域方程,因此在冲突域外。
图3为本发明实施例提供的模型V冲突区域示意图,如图3所示,模型V冲突域方程为:
( x - x 0 ) 2 + ( y - y 0 ) 2 ≤ a 2 - c ≤ z - z 0 ≤ c
其中,(x0,y0,z0)是航空器AC1所在位置的坐标,a为水平冲突距离,c是垂直冲突距离。冲突域方程记为其中,如果点满足冲突域方程则认为点在航空器AC1的冲突域内。图中航空器AC2满足冲突域方程,即航空器AC2也在冲突域内,而航空器AC3不满足冲突域方程,因此在冲突域外。
需要说明的是,在巡航区由于飞机基本上平飞,采用V模型更合理,而在进近和塔台管制区域,飞机频繁起降,则可以考虑采用E模型。
另外,空域运行仿真计算引擎还可以获取空管基础数据,其中,空管基础数据包括机场、跑道以及航线等相关信息,此空管基础数据在航空器起飞离场或下降时,结合航空器性能数据、第一轨迹信息或第二轨迹信息以及航迹冲突规则,判断航空器是否其它航空器发生冲突。
进一步地,空域运行仿真计算引擎还可以获取某一扇区内预设的航空器的最大容量,从而可以分析该扇区内空域的使用情况,进一步判断该扇区内航空器的容量是否超过预设的最大容量,以获知是否发生容量冲突,便于工作人员及时进行调度。
图4为本发明基于虚拟管制员的空域仿真装置实施例一的结构示意图,如图4所示,本发明实施例提供的基于虚拟管制员的空域仿真装置包括第一获取模块401,判断模块402、检测模块403、第二获取模块404和第三获取模块405。
其中,第一获取模块401用于获取预设的飞行计划和航迹冲突规则及风条件;判断模块402用于若判断获知所述飞行计划和所述航迹冲突规则合法,则获取航空器性能数据;检测模块403用于根据所述飞行计划、所述风条件及所述航空器性能数据获得所述航空器的第一轨迹信息,并检测是否接收到管制指令;其中,所述管制指令包括改变飞行速度、改变飞行高度或改变航向;第二获取模块404用于若接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述管制指令,获得航迹冲突统计信息;第三获取模块405用于若未接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述第一轨迹信息,获得航迹冲突统计信息。
本发明实施例提供的基于虚拟管制员的空域仿真装置,通过获取预设的飞行计划和航迹冲突规则及风条件,若判断获知飞行计划和航迹冲突规则合法,则获取航空器性能数据,根据飞行计划、风条件及航空器性能数据获得航空器的第一轨迹信息,并检测是否接收到管制指令,若检测到管制指令,则根据航空器性能数据、航迹冲突规则以及管制指令,获得航迹冲突统计信息;若未检测到管制指令,则根据航空器性能数据、航迹冲突规则以及第一轨迹信息,获得航迹冲突统计信息,通过航空器性能数据、航迹冲突规则,以及管制指令或第一轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息,避免了现有技术中通过对管制员在不同环境下的思维、判断和发出指令进行抽象的模拟,由虚拟管制员的自主判断来探测和化解飞行冲突的行为,减小了计算量,可以提高仿真的实时性。
如上所述的装置实施例,其中,所述飞行计划包括航空器类型及航线关键点的相关信息;其中,所述航线关键点的相关信息包括关键点的位置、航空器在该关键点的速度、加速度及航向角。
图5为本发明基于虚拟管制员的空域仿真装置实施例二的结构示意图,如图5所示,本实施例在图4所示实施例的基础上,所述判断模块402包括:
判断飞行计划合法单元4021用于若所述飞行计划符合逻辑规则和业务规则,则判断获知飞行计划合法;
判断航迹冲突规则合法单元4022用于若所述航迹冲突规则中至少两个航空器之间的距离不小于预设的最小距离,则判断获知所述航迹冲突规则合法。
可选地,所述航迹冲突规则包括至少两个航空器之间的水平纵向间隔、水平横向间隔及垂直方向间隔的距离。
可选地,所述第二获取模块404包括:
第一获取单元4041用于根据所述管制指令、所述风条件及所述航空器性能数据计算获得第二轨迹信息;
第二获取单元4042用于根据所述航空器性能数据、所述航迹冲突规则以及所述第二轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息。
本发明实施例提供的基于虚拟管制员的空域仿真装置,通过获取预设的飞行计划和航迹冲突规则及风条件,若判断获知飞行计划和航迹冲突规则合法,则获取航空器性能数据,根据飞行计划、风条件及航空器性能数据获得航空器的第一轨迹信息,并检测是否接收到管制指令,若检测到管制指令,则根据航空器性能数据、航迹冲突规则以及管制指令,获得航迹冲突统计信息;若未检测到管制指令,则根据航空器性能数据、航迹冲突规则以及第一轨迹信息,获得航迹冲突统计信息,通过航空器性能数据、航迹冲突规则,以及管制指令或第一轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息,避免了现有技术中通过对管制员在不同环境下的思维、判断和发出指令进行抽象的模拟,由虚拟管制员的自主判断来探测和化解飞行冲突的行为,减小了计算量,可以提高仿真的实时性。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种基于虚拟管制员的空域仿真方法,其特征在于,包括:
获取预设的飞行计划和航迹冲突规则及风条件;
若判断获知所述飞行计划和所述航迹冲突规则合法,则获取航空器性能数据;
根据所述飞行计划、所述风条件及所述航空器性能数据获得所述航空器的第一轨迹信息,并检测是否接收到管制指令;其中,所述管制指令包括改变飞行速度、改变飞行高度或改变航向;
若接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述管制指令,获得航迹冲突统计信息;
若未接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述第一轨迹信息,获得航迹冲突统计信息。
2.根据权利要求1所述的方法,其特征在于,所述飞行计划包括航空器类型及航线关键点的相关信息;其中,所述航线关键点的相关信息包括关键点的位置、航空器在该关键点的速度、加速度及航向角。
3.根据权利要求1或2所述的方法,其特征在于,所述判断获知所述飞行计划和所述航迹冲突规则合法包括:
若所述飞行计划符合逻辑规则和业务规则,则判断获知飞行计划合法;
若所述航迹冲突规则中至少两个航空器之间的距离不小于预设的最小距离,则判断获知所述航迹冲突规则合法。
4.根据权利要求3所述的方法,其特征在于,所述航迹冲突规则包括至少两个航空器之间的水平纵向间隔、水平横向间隔及垂直方向间隔的距离。
5.根据权利要求1所述的方法,其特征在于,所述根据所述航空器性能数据、所述航迹冲突规则以及管制指令,获得航迹冲突统计信息,包括:
根据所述管制指令、所述风条件及所述航空器性能数据计算获得第二轨迹信息;
根据所述航空器性能数据、所述航迹冲突规则以及所述第二轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息。
6.一种基于虚拟管制员的空域仿真装置,其特征在于,包括:
第一获取模块,用于获取预设的飞行计划和航迹冲突规则及风条件;
判断模块,用于若判断获知所述飞行计划和所述航迹冲突规则合法,则获取航空器性能数据;
检测模块,用于根据所述飞行计划、所述风条件及所述航空器性能数据获得所述航空器的第一轨迹信息,并检测是否接收到管制指令;其中,所述管制指令包括改变飞行速度、改变飞行高度或改变航向;
第二获取模块,用于若接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述管制指令,获得航迹冲突统计信息;
第三获取模块,用于若未接收到所述管制指令,则根据所述航空器性能数据、所述航迹冲突规则以及所述第一轨迹信息,获得航迹冲突统计信息。
7.根据权利要求6所述的装置,其特征在于,所述飞行计划包括航空器类型及航线关键点的相关信息;其中,所述航线关键点的相关信息包括关键点的位置、航空器在该关键点的速度、加速度及航向角。
8.根据权利要求6或7所述的装置,其特征在于,所述判断模块包括:
判断飞行计划合法单元,用于若所述飞行计划符合逻辑规则和业务规则,则判断获知飞行计划合法;
判断航迹冲突规则合法单元,用于若所述航迹冲突规则中至少两个航空器之间的距离不小于预设的最小距离,则判断获知所述航迹冲突规则合法。
9.根据权利要求8所述的装置,其特征在于,所述航迹冲突规则包括至少两个航空器之间的水平纵向间隔、水平横向间隔及垂直方向间隔的距离。
10.根据权利要求6所述的装置,其特征在于,所述第二获取模块包括:
第一获取单元,用于根据所述管制指令、所述风条件及所述航空器性能数据计算获得第二轨迹信息;
第二获取单元,用于根据所述航空器性能数据、所述航迹冲突规则以及所述第二轨迹信息,判断航空器是否会发生冲突,获得航迹冲突统计信息。
CN201410487083.1A 2014-09-22 2014-09-22 基于虚拟管制员的空域仿真方法及其装置 Active CN104252797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410487083.1A CN104252797B (zh) 2014-09-22 2014-09-22 基于虚拟管制员的空域仿真方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410487083.1A CN104252797B (zh) 2014-09-22 2014-09-22 基于虚拟管制员的空域仿真方法及其装置

Publications (2)

Publication Number Publication Date
CN104252797A CN104252797A (zh) 2014-12-31
CN104252797B true CN104252797B (zh) 2016-08-17

Family

ID=52187650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410487083.1A Active CN104252797B (zh) 2014-09-22 2014-09-22 基于虚拟管制员的空域仿真方法及其装置

Country Status (1)

Country Link
CN (1) CN104252797B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261241B (zh) * 2015-09-30 2017-11-07 中国民用航空总局第二研究所 基于霍普菲尔德神经网络的空中交通管制模拟仿真异常检测方法和装置
CN105303898B (zh) * 2015-09-30 2017-11-17 中国民用航空总局第二研究所 一种基于主成分分析的空中交通管制模拟仿真异常检测方法和装置
CN105118333B (zh) * 2015-09-30 2017-12-15 中国民用航空总局第二研究所 一种基于多重回归模型的空中交通管制模拟仿真异常检测方法和装置
CN106019987A (zh) * 2016-07-19 2016-10-12 四川九洲空管科技有限责任公司 一种三维交互式模拟航迹生成方法及系统
CN106875948B (zh) * 2017-02-22 2019-10-29 中国电子科技集团公司第二十八研究所 一种基于管制语音的冲突告警方法
CN108961843A (zh) * 2018-08-22 2018-12-07 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种基于航迹运行技术的仿真系统和方法
CN111613096B (zh) * 2020-06-04 2021-07-30 成都民航空管科技发展有限公司 一种基于atc系统的cfl指令预先告警方法和系统
CN113962015B (zh) * 2021-08-16 2024-06-21 四川九洲空管科技有限责任公司 一种采用规则控制的空域使用过程仿真模拟系统及方法
CN114038242B (zh) * 2021-11-18 2023-12-12 中国航空无线电电子研究所 一种基于多智能体的大规模航空器运动仿真方法及装置
CN113870624B (zh) * 2021-12-02 2022-04-15 中国电子科技集团公司第二十八研究所 一种低空空域航道划设和管理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465067B (zh) * 2009-01-15 2011-03-30 北京航空航天大学 机场场面航班调度辅助决策方法和系统
CN101694752B (zh) * 2009-07-06 2012-05-02 民航数据通信有限责任公司 空域运行仿真中冲突的自动检测和调解系统及方法
WO2012103228A1 (en) * 2011-01-25 2012-08-02 Nextgen Aerosciences, Llc Method and apparatus for dynamic aircraft trajectory management
US20120221305A1 (en) * 2011-02-25 2012-08-30 Honeywell International Inc. Systems and methods for obtaining selected portions of a movement path simulation over a network
US9934692B2 (en) * 2012-02-22 2018-04-03 Honeywell International Inc. Display system and method for generating a display
CN103136033B (zh) * 2013-03-05 2015-10-14 成都市未来合力科技有限责任公司 基于ads-b测试信标设备的3d航迹模拟系统及方法

Also Published As

Publication number Publication date
CN104252797A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
CN104252797B (zh) 基于虚拟管制员的空域仿真方法及其装置
EP3118840A1 (en) System and method for optimizing an aircraft trajectory
CN106385442B (zh) 将新导航服务整合到开放式构架的航空电子机载系统中的方法
CN106297417A (zh) 一种无人机飞行服务与监管系统及方法
US10388171B2 (en) Cockpit display systems and methods for generating cockpit displays including direct approach energy management symbology
CN105894862A (zh) 一种空中交通管制智能化指挥系统
CA2936382C (en) A computer-implemented method and system for setting up an air traffic simulator
CN108961843A (zh) 一种基于航迹运行技术的仿真系统和方法
EP3407332B1 (en) System and method for determining uncertainty in a predicted flight path for an aerial vehicle
CN107067823A (zh) 一种近距平行跑道容量的计算方法和装置
CN106846920A (zh) 一种基于自然语义提取的空管辅助决策方法
US20170011636A1 (en) Method for integrating a constrained route(s) optimization application into an avionics onboard system with open architecture of client server type
CN111508280A (zh) 一种基于4d航迹的移动时隙航空管制方法
US10497269B2 (en) Integrated management for airport terminal airspace
Su et al. A comprehensive flight plan risk assessment and optimization method considering air and ground risk of UAM
KR20230078097A (ko) 도심항공교통 실증 관리를 위한 디지털 트윈 기술에 기반한 3d 가시화 방법
US11551562B2 (en) Efficient flight planning for regions with high elevation terrain
EP2704126A2 (en) Methods for determining suitable waypoint locations
JP2020184316A (ja) 都市航空ビークルの航法性能
Menon et al. A modeling environment for assessing aviation safety
Cao et al. A rescheduling method for conflict-free continuous descent approach
CN113627798A (zh) 一种用于高空航路飞行的管制效能量化测评方法
Carmona et al. Fuel savings through missed approach maneuvers based on aircraft reinjection
Belle et al. A methodology for airport arrival flow analysis using track data—A case study for MDW arrivals
US20230026962A1 (en) Method for validating a terrain database

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant