CN104237111B - 一种炼油厂酸性水腐蚀的实验方法 - Google Patents

一种炼油厂酸性水腐蚀的实验方法 Download PDF

Info

Publication number
CN104237111B
CN104237111B CN201310244427.1A CN201310244427A CN104237111B CN 104237111 B CN104237111 B CN 104237111B CN 201310244427 A CN201310244427 A CN 201310244427A CN 104237111 B CN104237111 B CN 104237111B
Authority
CN
China
Prior art keywords
pipeline
valve
reactor
tank
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310244427.1A
Other languages
English (en)
Other versions
CN104237111A (zh
Inventor
于凤昌
苗普
段永锋
崔中强
李朝法
孙炳玺
张宏飞
徐静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Engineering Group Co Ltd
Sinopec Luoyang Guangzhou Engineering Co Ltd
Original Assignee
Sinopec Luoyang Petrochemical Engineering Corp
Sinopec Engineering Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Luoyang Petrochemical Engineering Corp, Sinopec Engineering Group Co Ltd filed Critical Sinopec Luoyang Petrochemical Engineering Corp
Priority to CN201310244427.1A priority Critical patent/CN104237111B/zh
Publication of CN104237111A publication Critical patent/CN104237111A/zh
Application granted granted Critical
Publication of CN104237111B publication Critical patent/CN104237111B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开了一种炼油厂酸性水腐蚀的实验装置与实验方法,以解决现有对含有硫氢化铵的酸性水腐蚀的实验所存在的不能进行定量分析、与现场腐蚀工况不符等问题。本发明实验装置设有硫化氢气瓶(1)、氮气瓶(2)、氨水罐(3)、反应釜(4)、测试罐(5)、碱洗装置(6),还设有管线、阀门、气体流量计(901)、液体流量计(902)、循环泵(12)等。反应釜(4)设有磁力搅拌器(10)。测试罐(5)内设有喷头(501),喷头(501)的下方设有试样(502)。本发明公开了采用上述的实验装置进行炼油厂酸性水腐蚀实验的实验方法。本发明主要用于对含有硫氢化铵的酸性水的腐蚀性进行实验。

Description

一种炼油厂酸性水腐蚀的实验方法
技术领域
本发明涉及一种炼油厂酸性水腐蚀的实验装置与实验方法;更具体地说,是涉及对含有硫氢化铵的炼油厂酸性水的腐蚀性进行实验的实验装置与实验方法。
背景技术
在石油加工行业中,炼油厂的酸性水是指常减压、催化裂化、焦化、加氢裂化等加工装置中塔顶油水分离器、富气水洗、液态烃水洗、液态烃储罐脱水以及叠合汽油水洗等单元的排水。这部分酸性水的排水量虽较小(一般占全厂污水的10%~20%左右,本发明提到的百分数均为重量百分数),但酸性水中的硫化物和氨氮浓度较高,一般约占全厂污水中硫化物、氨氮总量的90%以上。其中主要的腐蚀介质为硫氢化铵,其生成源于以下反应:氨(NH3)+硫化氢(H2S)→硫氢化铵(NH4HS)。
含有硫氢化铵的炼油厂酸性水(简称为酸性水)不仅带来了严重的环保压力,同时伴随而来的还有一系列的腐蚀问题,严重地影响了装置的长周期、安全、稳定运行。例如在加氢裂化装置中,反应流出物空冷器(REAC)及与其相连的管道的腐蚀失效是一个突出的问题,腐蚀机理研究一直是该领域关注的焦点。现有的研究表明,上述的腐蚀受一系列综合因素的影响,其中酸性水的流速和硫氢化铵浓度是两大关键因素。但遗憾的是,迄今的实验只对酸性水的腐蚀现象进行了定性分析,没有系统地进行过酸性水流速、温度、硫氢化铵浓度等因素与腐蚀性的定量分析(流速研究也只是以旋转挂片实验为主,与现场实际流动工况不符),尚无法提供其与酸性水腐蚀性的定量关系,无法实现酸性水腐蚀破坏的预测和工艺装置的在役安全评估。同时,实验室模拟实验在开口容器内制备硫氢化铵溶液,存在着制备困难、硫氢化铵易分解等问题。
发明内容
本发明的目的是提供一种炼油厂酸性水腐蚀的实验装置与实验方法,以解决现有对含有硫氢化铵的酸性水腐蚀的实验所存在的不能进行定量分析、与现场腐蚀工况不符等问题。
为解决上述问题,本发明采用的技术方案是:一种炼油厂酸性水腐蚀的实验装置,其特征在于:它设有硫化氢气瓶、氮气瓶、氨水罐、反应釜、测试罐、碱洗装置、循环泵,硫化氢气瓶设有第一管线,第一管线的出口与第五管线的入口相连,第一管线上设有第一阀门、气体流量计,氮气瓶设有第二管线,第 二管线的出口与第五管线的入口之间设有第三管线,第三管线上设有第二阀门,第二管线的出口与氨水罐之间设有第四管线,第四管线上设有第三阀门,氨水罐与第五管线之间设有第六管线,第六管线上设有第四阀门、液体流量计,反应釜与第五管线之间设有第七管线,第七管线上设有第五阀门,反应釜设有磁力搅拌器,反应釜设有第九管线,第九管线的出口与循环泵之间设有第十管线,第十管线上设有第七阀门、过滤器,循环泵与测试罐之间设有第十一管线,第十一管线伸入至测试罐内,其出口设有喷头,喷头的下方设有试样,测试罐与第五管线的出口之间设有第十五管线,第十五管线上设有第九阀门,测试罐设有第十三管线,第十三管线上设有第八阀门,第九管线的出口与第十三管线的出口之间设有第十二管线,第十二管线上设有第六阀门,第十二管线出口与第十三管线出口的连接处与第十四管线的入口相连,第十四管线的出口与反应釜之间设有第八管线,第八管线上设有第十阀门,第十四管线的出口与碱洗装置之间设有第十六管线,第十六管线上设有第十一阀门。
采用上述的实验装置进行炼油厂酸性水腐蚀实验的实验方法,其特征在于:实验过程依次包括如下操作步骤:
A.用氮气瓶内的氮气吹扫反应釜和测试罐,排出空气;
B.硫氢化铵溶液的制备与腐蚀性测试
B1.开启第三阀门、第四阀门、第五阀门、第十阀门、第十一阀门,氮气瓶内的氮气经第二管线-第四管线及第三阀门进入氨水罐内,将氨水罐内的氨水经第六管线及液体流量计、第四阀门-第五管线-第七管线及第五阀门压入反应釜内,上述操作结束后,关闭以上开启的阀门,然后开启磁力搅拌器;
B2.开启第一阀门、第五阀门、第十阀门、第十一阀门,硫化氢气瓶内的硫化氢气体经第一管线及第一阀门、气体流量计-第五管线-第七管线及第五阀门进入反应釜内,在反应釜内,硫化氢气体与氨水反应生成硫氢化铵溶液,上述操作结束后,关闭以上开启的阀门;
B3.开启反应釜和测试罐外表面上的电加热元件,将反应釜内的硫氢化铵溶液加热至腐蚀性测试温度,然后开启第七阀门、第八阀门、第十阀门,并开启循环泵,反应釜内的硫氢化铵溶液经第九管线-第十管线及第七阀门、过滤器-循环泵-第十一管线进入测试罐内,由喷头底部的喷孔向下喷出,喷射到下方的试样上,发生腐蚀反应,腐蚀反应后的硫氢化铵溶液逐渐充满测试罐后,在压力作用下经第十三管线及第八阀门-第十四管线-第八管线及第十阀门回流至反应釜4内,循环使用,操作过程中,测试罐外表面上的电加热元件使测试罐内的硫氢化铵溶液保持为腐蚀性测试温度,步骤B3的操作结束后,关闭以上 开启的阀门以及反应釜和测试罐外表面上的电加热元件;
C.后续处理
包括用氮气瓶内的氮气将测试罐和反应釜内的硫氢化铵溶液排出、用氮气吹扫反应釜和测试罐,操作结束后打开测试罐,取出试样。
采用本发明,具有如下的有益效果:(1)本发明可用于对含有硫氢化铵的酸性水的腐蚀性从流速、温度、浓度等影响腐蚀性的几个主要方面进行定量分析,对在酸性水介质中服役的材料的耐蚀性以及缓蚀剂和中和剂的性能等作出定量分析和评价,而且实验过程与现场实际工况更为贴近(详见本说明书具体实施方式部分实验过程的说明),因而得到的数据可信度高,能够较好地实现酸性水腐蚀破坏的预测和工艺装置的在役安全评估。(2)硫氢化铵溶液的制备在封闭的反应釜内进行,易于制备;制备出的硫氢化铵不容易分解。(3)考虑到实验介质的毒害性,实验装置为封闭系统,整个实验过程均在此封闭系统中完成;排出的废气、废液均在碱洗装置中进行了无害化处理。因此,实验操作可以实现安全、环保。(4)本发明实验装置的造价不高,易于制造。
下面结合附图和具体实施方式对本发明作进一步详细的说明。附图和具体实施方式并不限制本发明要求保护的范围。
附图说明
图1是本发明炼油厂酸性水腐蚀的实验装置的示意图。
具体实施方式
参见图1,本发明炼油厂酸性水腐蚀的实验装置(简称为实验装置),设有硫化氢气瓶1、氮气瓶2、氨水罐3、反应釜4、测试罐5、碱洗装置6、循环泵12。氨水罐3、反应釜4、测试罐5均为立式圆筒形容器,顶部用法兰密封。
硫化氢气瓶1的顶部设有第一管线701,第一管线701的出口与第五管线705的入口相连。第一管线701上设有第一阀门801、气体流量计901。
氮气瓶2的顶部设有第二管线702,第二管线702的出口与第五管线705的入口之间设有第三管线703,第三管线703上设有第二阀门802。第二管线702的出口与氨水罐3之间设有第四管线704,第四管线704上设有第三阀门803。
氨水罐3与第五管线705之间设有第六管线706,第六管线706从氨水罐3的顶部伸入至氨水罐3的下部。第六管线706上设有第四阀门804、液体流量计902。
反应釜4与第五管线705之间设有第七管线707,第七管线707从反应釜4的顶部伸入至反应釜4的下部。第七管线707上设有第五阀门805。反应釜4设有磁力搅拌器10。反应釜4的底部设有第九管线709。
第九管线709的出口与循环泵12之间设有第十管线710,第十管线710上设有 第七阀门807、过滤器11。循环泵12与测试罐5之间设有第十一管线711,第十一管线711从测试罐5的顶部伸入至测试罐5内。第十一管线711的出口设有喷头501,喷头501的底部为喷孔。喷头501的下方设有试样502,试样502安装于试样台504上。试样台504可以带着试样502相对于水平面倾斜转动(如图1中的圆弧线箭头所示),试样台504通过固定件503(金属管或杆件)与第十一管线711固定连接。喷头501、试样台504都可以使用现有技术所常用的;喷头501喷孔的直径一般为0.2~3毫米。试样502一般为圆形,材料可以是各种欲测试其耐酸性水腐蚀的材料,例如20R、304L、316L、825合金等。试样502的直径一般为7~10毫米,厚度一般为2~4毫米;其相对于水平面的倾斜角度一般为0~75度(0度时试样502水平放置)。喷头501底部的喷孔与试样502之间的距离一般为0.5~5毫米;该距离为自喷头501底部的喷孔垂直向下、至与试样502接触的接触点的垂直距离。
测试罐5的顶部与第五管线705的出口之间设有第十五管线715,第十五管线715上设有第九阀门809。测试罐5的底部设有第十三管线713,第十三管线713上设有第八阀门808。
第九管线709的出口与第十三管线713的出口之间设有第十二管线712,第十二管线712上设有第六阀门806。第十二管线712出口与第十三管线713出口的连接处与第十四管线714的入口相连,第十四管线714的出口与反应釜4的顶部之间设有第八管线708,第八管线708上设有第十阀门810。
第十四管线714的出口与碱洗装置6之间设有第十六管线716,第十六管线716上设有第十一阀门811。
碱洗装置6通常设有1至3个氢氧化钠溶液罐,氢氧化钠溶液罐的顶部设有顶盖。设置一个氢氧化钠溶液罐时,第十六管线716的出口从该氢氧化钠溶液罐的顶部伸入至该氢氧化钠溶液罐的下部,该氢氧化钠溶液罐的顶部设有排空管线。氢氧化钠溶液罐设置2至3个时,相邻的两个氢氧化钠溶液罐之间设有第十七管线717。第十六管线716的出口从第一个氢氧化钠溶液罐的顶部伸入至该氢氧化钠溶液罐的下部,最后一个氢氧化钠溶液罐的顶部设有排空管线。图1所示,碱洗装置6设有2个氢氧化钠溶液罐;第一个氢氧化钠溶液罐用附图标记61表示,第二个氢氧化钠溶液罐用附图标记62表示。第十六管线716的出口从第一个氢氧化钠溶液罐61的顶部伸入至第一个氢氧化钠溶液罐61的下部,第二个氢氧化钠溶液罐62的顶部设有排空管线718;这两个氢氧化钠溶液罐之间设有第十七管线717。
本发明实验装置涉及的氨水罐3、反应釜4、过滤器11、测试罐5、喷头501、 试样台504以及所有管线的材料,均选用耐腐蚀的316L奥氏体不锈钢、双相不锈钢(2205等)、镍基合金(825、625、C276等),或选用更高级别的耐腐蚀材料。循环泵12、气体流量计901、液体流量计902、磁力搅拌器10以及所有的阀门,也都选用耐腐蚀的。各阀门可以使用截止阀、闸阀、球阀等。硫化氢气瓶1(包括内装的硫化氢气体)、氮气瓶2(包括内装的氮气)可以直接从市场上购买。碱洗装置6中氢氧化钠溶液罐的材料,使用耐酸碱的塑料(聚丙烯、聚四氟乙烯等)。
氨水罐3的容积应等于或略大于反应釜4的容积,反应釜4的容积一般为测试罐5容积的5~10倍。反应釜4的容积,一般为4~10升。反应釜4和测试罐5的外表面都包覆有电加热元件(图略),电加热元件可以是常用的电阻丝或者是带有电阻丝的炉瓦等。第九管线709、第十管线710、第十一管线711、第十三管线713、第十四管线714、第八管线708的外表面,都包覆有保温层(图略;保温层的材料为保温岩棉等)。
下面结合图1说明采用本发明的实验装置进行炼油厂酸性水腐蚀实验的实验方法。在实验过程中,各阀门除说明是开启的以外,均处于关闭状态。实验过程依次包括如下操作步骤:
A.用氮气瓶2内的氮气吹扫反应釜4和测试罐5,排出空气
开启第二阀门802,然后打开第五阀门805、第九阀门809、第十阀门810、第十一阀门811、第八阀门808。氮气瓶2内的氮气分为两路流动:①氮气瓶2-第二管线702-第三管线703及第二阀门802-第五管线705-第七管线707及第五阀门805-反应釜4-第八管线708(如空心箭头所示)及第十阀门810。②氮气瓶2-第二管线702-第三管线703及第二阀门802-第五管线705-第十五管线715及第九阀门809-测试罐5-第十三管线713及第八阀门808-第十四管线714。
上述的过程,用氮气将反应釜4和测试罐5内的空气吹扫出来。被吹扫出来的空气连同一部分上述的氮气经第十六管线716及第十一阀门811-第一个氢氧化钠溶液罐61-第十七管线717-第二个氢氧化钠溶液罐62-排空管线718,从排空管线718排入大气。各氢氧化钠溶液罐内均装有浓度为5%~10%的氢氧化钠溶液(本发明提到的溶液均为水溶液)。
步骤A的操作时间一般为0.5至2小时;操作结束后,关闭以上开启的阀门。B.硫氢化铵溶液的制备与腐蚀性测试
B1.开启第三阀门803、第四阀门804、第五阀门805、第十阀门810、第十一阀门811。氮气瓶2内的氮气经第二管线702-第四管线704及第三阀门803进入氨水罐3内,将氨水罐3内的氨水(浓度一般为0.1%~15%)经第六管线706及液体 流量计902、第四阀门804-第五管线705-第七管线707及第五阀门805压入反应釜4内。压入反应釜4内的氨水量,一般占反应釜4容积的2/3。反应釜4内的部分氮气,经第八管线708(如空心箭头所示)及第十阀门810-第十六管线716及第十一阀门811-第一个氢氧化钠溶液罐61-第十七管线717-第二个氢氧化钠溶液罐62-排空管线718,从排空管线718排入大气。上述操作结束后,关闭以上开启的阀门,然后开启磁力搅拌器10。
B2.开启第一阀门801、第五阀门805、第十阀门810、第十一阀门811。硫化氢气瓶1内的硫化氢气体经第一管线701及第一阀门801、气体流量计901-第五管线705-第七管线707及第五阀门805进入反应釜4内。在反应釜4内,硫化氢气体与氨水反应生成硫氢化铵溶液(浓度一般为0.3%~45%)。硫氢化铵溶液相当于含有硫氢化铵的炼油厂酸性水;改变硫氢化铵溶液的浓度,可以测试其在不同浓度下的腐蚀性,以贴近现场实际工况。进入反应釜4内的硫化氢的量应略高于反应釜4内的纯氨量,以确保反应釜4内的氨均与硫化氢反应生成硫氢化铵。反应釜4内未反应的部分硫化氢气体,经第八管线708(如空心箭头所示)及第十阀门810-第十六管线716及第十一阀门811-第一个氢氧化钠溶液罐61-第十七管线717-第二个氢氧化钠溶液罐62,被氢氧化钠溶液吸收,发生中和反应。上述操作结束后,关闭以上开启的阀门。
B3.开启反应釜4和测试罐5外表面上的电加热元件,将反应釜4内的硫氢化铵溶液加热至腐蚀性测试温度(一般为25~150℃)。然后开启第七阀门807、第八阀门808、第十阀门810,并开启循环泵12。反应釜4内的硫氢化铵溶液经第九管线709-第十管线710及第七阀门807、过滤器11-循环泵12-第十一管线711进入测试罐5内,由喷头501底部的喷孔向下喷出,喷射到下方试样台504上的试样502上,发生腐蚀反应。腐蚀反应后的硫氢化铵溶液逐渐充满测试罐5后,在压力作用下经第十三管线713及第八阀门808-第十四管线714-第八管线708(如实心箭头所示)及第十阀门810回流至反应釜4内,循环使用。操作过程中,测试罐5外表面上的电加热元件使测试罐5内的硫氢化铵溶液保持为腐蚀性测试温度(一般为25~150℃),过滤器11用于过滤掉硫氢化铵溶液中的杂质。
步骤B3中,通过改变循环泵12的流量、喷头501喷孔直径的大小,可以使硫氢化铵溶液以不同的速度喷射到试样502上,测试其在不同喷射速度下的腐蚀性;使试样台504带着试样502相对于水平面倾斜转动、试样502相对于水平面呈不同的倾斜角度,可以使硫氢化铵溶液以不同的倾斜角度喷射到试样502上,测试其在不同倾斜角度下喷射的腐蚀性;改变硫氢化铵溶液的温度,可以测试其在不同温度下的腐蚀性。这都可以使腐蚀实验贴近现场实际工况。步骤B3自循 环泵12开启时开始计时,循环泵12停止运转时结束,操作时间一般为8~20小时。循环泵12的流量一般为20~150升/小时,由喷头501的喷孔喷出硫氢化铵溶液的喷射速度(即硫氢化铵溶液的流速)为5~30米/秒,喷射至试样502的喷射距离等于喷头501底部的喷孔与试样502之间的距离。
步骤B3的操作结束后,关闭以上开启的阀门以及反应釜4和测试罐5外表面上的电加热元件,使硫氢化铵溶液自然冷却降温至实验环境温度(25℃左右)。
C.后续处理
C1.开启第二阀门802、第九阀门809、第八阀门808、第十一阀门811。氮气瓶2内的氮气经第二管线702-第三管线703及第二阀门802-第五管线705-第十五管线715及第九阀门809进入测试罐5,将测试罐5内的硫氢化铵溶液经第十三管线713及第八阀门808-第十四管线714-第十六管线716及第十一阀门811压入第一个氢氧化钠溶液罐61,第一个氢氧化钠溶液罐61内的硫氢化铵溶液与氢氧化钠溶液反应后再经第十七管线717进入第二个氢氧化钠溶液罐62。硫氢化铵溶液被氢氧化钠溶液吸收,发生中和反应。操作结束后,关闭以上开启的阀门。
C2.开启第二阀门802、第五阀门805、第六阀门806、第十一阀门811,氮气瓶2内的氮气经第二管线702-第三管线703及第二阀门802-第五管线705-第七管线707及第五阀门805进入反应釜4内,将反应釜4内的硫氢化铵溶液经第九管线709-第十二管线712及第六阀门806-第十四管线714-第十六管线716及第十一阀门811压入第一个氢氧化钠溶液罐61,第一个氢氧化钠溶液罐61内的硫氢化铵溶液与氢氧化钠溶液反应后再经第十七管线717进入第二个氢氧化钠溶液罐62。硫氢化铵溶液被氢氧化钠溶液吸收,发生中和反应。操作结束后,关闭以上开启的阀门。
C3.开启第二阀门802,然后打开第五阀门805、第九阀门809、第十阀门810、第十一阀门811、第八阀门808。氮气瓶2内的氮气分为两路流动:①氮气瓶2-第二管线702-第三管线703及第二阀门802-第五管线705-第七管线707及第五阀门805-反应釜4-第八管线708(如空心箭头所示)及第十阀门810。②氮气瓶2-第二管线702-第三管线703及第二阀门802-第五管线705-第十五管线715及第九阀门809-测试罐5-第十三管线713及第八阀门808-第十四管线714。
在步骤C3中,用氮气将反应釜4和测试罐5内剩余的硫氢化铵溶液以及反应釜4内剩余的硫化氢气体吹扫出来。被吹扫出来的硫氢化铵溶液和硫化氢气体经第十六管线716及第十一阀门811进入第一个氢氧化钠溶液罐61,与氢氧化钠溶 液反应后再经第十七管线717进入第二个氢氧化钠溶液罐62。硫氢化铵溶液与硫化氢气体被氢氧化钠溶液吸收,发生中和反应。反应釜4和测试罐5内原有的氮气分别随进入反应釜4和测试罐5内的步骤C3的氮气流出,一同经第十六管线716及第十一阀门811-第一个氢氧化钠溶液罐61-第十七管线717-第二个氢氧化钠溶液罐62-排空管线718,从排空管线718排入大气。
步骤C3的操作的时间一般为0.5至2小时;操作结束后,关闭以上开启的阀门。
步骤C3的操作结束后,整个实验全部结束。之后打开测试罐5,取出试样502观察记录其形貌,再进行清洗后用失重法计算出试样502的腐蚀速率(计算腐蚀速率的时间按步骤B3的操作时间)。
在需要评定某种缓蚀剂或中和剂对硫氢化铵溶液腐蚀性的影响时,可事先在氨水罐3内的氨水中加入该缓蚀剂或中和剂,使在步骤B2中生成的硫氢化铵溶液中含有所述的缓蚀剂或中和剂(缓蚀剂或中和剂的含量按重量计通常为几百ppm或以下),并在步骤B3中由喷头501底部的喷孔向试样502喷射含有所述缓蚀剂或中和剂的硫氢化铵溶液,最后检查试样502的腐蚀情况并计算腐蚀速率。
实验过程中,本发明实验装置各阀门的开启与关闭可以手动控制,也可以通过计算机自动控制。
在考察硫氢化铵溶液的流速、浓度、温度、喷射角度、缓蚀剂或中和剂等项目对硫氢化铵溶液腐蚀性的影响时,可选中一个作为考察项目,并将其它项目的数值固定。改变所选中的考察项目的数值,计算出在不同数值下试样502的腐蚀速率,可以得到所选中的考察项目与硫氢化铵溶液腐蚀性的定量关系。改变试样502的材料,可以定量地得到各种材料在不同条件下的耐硫氢化铵溶液腐蚀的性能。

Claims (5)

1.一种炼油厂酸性水腐蚀的实验方法,其特征在于:采用下述炼油厂酸性水腐蚀的实验装置进行实验,该实验装置设有硫化氢气瓶(1)、氮气瓶(2)、氨水罐(3)、反应釜(4)、测试罐(5)、碱洗装置(6)、循环泵(12),硫化氢气瓶(1)设有第一管线(701),第一管线(701)的出口与第五管线(705)的入口相连,第一管线(701)上设有第一阀门(801)、气体流量计(901),氮气瓶(2)设有第二管线(702),第二管线(702)的出口与第五管线(705)的入口之间设有第三管线(703),第三管线(703)上设有第二阀门(802),第二管线(702)的出口与氨水罐(3)之间设有第四管线(704),第四管线(704)上设有第三阀门(803),氨水罐(3)与第五管线(705)之间设有第六管线(706),第六管线(706)上设有第四阀门(804)、液体流量计(902),反应釜(4)与第五管线(705)之间设有第七管线(707),第七管线(707)上设有第五阀门(805),反应釜(4)设有磁力搅拌器(10),反应釜(4)设有第九管线(709),第九管线(709)的出口与循环泵(12)之间设有第十管线(710),第十管线(710)上设有第七阀门(807)、过滤器(11),循环泵(12)与测试罐(5)之间设有第十一管线(711),第十一管线(711)伸入至测试罐(5)内,其出口设有喷头(501),喷头(501)的下方设有试样(502),测试罐(5)与第五管线(705)的出口之间设有第十五管线(715),第十五管线(715)上设有第九阀门(809),测试罐(5)设有第十三管线(713),第十三管线(713)上设有第八阀门(808),第九管线(709)的出口与第十三管线(713)的出口之间设有第十二管线(712),第十二管线(712)上设有第六阀门(806),第十二管线(712)出口与第十三管线(713)出口的连接处与第十四管线(714)的入口相连,第十四管线(714)的出口与反应釜(4)之间设有第八管线(708),第八管线(708)上设有第十阀门(810),第十四管线(714)的出口与碱洗装置(6)之间设有第十六管线(716),第十六管线(716)上设有第十一阀门(811);
所述炼油厂酸性水腐蚀的实验方法依次包括如下操作步骤:
A.用氮气瓶(2)内的氮气吹扫反应釜(4)和测试罐(5),排出空气;
B.硫氢化铵溶液的制备与腐蚀性测试
B1.开启第三阀门(803)、第四阀门(804)、第五阀门(805)、第十阀门(810)、第十一阀门(811),氮气瓶(2)内的氮气经第二管线(702)、第四管线(704)及第三阀门(803)进入氨水罐(3)内,将氨水罐(3)内的氨水经第六管线(706)及液体流量计(902)、第四阀门(804)、第五管线(705)、第七管线(707)及第五阀门(805)压入反应釜(4)内,上述操作结束后,关闭以上开启的阀门,然后开启磁力搅拌器(10);
B2.开启第一阀门(801)、第五阀门(805)、第十阀门(810)、第十一阀门(811),硫化氢气瓶(1)内的硫化氢气体经第一管线(701)及第一阀门(801)、气体流量计(901)、第五管线(705)、第七管线(707)及第五阀门(805)进入反应釜(4)内,在反应釜(4)内,硫化氢气体与氨水反应生成硫氢化铵溶液,上述操作结束后,关闭以上开启的阀门;
B3.开启反应釜(4)和测试罐(5)外表面上的电加热元件,将反应釜(4)内的硫氢化铵溶液加热至腐蚀性测试温度,然后开启第七阀门(807)、第八阀门(808)、第十阀门(810),并开启循环泵(12),反应釜(4)内的硫氢化铵溶液经第九管线(709)、第十管线(710)及第七阀门(807)、过滤器(11)、循环泵(12)、第十一管线(711)进入测试罐(5)内,由喷头(501)底部的喷孔向下喷出,喷射到下方的试样(502)上,发生腐蚀反应,腐蚀反应后的硫氢化铵溶液逐渐充满测试罐(5)后,在压力作用下经第十三管线(713)及第八阀门(808)、第十四管线(714)、第八管线(708)及第十阀门(810)回流至反应釜(4)内,循环使用,操作过程中,测试罐(5)外表面上的电加热元件使测试罐(5)内的硫氢化铵溶液保持为腐蚀性测试温度,上述操作结束后,关闭以上开启的阀门以及反应釜(4)和测试罐(5)外表面上的电加热元件;
C.后续处理
包括用氮气瓶(2)内的氮气将测试罐(5)和反应釜(4)内的硫氢化铵溶液排出、用氮气吹扫反应釜(4)和测试罐(5),操作结束后打开测试罐(5),取出试样(502)。
2.根据权利要求1所述的实验方法,其特征在于:氨水罐(3)内的氨水中加入有缓蚀剂或中和剂,使在步骤B2中生成的硫氢化铵溶液中含有缓蚀剂或中和剂。
3.根据权利要求1或2所述的实验方法,其特征在于:步骤B2中,在反应釜(4)内硫化氢气体与氨水反应生成的硫氢化铵溶液的浓度为0.3%~45%。
4.根据权利要求3所述的实验方法,其特征在于:步骤B3中,所述硫氢化铵溶液的腐蚀性测试温度为25~150℃,由喷头(501)的喷孔喷出硫氢化铵溶液的喷射速度为5~30米/秒。
5.根据权利要求4所述的实验方法,其特征在于:步骤B3的操作时间为8~20小时。
CN201310244427.1A 2013-06-13 2013-06-13 一种炼油厂酸性水腐蚀的实验方法 Active CN104237111B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310244427.1A CN104237111B (zh) 2013-06-13 2013-06-13 一种炼油厂酸性水腐蚀的实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310244427.1A CN104237111B (zh) 2013-06-13 2013-06-13 一种炼油厂酸性水腐蚀的实验方法

Publications (2)

Publication Number Publication Date
CN104237111A CN104237111A (zh) 2014-12-24
CN104237111B true CN104237111B (zh) 2016-12-28

Family

ID=52225621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310244427.1A Active CN104237111B (zh) 2013-06-13 2013-06-13 一种炼油厂酸性水腐蚀的实验方法

Country Status (1)

Country Link
CN (1) CN104237111B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211759B (zh) * 2017-07-04 2024-03-01 中国石油天然气集团公司 一种用于腐蚀试验溶液的除氧装置及其操作方法
CN111443029B (zh) * 2020-03-23 2023-07-25 中国石油天然气集团有限公司 一种硫化氢腐蚀管材的模拟装置及模拟方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2708299Y (zh) * 2004-03-12 2005-07-06 华东理工大学 石油蒸馏塔顶防腐蚀试验装置
CN101231230A (zh) * 2007-08-21 2008-07-30 浙江理工大学 一种加氢反应流出物冷却过程的实时监管系统
CN102279200A (zh) * 2011-07-14 2011-12-14 北方工业大学 一种合金腐蚀实验装置
CN102305761A (zh) * 2011-08-01 2012-01-04 西南石油大学 酸性介质输送管道焊缝及母材腐蚀模拟试验装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596947B2 (ja) * 2005-03-25 2010-12-15 財団法人石油産業活性化センター 水硫化アンモニウム環境下における材料の耐腐食性評価方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2708299Y (zh) * 2004-03-12 2005-07-06 华东理工大学 石油蒸馏塔顶防腐蚀试验装置
CN101231230A (zh) * 2007-08-21 2008-07-30 浙江理工大学 一种加氢反应流出物冷却过程的实时监管系统
CN102279200A (zh) * 2011-07-14 2011-12-14 北方工业大学 一种合金腐蚀实验装置
CN102305761A (zh) * 2011-08-01 2012-01-04 西南石油大学 酸性介质输送管道焊缝及母材腐蚀模拟试验装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Michael S. Cayard et al..PREDICTION OF AMMONIUM BISULFIDE CORROSION AND VALIDATION WITH REFINERY PLANT EXPERIENCE.《CORROSION NACExpo 2006》.2006, *
加氢反应流出物空冷器系统的腐蚀机理;偶国富等;《中国腐蚀与防护学报》;20050228;第25卷(第1期);第61-64页 *

Also Published As

Publication number Publication date
CN104237111A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN202486030U (zh) 一种货油舱上甲板模拟腐蚀试验装置
CN110542649B (zh) 一种多功能液体单相流流动腐蚀测试环道
Zeng et al. Analysis of corrosion failure and materials selection for CO2–H2S gas well
JP2016536608A (ja) ガスサンプリング装置、及び、このような装置を備えている充填ステーション
CN104237111B (zh) 一种炼油厂酸性水腐蚀的实验方法
CN104792689B (zh) 一种湿硫化氢环境中的环境腐蚀开裂试验用装置
CN108469390B (zh) 可拆卸环道式单相流冲蚀试验装置
CN211602854U (zh) 一种气田站场内腐蚀实验及缓蚀剂评价装置
CN104880502A (zh) 一种低速管道内腐蚀和电化学测试的简易模拟装置
CN201503357U (zh) 一种液体或流体的取样装置
CN203365265U (zh) 一种油田缓蚀剂评价试验装置
CN220104973U (zh) 一种管道结垢敏感性测试装置
CN105319142A (zh) 一种气相缓蚀剂的评价装置及方法
CN104165835A (zh) 炼厂低温腐蚀评价方法
CN203929590U (zh) 气液双相流的管道腐蚀模拟实验装置
Shokri An exploration of corrosion in the HF neutralization section at linear alkyl benzene production plant
CN102031480A (zh) 一种硫化亚铁气相钝化方法
CN111650352A (zh) 一种多功能水合物合成及分解模拟的实验系统及实验方法
CN211347875U (zh) 一种可拆卸多功能液体单相流流动腐蚀实验测试环道装置
CN202382976U (zh) 一种轻量便携式无动力隔氧取样器
CN213875373U (zh) 一种模拟含湿烟气的高温腐蚀测试实验装置
Horvath et al. Prediction and assessment of ammonium bisulfide corrosion under refinery sour water service conditions—part 2
GB2530571A (en) Gas analysis device
CN202255941U (zh) 一种现场粘稠浆体取样装置
Olsson Evaluation of corrosion in different parts of an oil refinery using corrosion coupons

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant