CN104233162B - 一种活塞杆的表面修复方法 - Google Patents

一种活塞杆的表面修复方法 Download PDF

Info

Publication number
CN104233162B
CN104233162B CN201410383281.3A CN201410383281A CN104233162B CN 104233162 B CN104233162 B CN 104233162B CN 201410383281 A CN201410383281 A CN 201410383281A CN 104233162 B CN104233162 B CN 104233162B
Authority
CN
China
Prior art keywords
piston rod
spray
rod surface
carried out
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410383281.3A
Other languages
English (en)
Other versions
CN104233162A (zh
Inventor
王春昌
张亚飞
刘鹏洲
杜超飞
刘鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Tian Yuan Materials Protection Technology Co Ltd
Original Assignee
Shaanxi Tian Yuan Materials Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Tian Yuan Materials Protection Technology Co Ltd filed Critical Shaanxi Tian Yuan Materials Protection Technology Co Ltd
Priority to CN201410383281.3A priority Critical patent/CN104233162B/zh
Publication of CN104233162A publication Critical patent/CN104233162A/zh
Application granted granted Critical
Publication of CN104233162B publication Critical patent/CN104233162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

本发明提出一种超音速火焰粉末喷涂与高频感应重熔相结合的活塞杆表面修复方法,所述方法采用创新研发的具有良好抗腐蚀性和耐磨性的喷涂粉末作为超音速火焰粉末喷涂的合金材料,通过超音速火焰粉末喷涂技术将具有耐磨抗腐蚀性能的所述喷涂粉末均匀地喷涂在活塞杆的工作表面上,再通过高频感应技术对涂层进行二次重熔,形成均匀且组织细密的扩散微冶金结合熔覆层。本发明所述方法修复后的活塞杆具有更强的耐腐蚀性和耐磨性,不但降低了活塞杆与导向套内表面间的磨损,而且能很好地适应酸碱腐蚀等恶劣工况环境,提高了活塞杆以及油缸整体的使用寿命,同时杜绝了现有电刷镀修复再制造中镀层的脱落问题,具有广阔的市场推广前景。

Description

一种活塞杆的表面修复方法
技术领域
本发明属于设备修复再制造技术领域,具体涉及一种活塞杆的超音速火焰粉末喷涂与高频感应重熔表面修复方法,尤其是一种液压支架油缸中活塞杆的超音速火焰粉末喷涂与高频感应重熔表面修复方法。
背景技术
修复再制造技术是近年发展比较迅速的一种表面处理技术,尤其是在一次性设备投入较大、设备更换维修费用较为昂贵的煤矿开采中,被广泛的应用于多类设备表面损伤的修复中。液压支架是在摩擦支柱和单体液压等基础上发展起来的采矿工作面机械化支护设备,它与滚筒采煤机、可弯曲刮板输送机、转载机及胶带输送机等组成一个有机的整体,实现了采、支、运等主要工序的综合机械化采煤工艺。液压油缸作为液压支架系统中最重要的执行元件,是将液压能转换为往复直线运动的机械能的能量转换装置。在液压油缸的工作过程中,活塞杆在油缸缸筒内做往复运动,与油缸端盖上的导向套滑动配合,长时间与导向套滑动摩擦,将会使活塞杆发生磨损导致其直径变细,遇有特殊情况时,活塞的推力作用还会使活塞杆发生变形弯曲。此外,矿用液压支架油缸使用工况比较恶劣,空气中含有大量的煤尘与极少量的二氧化硫、硫化氢等易溶解于水且具有较强腐蚀性的酸性气体,使得活塞杆工作时不仅承受强大的力学载荷,而且受到乳浊液的腐蚀和进入乳浊液中硬质颗粒的磨损和划伤,进而导致油封失效,油缸泄露。针对液压支架系统中油缸活塞杆的这种变形和表面损伤,具有两种解决方案,一种是更换整个液压支架,这样不但会造成整个综采工作面的大面积停机,而且设备直接更换的成本费用非常昂贵,因此在综合机械化采煤工艺中一般不采取这种方式;另一种方式是对变形和磨损的活塞杆进行修复再制造,使其复原以满足生产要求,传统的修复再制造方法是采用电刷镀修复技术,通过在活塞杆工作表面形成电镀耐磨防腐蚀的镀层来满足其耐磨抗蚀功能。然而,由于电镀镀层与活塞杆基材之间为物理结合,结合强度不高,电镀层和基体之间会有明显的界面,界面两侧的基体和电镀层成分相差非常大,其化学电位差也非常大,在活塞杆与导向套长期滑动摩擦工作时,以及硬质颗粒对活塞杆的磨损及划伤而出现缺陷时,造成基体的露出,在电化学作用下,腐蚀过程会沿着电位差最大的位置即界面迅速扩展,导致镀层的大面积脱落,因此针对活塞杆的损伤变形,传统的电刷镀修复再制造方法存在着较为严重的镀层脱落问题,在一定程度上限制了这种修复再制造技术的使用,现有技术中尚未出现一种能够很好的解决矿用液压支架油缸中活塞杆变形和表面损伤的修复再制造方法。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种超音速火焰粉末喷涂与高频感应重熔相结合的活塞杆表面修复再制造方法,所述方法采用创新研发的具有良好抗腐蚀性和耐磨性的喷涂粉末作为超音速火焰粉末喷涂的合金材料,通过超音速火焰粉末喷涂技术将具有耐磨抗腐蚀性能的所述喷涂粉末均匀地喷涂在活塞杆的工作表面上,再通过高频感应技术对喷涂层进行二次重熔,形成均匀且组织细密的扩散微冶金结合熔覆层。本发明所述方法修复后的油缸活塞杆具有更强的耐腐蚀性和耐磨性,不但有效降低了活塞杆与导向套内表面间的磨损,而且能够很好的适应酸碱腐蚀等恶劣工况环境下的使用要求,提高了活塞杆以及油缸整体的使用寿命,大大降低了煤矿支护成本,且通过本发明所述方法形成的熔覆层能够牢固地结合于活塞杆基体,完全杜绝了现有电刷镀修复再制造技术中镀层的脱落技术问题,同时本发明所述方法能够推广应用于除活塞杆以外的其他磨损表面的修复再制造中,具有广阔的市场推广前景。
本发明解决上述技术问题所采取的技术方案如下:
一种活塞杆的表面修复方法,包括以下步骤:
步骤一、按下述重量比配置喷涂粉末混合物:碳0.7~1%,铬15%~20%,硼2.5%~4.5%,硅3.0%~5%,铁0.1-5%,钼3%~5%,铜2.0%~3.5%,钇0.3%~1.0%,镍余量,并将喷涂粉末混合物的粒径加工至60μm以下;
步骤二、对待修复的活塞杆表面进行清理和粗化处理;
步骤三、对活塞杆进行表面预热处理,控制预热温度在120℃~180℃;
步骤四、对步骤三预热后的活塞杆表面进行超音速火焰粉末喷涂,通过超音速火焰粉末喷涂系统以丙烷为燃料、氧气为助燃剂、氩气为送粉气,将步骤一配置的喷涂粉末混合物均匀喷涂在活塞杆表面上,喷涂过程的工艺参数控制为:丙烷压力0.4 MPa~0.65MPa、氧气压力1.1MPa、氩气压力1.1 MPa~1.3MPa、丙烷流量80~120L/min、氧气流量300~400L/ min、氩气流量150~200L/min、喷涂距离150mm~200mm、活塞杆转速250~300r/min且活塞杆相对于喷枪的水平移动速度10~15mm/s、活塞杆层间温度不超过300℃,同时采取逐层加厚间歇喷涂方式形成较厚喷涂层,且每次喷涂厚度不超过0.2mm;当活塞杆表面喷涂完成后,对喷涂部位进行保温缓冷;
步骤五、对步骤四喷涂后的活塞杆表面进行高频感应预热,控制预热温度在280℃~300℃之间;
步骤六、对步骤五预热后的活塞杆表面进行高频感应重熔处理,控制重熔温度在1050℃~1100℃之间,将活塞杆表面的喷涂层形成连续致密的熔覆层,并对重熔处理后的活塞杆进行保温缓冷;
步骤七、对步骤六处理后的活塞杆进行磨削加工,使活塞杆表面的粗糙度Ra值达到0.1~0.3μm,活塞杆外圆尺寸满足使用要求,完成对活塞杆的修复再制造。
进一步根据本发明所述的修复方法,其中步骤一具体包括:
1)、按照所述重量比配置各喷涂粉末原料,然后将一定量的所述喷涂粉末原料放入三维运动混合机内进行混合,并采用Ø1.6mm~Ø2.4mm的铬钼合金钢丸进行磨料,混合磨料时间为25~30分钟,混合机转速从低到高平稳运转,使各喷涂粉末原料充分混合均匀,形成喷涂粉末混合物;
2)、将所述喷涂粉末混合物倒入240目~300目的筛子进行筛分,提取筛下物备用。
进一步根据本发明所述的修复方法,其中步骤二具体包括:
1)、对待修复活塞杆表面进行车削加工,清除活塞杆表面的各种损伤和表面软化层,修正不均匀的磨损表面,将其加工至最大磨损量以下0.1mm~0.2mm,并预留不大于5mm的喷涂层厚度;
2)、通过车削螺纹对活塞杆表面进行预粗化处理,螺距控制为0.6mm~1.0mm,螺纹深度控制为0.5mm~0.8mm;
3)、对预粗化处理后的活塞杆表面进行脱脂净化处理,采用酒精、丙酮、工业汽油、三氯乙烯或四氯化碳溶剂去除活塞杆表面和渗入内部的油脂;
4)、对净化处理后的活塞杆表面进行喷砂粗化处理,采用40~60目的白刚玉在0.4MPa~0.6MPa的喷砂压力下进行表面喷砂粗化加工,使活塞杆表面的粗糙度Ra处于3.2μm ~6.3μm。
进一步根据本发明所述的修复方法,其中步骤四中所述的超音速火焰粉末喷涂系统包括电源柜1、丙烷罐2、氧气罐3、气体控制箱4、送粉器5、氩气罐6、夹装工装7、行走小车8、喷枪10、熔覆机床11和冷却水源12,所述丙烷罐2和氧气罐3同时连接于所述气体控制箱4,通过所述气体控制箱4控制丙烷罐2和氧气罐3的输出气压和流量,所述电源柜1连接于所述气体控制箱4,所述气体控制箱4通过两根独立的管路将丙烷和氧气提供给喷枪10,所述氩气罐6连接于所述送粉器5,所述送粉器5内存储有所述喷涂粉末混合物,并通过管路在氩气送粉气的作用下将所述喷涂粉末混合物提供给所述喷枪10,所述喷枪10安装于所述行走小车8上,所述夹装工装7设置于所述熔覆机床11上,所述活塞杆9安装于所述夹装工装7上,并能够在夹装工装7的带动下进行轴向转动,所述行走小车8上能够沿活塞杆9的轴向在所述熔覆机床11上进行水平移动,所述熔覆机床11自带移动轨道或滚轮,通过所述冷却水源(12)对喷枪(10)的喷嘴进行冷却并对喷涂火焰进行聚束。
进一步根据本发明所述的修复方法,其中步骤三和步骤五中,通过高频感应加热设备对活塞杆表面进行预热处理,所述高频感应加热设备包括电源控制柜13和感应线圈14,所述电源控制柜13的振荡频率为200~250kHz,所述感应线圈为直径大于活塞杆外径的单匝圆形铜管,通过感应线圈14穿过活塞杆表面并相对活塞杆做轴向移动来进行感应预热,且在预热过程中控制:感应线圈14相对活塞杆的移动速度为15~20mm/s、活塞杆自身转速为220~280r/min、感应线圈与活塞杆表面间的间隙约2mm且电源控制柜13的输出电压为3 kV~5kV。
进一步根据本发明所述的修复方法,其中步骤六中,通过高频感应加热设备对活塞杆表面进行高频感应重熔处理,所述高频感应加热设备包括电源控制柜13和感应线圈14,所述电源控制柜13的振荡频率为200~250kHz,所述感应线圈为直径大于活塞杆外径的单匝圆形铜管,通过感应线圈14穿过活塞杆表面并相对活塞杆做轴向移动来进行感应重熔,且在高频感应重熔过程中控制:感应线圈14相对活塞杆的移动速度为5~10mm/s、活塞杆自身转速为150~200r/min、感应线圈与活塞杆表面间的间隙约2mm且电源控制柜13的输出电压为8 kV~12kV,并且当活塞杆表面的喷涂层出现镜面反光现象时停止重熔处理并采取保温缓冷。
进一步根据本发明所述的修复方法,其中步骤七具体包括:将活塞杆放于外圆磨床上进行磨削加工,砂轮选用粒度为100#~150#的软立方氮化硼砂轮,并控制外圆磨床的磨削加工工艺参数为:砂轮转速28m/s~33 m/s、轴向进给量0.8m/min~1.5 m/min、活塞杆线速度12m/min~18m/min、径向进给量0.005mm/dst~0.015mm/dst。
进一步根据本发明所述的修复方法,其中通过所述方法修复后的活塞杆表面硬度HRC大于60,且活塞杆基体与熔覆层间的结合强度大于300MPa。
进一步根据本发明所述的修复方法,其中所述活塞杆材质为27SiMn的中碳调质钢,化学成分:碳 0.27%,硅1.20%,锰1.35%,铬≤0.30%,钼≤0.15%,镍≤0.30%,铜≤0.30%,磷≤0.035%,硫≤0.035%,铁余量,热处理硬度HBS175~203。
进一步根据本发明所述的修复方法,其中所述活塞杆材质为42CrMo的中碳调质钢,化学成分为:碳 0.42%,硅0.30%,锰0.65%,铬1.13%,钼0.15%~0.25%,镍≤0.30%,铜≤0.30%,磷≤0.035%,硫≤0.035%,铁余量,热处理硬度HBS193~215。
本发明的技术方案至少具备以下技术效果:
(1)本发明修复的活塞杆具有更强的耐腐蚀性和耐磨性,其中超音速火焰粉末喷涂中所用的喷涂粉末成分中含有3%~5%的抗硫化元素钼、0.3%~1.0%稀土元素钇,不仅可以提高合金喷涂层的抗硫化性能、抗剥落性能及抗热腐蚀性能,而且能够起到细化晶粒的作用,使喷涂层组织更为致密,提高了喷涂层的耐腐蚀、耐磨损、耐冲击等综合性能,使用时可有效降低活塞杆与导向套内表面的磨损,提高了油缸整体的使用寿命;
(2)本发明所述修复在制造方法同时避免了热喷涂中不可避免的涂层孔隙率大的问题,使得修复表面质量更好;
(3)本发明所述修复在制造方法中熔覆层保持了粉体原有合金的相结构组成,使熔覆层与基体实现了扩散微冶金结合,提高了熔覆层的外观质量、结合强度(超过300MPa)、硬度(HRC60~HRC70)和致密性,尤其是结合强度大大提高,相对于普通超音速火焰粉末喷涂的涂层结合强度(≥80Mpa),本发明方法所获得的熔覆层与基体结合强度能提高3倍以上(≥300Mpa)。
(4)本发明所述超音速火焰粉末喷涂与高频感应技术中采用熔覆机床带动活塞杆沿轴线移动和同轴转动,使活塞杆在高频感应预热、重熔过程中的加热能够连续进行,保证了活塞杆表面各个位置与线圈耦合均匀,使活塞杆加热更加均匀,进而保证了修复质量。
(5)通过本发明所述超音速火焰粉末喷涂与高频感应技术对于表面磨损及划伤较深(1~5mm)、面积较大、腐蚀较为严重的活塞杆进行修复时,修复周期短,性能可靠,且工艺灵活、简单,便于操作,效率高。
(6)本发明所述方法能够推广应用于除活塞杆以外的其他磨损表面的修复再制造中,具有广阔的市场推广前景。
附图说明
附图1为本发明所述方法中用到的超音速火焰粉末喷涂系统的组成结构图;
附图2为本发明所述方法中用到的高频感应加热设备的组成结构图;
图中各附图标记的含义如下:
1-电源柜、2-丙烷罐、3-氧气罐、4-气体控制箱、5-送粉器、6-氩气罐、7-夹装工装、8-行走小车、9-活塞杆、10-喷枪、11-熔覆机床、12-冷却水源、13-电源控制柜、14-感应线圈。
具体实施方式
以下对本发明的技术方案进行详细的描述,以使本领域技术人员能够更加清楚的理解本发明,但并不因此限制本发明的保护范围。
为了实现本发明的上述技术目的,本发明所提供的针对液压支架系统油缸中活塞杆表面损伤变形的超音速火焰粉末喷涂与高频感应表面修复方法具体包括以下步骤:
(1)配置喷涂粉末原料,按下列重量比配置各粉末状金属原料:碳0.7%~1%,铬15%~20%,硼2.5%~4.5%,硅3.0%~5%,铁0.1-5%,钼3%~5%,铜2.0%~3.5%,钇0.3%~1.0%,镍余量。
(2)制备喷涂粉末混合物,首先将一定量的按照步骤(1)所示重量比配置的粉末状金属原料放入三维运动混合机内进行混合,磨料采用Ø1.6mm~Ø2.4mm铬钼合金钢丸,混合时间设定为25~30分钟,转速从低到高试运转,运转平稳,无较大振动及异常噪音即可,使各粉末状金属原料充分混合均匀,得到喷涂粉末混合物;然后将制得的喷涂粉末混合物利用240目~300目的筛子进行筛分,得到的筛下物即为喷涂用喷涂粉末,即进一步的将所制备的喷涂粉末混合物的粒径控制在240目以下。
(3)活塞杆表面预处理:首先,对待修复活塞杆的表面进行车削加工,清除活塞杆工件表面的各种损伤(如疲劳层和腐蚀层)和表面软化层,修正不均匀的磨损表面和预留喷涂层厚度(加工至最大磨损量以下0.1mm~0.2mm,预留喷涂层厚度不大于5mm);其次对修正后的活塞杆表面车削螺纹进行表面预粗化处理,螺距为0.6mm~1.0mm,螺纹深度为0.5mm~0.8mm;然后,对机加工后的表面进行有机溶剂(常用的有机溶剂有酒精、丙酮、工业汽油、三氯乙烯、四氯化碳等)脱脂处理,去除表面和渗入其中的油脂;最后,对净化后的表面进行喷砂粗化处理,介质为40~60目白刚玉,喷砂压力为0.4 MPa~0.6MPa,使活塞杆表面粗糙度介于3.2μm ~6.3μm间,表面更加活化,以提高喷涂层与基材的结合强度。
(4)对活塞杆进行表面预热,对步骤(3)预处理得到的活塞杆进行高频感应预热,以除去活塞杆表面的水分和提高活塞杆表面的温度,增强涂层与基材的结合强度,预热温度在120℃~180℃,加热均匀,防止局部过热氧化;
(5)对步骤(4)中预热均匀后的活塞杆表面进行超音速火焰粉末喷涂。首先采用的超音速火焰粉末喷涂系统如附图1所示的,包括电源柜1、丙烷罐2、氧气罐3、气体控制箱4、送粉器5、氩气罐6、夹装工装7、行走小车8、喷枪10、熔覆机床11和冷却水源12。所述的丙烷罐2和氧气罐3同时连接于气体控制箱4,通过所述气体控制箱4控制丙烷罐2和氧气罐3的输出气压和流量,所述电源柜1连接于所述气体控制箱4,为其提供工作电源,所述气体控制箱4通过两根独立的管路将丙烷和氧气输出给喷枪10,所述氩气罐6的气体输出端连接于所述送粉器5,上述步骤(2)制备的喷涂粉末混合物放置于送粉器5,所述送粉器5通过喷涂粉末供应管路并在氩气作为送粉气的条件下将喷涂粉末供应至所述喷枪10,从而由所述喷枪10进行超音速火焰粉末喷涂,其中所述丙烷罐2提供的丙烷作为燃料,所述氧气罐3提供的氧气作为助燃剂,所述氩气作为喷涂粉末的送粉气,所述喷涂粉末在氩气的吹送作用下输送至喷枪10内,并在丙烷充分燃烧的条件下进行喷涂。所述的喷枪10安装于行走小车8上,并能够随行走小车8沿活塞杆9的轴向在熔覆机床11上进行移动,所述的夹装工装7设置于熔覆机床11上,所述的活塞杆9装夹在夹装工装7上,并能够在夹装工装7的驱动下进行轴向转动,且所述的熔覆机床11自带轨道或滚轮且能够进行前后移动,所述冷却水源(12)对喷枪(10)的喷嘴进行冷却并对喷涂火焰进行聚束。下面对采用上述超音速火焰粉末喷涂系统对预热均匀后的活塞杆表面进行超音速火焰粉末喷涂的过程进行描述:首先将超音速火焰喷枪10夹装在熔覆机床上的可沿轴向进行移动的行走小车(8)的固定架上,使喷枪10可依次通过活塞杆的两端;接着通过气体控制箱4和送粉器5控制各工艺参数,采用丙烷为燃料、氧气为助燃剂、氩气为送粉气在活塞杆表面均匀的喷涂上述步骤(2)中得到的喷涂粉末,具体喷涂过程中的各工艺参数为:丙烷压力为0.4 MPa~0.65MPa,氧气压力为1.1MPa,氩气压力为1.1 MPa~1.3MPa,丙烷流量80~120L/min,氧气流量300~400L/ min,氩气流量150~200L/min,喷涂距离150mm~200mm,行走小车8的移动速度10~15mm/s,活塞杆转速为250~300r/min,在喷涂过程中,针对特定部位间歇式停滞以控制活塞杆的层间温度不超过300℃,且对较厚喷涂层采取逐层加厚多次喷粉的方法进行喷涂,每次喷涂的厚度不超过0.2mm,直至喷涂到预定厚度。最后,当活塞杆的表面喷涂完成后,对喷涂部位采取石棉布保温缓冷措施,防止因骤冷开裂。
(6)高频感应预热:将步骤(5)中的喷枪及行走小车从熔覆机床11上移走,并将高频感应加热设备的感应线圈14穿过步骤(5)喷涂后的活塞杆外表面并固定,然后沿活塞杆的轴向移动熔覆机床,通过熔覆机床带动活塞杆移动,从而使活塞杆的喷涂表面能够相对于感应线圈14进行移动,并使得感应线圈14能够在活塞杆的整个表面连续预热一遍,通过这种预热调整了活塞杆的温度梯度,避免了重熔时喷涂层产生龟裂剥落。其中所述的高频感应加热设备如附图2所示的,包括电源控制柜13和感应线圈14,电源控制柜13为感应线圈14提供工作电源,感应线圈14基于电磁感应现象发热,感应线圈为直径8mm单匝圆形铜管。通过高频感应加热设备对喷涂后活塞杆外表面进行的高频感应预热的具体工艺参数条件为:预热温度控制在280℃~300℃之间,熔覆机床11移动速度15~20mm/s,活塞杆转速控制在220~280r/min,感应线圈与活塞杆间隙约2mm,高频感应加热设备的电源控制柜13输出电压3 kV~5kV。
(7)高频感应重熔、冷却:通过步骤(6)将喷涂后的活塞杆进行高频感应预热后,调整控制高频感应加热设备的工作参数对活塞杆进行高频感应重熔,具体调整工艺参数为:熔覆机床11移动速度5~10mm/s,活塞杆转速150~200r/min,感应线圈与活塞杆间隙2mm,高频感应加热设备的电源控制柜13输出电压调制为8 kV~12kV,利用步骤(6)中的高频感应加热设备对经过预热处理的活塞杆表面再次感应加热进行二次重熔,使得活塞杆表面的合金喷涂层熔融,形成连续致密的熔覆层,整个重熔过程温度控制在1050℃~1100℃,即喷涂层出现镜面反光现象。重熔后使活塞杆在低能输入下转动冷却,待温度下降到约400℃时,用石棉布包覆缓慢冷却。
(8)活塞杆熔覆层的磨削加工:对步骤(7)中得到的活塞杆放于外圆磨床上进行磨削加工,使活塞杆表面的粗糙度Ra值达到0.1~0.3μm,外圆尺寸达到图样要求,完成活塞杆的修复再制造,其中砂轮选用粒度为100#~150#的软的立方氮化硼砂轮,外圆磨床具体工艺参数为:砂轮转速28m/s~33 m/s,轴向进给量0.8m/min~1.5 m/min,活塞杆线速度12m/min~18 m/min,径向进给量0.005mm/dst~0.015m m/dst。
下面结合实施例,对本发明的技术方案做进一步的详细说明。
实施例1
首先利用本发明所述方法对6.3米液压支架推移油缸的活塞杆磨损表面进行修复,其中活塞杆材质为42CrMo的中碳调质钢,化学成分为:碳 0.42%,硅0.30%,锰0.65%,铬1.13%,钼0.15%~0.25%,镍≤0.30%,铜≤0.30%,磷≤0.035%,硫≤0.035%,铁余量,热处理硬度HBS193~215,杆径Ø150mm,长1100mm,外圆电镀硬铬0.05mm,表面粗糙度Ra0.15μm。此活塞杆表面严重磨损和拉伤,最大磨损深度约为1.8mm,镀层几乎脱落,表面锈蚀,已近报废,重新订购不仅价格高且周期长,耽误生产。作为优选实施例采用本发明所述方法对此活塞杆损伤进行修复再制造,其步骤如下:
(1)喷涂粉末原料的配制,即配制下列重量比的粉末状金属原料:碳0.8%,铬17%,硼4%,硅4.5%, 铁5%,钼4%,铜2.5%,钇0.5%,镍61.7%;
(2)喷涂粉末混合物制作方法:首先,将15公斤的步骤(1)中获得的喷涂粉末混合物放入三维运动混合机内混合,磨料为Ø2.4铬钼合金钢丸,混合时间设定为25分钟,转速从低到高试运转,运转平稳,无较大振动及异常噪音,使喷涂粉末混合均匀;最后,将制得的喷涂粉末利用240目~300目的筛子进行筛分,得到的筛下物即为喷涂用喷涂粉末。
(3)活塞杆表面预处理:首先,对活塞杆表面进行车削加工,清除工件表面的电镀层、损伤层和表面软化层,修正不均匀的磨损表面和预留喷涂层厚度2mm,外圆加工尺寸φ1460 -0.1,再在修正后的表面采用90°的V形刀具车削螺纹进行表面预粗化处理,螺距为0.8mm,螺纹深度为0.8mm;其次,用丙酮浸泡擦拭机加工后的活塞杆表面进行有机溶剂脱脂处理,去除表面和渗入其中的油脂;最后,净化后的表面进行喷砂粗化处理,介质为60目白刚玉,喷砂压力为0.6MPa,使活塞杆表面粗糙度Ra达到4.0μm左右,表面更加活化,以提高喷涂层与基材的结合强度。
(4)对活塞杆表面进行预热:首先,将高频感应加热设备的感应线圈穿过步骤(3)中得到的活塞杆外表面并固定在熔覆机床的固定架上,感应线圈为直径Ø8mm单匝圆形铜管,感应线圈与活塞杆间隙2mm,然后,调节熔覆机床转速和移动速度,使活塞杆以245r/min的速度转动着在感应线圈内沿轴向以17mm/s的速度移动加热预热,以除去活塞杆表面的水分和提高活塞杆表面的温度,增强喷涂层与基材的结合强度。预热时,高频感应加热设备输出电压3kV,预热温度在170℃~175℃。
(5)超音速火焰粉末喷涂:待活塞杆预热均匀后,卸下高频感应加热设备,将超音速火焰喷枪夹装在熔覆机床的可沿轴向移动的行走小车上,使喷枪依次可通过活塞杆两端。采用以丙烷为燃料,以氧气为助燃剂,以氩气为送粉气的超音速火焰粉末喷涂工艺在活塞杆表面均匀的喷涂上述步骤(2)中得到的喷涂用喷涂粉末,超音速火焰粉末喷涂具体工艺参数为:丙烷压力为0.6MPa,氧气压力为1.1MPa,氩气压力为1.2MPa,丙烷流量90~100L/min,氧气流量350~380L/min,氩气流量180~190L/min,喷涂距离180mm~190mm,行走小车移动速度12mm/s,活塞杆转速260r/min,喷涂过程中,采取逐层加厚间歇停滞喷粉的方法进行喷涂,每次喷涂的厚度不超过0.2mm, 层间温度不超过300℃,喷涂厚度3mm;最后,对喷涂部位采取石棉布保温缓冷措施,防止因骤冷开裂。
(6)高频感应预热:将高频感应加热设备的感应线圈穿过步骤(5)中得到的活塞杆外表面,感应线圈为直径8mm单匝圆形铜管,感应线圈与活塞杆间隙2mm,然后,调节熔覆机床转速和移动速度,使活塞杆以225r/min的速度转动着在感应线圈内沿轴向以18mm/s的速度移动加热预热,通过预热调整活塞杆温度梯度,避免重熔时喷涂层产生龟裂剥落。预热时,高频感应加热设备的电源控制柜13输出电压4.5kV,预热时间220s,预热温度在285℃~290℃之间。
(7)高频感应重熔、冷却:调整工艺参数为:熔覆机床移动速度8mm/s,活塞杆转速160r/min,感应线圈与活塞杆间隙2mm,继续利用高频感应加热设备对步骤(6)中得到的活塞杆表面感应加热进行二次重熔,使活塞杆表面的合金喷涂层熔融,形成连续致密的熔覆层。重熔时,高频感应加热设备的电源控制柜13输出电压10kV,加热时间2350s,重熔温度在1050℃~1060℃,即喷涂层出现镜面反光现象。重熔后,调节熔覆机床带动活塞杆的转速60r/min,使活塞杆在转动下冷却,待温度下降到约380℃时,用石棉布包覆缓慢冷却。
(8)熔覆层的磨削加工:将步骤(7)中得到的活塞杆在100#的软的立方氮化硼砂轮外圆磨床上进行磨削加工,外圆磨床具体工艺参数为:砂轮转速30m/s,轴向进给量1.0m/min,活塞杆线速度15m/min,径向进给量0.05mm/dst,使活塞杆表面粗糙度Ra值达到0.1~0.3μm,外圆尺寸达到φ1500 -0.04
本实施例对42CrMo调质中碳钢活塞杆采用自制的喷涂粉末进行超音速火焰粉末喷涂与高频感应重熔修复处理,修复后活塞杆外观平滑,粗糙度低,硬度高,显微硬度达HV760~HV810,经装配后性能检测:HRC63~HV65.2,耐磨性提高80%,滑动摩擦提高了120%,经100MPa油压试验后,熔覆层各项指标均正常,无泄漏,使用寿命提高了三倍。
实施例2
对4米液压支架护帮油缸的活塞杆进行修改再制造,活塞杆材质为27SiMn的中碳调质钢,化学成分:碳 0.27%,硅1.20%,锰1.35%,铬≤0.30%,钼≤0.15%,镍≤0.30%,铜≤0.30%,磷≤0.035%,硫≤0.035%,铁余量,热处理硬度HBS175~203,杆径Ø80mm,长800mm,外圆电镀硬铬0.05mm,表面粗糙度Ra0.15μm。此活塞杆表面磨损和拉伤,最大磨损深度约为0.9mm,镀层部分脱落,需修复,作为优选实施例采用本发明所述方法对此活塞杆损伤进行修复再制造,其步骤如下:
(1)喷涂粉末原料配制,按下列重量比配置粉末状金属原料:碳0.8%,铬19%,硼3%,硅3%, 铁4.5%,钼3.5%,铜2%,钇0.8%,镍63.4%;
(2)喷涂粉末混合物制作方法:首先,将10公斤的步骤(1)中获得的喷涂粉末混合物放入三维运动混合机内混合,磨料为Ø2.4铬钼合金钢丸,混合时间设定为30分钟,转速从低到高试运转,运转平稳,无较大振动及异常噪音,使喷涂粉末混合均匀;最后,将制得的喷涂粉末利用240目的筛子进行筛分,得到的筛下物即为喷涂用喷涂粉末。
(3)活塞杆表面预处理:首先,对活塞杆表面进行车削加工,清除工件表面的电镀层、损伤层和表面软化层,修正不均匀的磨损表面和预留喷涂层厚度1mm,外圆尺寸φ780 -0.1,再在修正后的表面采用90°的V形刀具车削螺纹进行表面预粗化处理,螺距为1.0mm,螺纹深度为0.6mm;其次,用丙酮浸泡擦拭机加工后的表面进行有机溶剂脱脂处理,去除表面和渗入其中的油脂;最后,净化后的表面进行喷砂粗化处理,介质为40目白刚玉,喷砂压力为0.6MPa,使活塞杆表面粗糙度Ra达到6.3μm左右,表面更加活化,以提高喷涂层与基材的结合强度。
(4)对活塞杆表面预热、超音速火焰粉末喷涂:首先,将高频感应加热设备的感应线圈穿过步骤(3)中得到的活塞杆外表面,感应线圈为直径8mm单匝圆形铜管,感应线圈与活塞杆间隙2mm,然后,调节熔覆机床转速和移动速度,使活塞杆以275r/min的速度转动着在感应线圈内沿轴向以20mm/s的速度移动加热预热,以除去活塞杆表面的水分和提高活塞杆表面的温度,增强喷涂层与基材的结合强度。预热时,高频感应加热设备的输出电压3kV,预热温度在140℃~145℃。其次,待活塞杆预热均匀后,卸下高频感应加热设备,将超音速火焰喷枪夹装在熔覆机床的可沿轴向移动的行走小车上,使喷枪依次可通过活塞杆两端。采用以丙烷为燃料,以氧气为助燃剂,以氩气为送粉气的超音速火焰粉末喷涂工艺在活塞杆表面均匀的喷涂上述步骤(2)中得到的喷涂用喷涂粉末,超音速火焰粉末喷涂具体工艺参数为:丙烷压力为0.6MPa,氧气压力为1.1MPa,氩气压力为1.2MPa,丙烷流量80~90L/min,氧气流量300~320L/min,氩气流量150~160L/min,喷涂距离160mm~170mm,行走小车移动速度13mm/s,机床转速280r/min,喷涂过程中,采取逐层加厚间歇停滞喷粉的方法进行喷涂,,每次喷涂的厚度不超过0.2mm, 层间温度不超过300℃,喷涂厚度1.8mm;最后,对喷涂部位采取石棉布保温缓冷措施,防止因骤冷开裂。
(5)高频感应预热:将高频感应加热设备的感应线圈穿过步骤(4)中得到的活塞杆外表面并固定在熔覆机床的固定架上,感应线圈为直径8mm单匝圆形铜管,感应线圈与活塞杆间隙2mm,然后,调节熔覆机床转速和移动速度,使活塞杆以255r/min的速度转动着在感应线圈内沿轴向以20mm/s的速度移动加热预热,通过预热调整活塞杆温度梯度,避免重熔时喷涂层产生龟裂剥落。预热时,高频感应加热设备的电源控制柜13输出电压3kV,预热时间150s,预热温度在280℃~285℃之间。
(6)高频感应重熔、冷却:调整工艺参数为:熔覆机床移动速度10mm/s,活塞杆转速180r/min,感应线圈与活塞杆间隙2mm,继续利用上述高频感应加热设备对步骤(5)中得到的活塞杆表面感应加热进行二次重熔,使活塞杆表面的合金喷涂层熔融,形成连续致密的熔覆层。重熔时,高频感应加热设备的电源控制柜13输出电压8kV,加热时间1200s,重熔温度在1080℃~1090℃,即喷涂层出现镜面反光现象。重熔后,调节机床转速60r/min,使活塞杆在转动下冷却,待温度下降到约350℃时,用石棉布包覆缓慢冷却。
(7)熔覆层的磨削加工:将步骤(6)中得到的活塞杆在100#的软的立方氮化硼砂轮外圆磨床上进行磨削加工,外圆磨床具体工艺参数为:砂轮转速33m/s,轴向进给量1.5m/min,活塞杆线速度18m/min,径向进给量0.012mm/dst,使活塞杆表面粗糙度Ra值达到0.1~0.3μm,外圆尺寸达到φ800 -0.04
本实施例对27SiMn调质中碳钢活塞杆采用自制的喷涂粉末进行超音速火焰粉末喷涂与高频感应重熔修复处理,修复后活塞杆外观平滑,粗糙度低,硬度高,显微硬度达到HV840~HV930,经装配后性能检测:HRC65~HV67,耐磨性提高120%,滑动摩擦提高了150%,经100MPa油压试验后,熔覆层各项指标均正常,无泄漏,使用寿命提高了三倍。
对比例1
采用传统电镀刷修复技术在27SiMn调质中碳钢活塞杆外表面上电镀0.4mm的铜锡合金。
对比例2
采用常规的氧—乙炔热喷涂修复技术在27SiMn调质中碳钢活塞杆外表面上喷涂1mm的镍基喷涂粉末。
对比例3
采用常规的电弧热喷涂修复技术在27SiMn调质中碳钢活塞杆上外表面上喷涂1.5mm的镍铬合金电弧喷涂丝。
将上述实施例1-2与对比例3-5修复后的调质中碳钢活塞杆的修复层进行综合性能检测和分析,结果见下表1:
表1 调质中碳钢活塞杆修复层的检验结果
经过若干次的实验和检测,发现本发明所述方法修复后的活塞杆与修复层间的结合强度均大于300MPa,其硬度HRC均大于60,修复层厚度可以达到2mm以上,且不存在孔隙,使得修复后的油缸活塞杆具有更强的耐腐蚀性和耐磨性,提高了活塞杆以及油缸整体的使用寿命,完全杜绝了现有电刷镀修复再制造技术中镀层的脱落技术问题,具有广阔的市场推广前景。
以上仅是对本发明的优选实施方式进行了描述,并不将本发明的技术方案限制于此,本领域技术人员在本发明的主要技术构思的基础上所作的任何公知变形都属于本发明所要保护的技术范畴,本发明具体的保护范围以权利要求书的记载为准。

Claims (10)

1.一种活塞杆的表面修复方法,其特征在于,包括以下步骤:
步骤一、按下述重量比配置喷涂粉末混合物:碳0.7~1%,铬15%~20%,硼2.5%~4.5%,硅3.0%~5%,铁0.1-5%,钼3%~5%,铜2.0%~3.5%,钇0.3%~1.0%,镍余量,并将喷涂粉末混合物的粒径加工至60μm以下;
步骤二、对待修复的活塞杆表面进行清理和粗化处理;
步骤三、对活塞杆进行表面预热处理,控制预热温度在120℃~180℃;
步骤四、对步骤三预热后的活塞杆表面进行超音速火焰粉末喷涂,通过超音速火焰粉末喷涂系统以丙烷为燃料、氧气为助燃剂、氩气为送粉气,将步骤一配置的喷涂粉末混合物均匀喷涂在活塞杆表面上,喷涂过程的工艺参数控制为:丙烷压力0.4MPa~0.65MPa、氧气压力1.1MPa、氩气压力1.1MPa~1.3MPa、丙烷流量80~120L/min、氧气流量300~400L/min、氩气流量150~200L/min、喷涂距离150mm~200mm、活塞杆转速250~300r/min且活塞杆相对于喷枪的水平移动速度10~15mm/s、活塞杆层间温度不超过300℃,同时采取逐层加厚间歇喷涂方式形成厚度为1.8mm至5mm的喷涂层,且每次喷涂厚度不超过0.2mm;当活塞杆表面喷涂完成后,对喷涂部位进行保温缓冷;
步骤五、对步骤四喷涂后的活塞杆表面进行高频感应预热,控制预热温度在280℃~300℃之间;
步骤六、对步骤五预热后的活塞杆表面进行高频感应重熔处理,控制重熔温度在1050℃~1100℃之间,将活塞杆表面的喷涂层转换成连续致密的熔覆层,并对重熔处理后的活塞杆进行保温缓冷;
步骤七、对步骤六处理后的活塞杆进行磨削加工,使活塞杆表面的粗糙度Ra值达到0.1~0.3μm,活塞杆外圆尺寸满足使用要求,完成对活塞杆的修复再制造。
2.根据权利要求1所述的修复方法,其特征在于,其中步骤一具体包括:
(1)按照所述重量比配置各喷涂粉末原料,然后将一定量的所述喷涂粉末原料放入三维运动混合机内进行混合,并采用Ø1.6mm~Ø2.4mm的铬钼合金钢丸进行磨料,混合磨料时间为25~30分钟,混合机转速从低到高平稳运转,使各喷涂粉末原料充分混合均匀,形成喷涂粉末混合物;
(2)将所述喷涂粉末混合物倒入240目~300目的筛子进行筛分,提取筛下物备用。
3.根据权利要求1所述的修复方法,其特征在于,其中步骤二具体包括:
(1)、对待修复活塞杆表面进行车削加工,清除活塞杆表面的各种损伤和表面软化层,修正不均匀的磨损表面,将其加工至最大磨损量以下0.1mm~0.2mm,并预留不大于5mm的喷涂层厚度;
(2)、通过车削螺纹对活塞杆表面进行预粗化处理,螺距控制为0.6mm~1.0mm,螺纹深度控制为0.5mm~0.8mm;
(3)、对预粗化处理后的活塞杆表面进行脱脂净化处理,采用酒精、丙酮、工业汽油、三氯乙烯或四氯化碳溶剂去除活塞杆表面和渗入内部的油脂;
(4)、对净化处理后的活塞杆表面进行喷砂粗化处理,采用40~60目的白刚玉在0.4MPa~0.6MPa的喷砂压力下进行表面喷砂粗化处理,使活塞杆表面的粗糙度Ra处于3.2μm~6.3μm间。
4.根据权利要求1所述的修复方法,其中步骤四中所述的超音速火焰粉末喷涂系统包括电源柜(1)、丙烷罐(2)、氧气罐(3)、气体控制箱(4)、送粉器(5)、氩气罐(6)、夹装工装(7)、行走小车(8)、喷枪(10)、熔覆机床(11)和冷却水源(12),所述丙烷罐(2)和氧气罐(3)同时连接于所述气体控制箱(4),通过所述气体控制箱(4)控制丙烷罐(2)和氧气罐(3)的输出气压和流量,所述电源柜(1)连接于所述气体控制箱(4),所述气体控制箱(4)通过两根独立的管路将丙烷和氧气提供给喷枪(10),所述氩气罐(6)连接于所述送粉器(5),所述送粉器(5)内存储有所述喷涂粉末混合物,并通过管路在氩气送粉气的作用下将所述喷涂粉末混合物提供给所述喷枪(10),所述喷枪(10)安装于所述行走小车(8)上,所述夹装工装(7)设置于所述熔覆机床(11)上,所述活塞杆(9)安装于所述夹装工装(7)上,并能够在夹装工装(7)的带动下进行轴向转动,所述行走小车(8)能够沿活塞杆(9)的轴向在所述熔覆机床(11)上进行水平移动,所述熔覆机床(11)自带移动轨道或滚轮,通过所述冷却水源(12)对喷枪(10)的喷嘴进行冷却并对喷涂火焰进行聚束。
5.根据权利要求1所述的修复方法,其特征在于,其中步骤三和步骤五中,通过高频感应加热设备对活塞杆表面进行预热处理,所述高频感应加热设备包括电源控制柜(13)和感应线圈(14),所述电源控制柜(13)的振荡频率为200~250kHz,所述感应线圈为直径大于活塞杆外径的单匝圆形铜管,通过感应线圈(14)穿过活塞杆表面并与活塞杆做相对移动来进行感应预热,且在预热过程中控制:感应线圈(14)与活塞杆的相对移动速度为15~20mm/s、活塞杆自身转速为220~280r/min、感应线圈与活塞杆表面间的间隙约2mm且电源控制柜(13)的输出电压为3kV~5kV。
6.根据权利要求1所述的修复方法,其特征在于,其中步骤六中,通过高频感应加热设备对活塞杆表面进行高频感应重熔处理,所述高频感应加热设备包括电源控制柜(13)和感应线圈(14),所述电源控制柜(13)的振荡频率为200~250kHz,所述感应线圈为直径大于活塞杆外径的单匝圆形铜管,通过感应线圈(14)穿过活塞杆表面并与活塞杆做相对移动来进行感应重熔,且在高频感应重熔过程中控制:感应线圈(14)与活塞杆的相对移动速度为5~10mm/s、活塞杆自身转速为150~200r/min、感应线圈与活塞杆表面间的间隙约2mm且电源控制柜(13)的输出电压为8kV~12kV,并且当活塞杆表面的喷涂层出现镜面反光现象时停止重熔处理并采取保温缓冷。
7.根据权利要求1所述的修复方法,其特征在于,其中步骤七具体包括:将活塞杆放于外圆磨床上进行磨削加工,砂轮选用粒度为100#~150#的软立方氮化硼砂轮,并控制外圆磨床的磨削加工工艺参数为:砂轮转速28m/s~33m/s、轴向进给量0.8m/min~1.5m/min、活塞杆线速度12m/min~18m/min、径向进给量0.005mm/dst~0.015mm/dst。
8.根据权利要求1-7任一项所述的修复方法,其特征在于,通过所述方法修复后的活塞杆表面硬度HRC大于60,且活塞杆基体与熔覆层间的结合强度大于300MPa。
9.根据权利要求1-7任一项所述的修复方法,其特征在于,所述活塞杆材质为27SiMn的中碳调质钢,化学成分:碳0.27%,硅1.20%,锰1.35%,铬≤0.30%,钼≤0.15%,镍≤0.30%,铜≤0.30%,磷≤0.035%,硫≤0.035%,铁余量,热处理硬度HBS175~203。
10.根据权利要求1-7任一项所述的修复方法,其特征在于,所述活塞杆材质为42CrMo的中碳调质钢,化学成分为:碳0.42%,硅0.30%,锰0.65%,铬1.13%,钼0.15%~0.25%,镍≤0.30%,铜≤0.30%,磷≤0.035%,硫≤0.035%,铁余量,热处理硬度HBS193~215。
CN201410383281.3A 2014-08-06 2014-08-06 一种活塞杆的表面修复方法 Active CN104233162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410383281.3A CN104233162B (zh) 2014-08-06 2014-08-06 一种活塞杆的表面修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410383281.3A CN104233162B (zh) 2014-08-06 2014-08-06 一种活塞杆的表面修复方法

Publications (2)

Publication Number Publication Date
CN104233162A CN104233162A (zh) 2014-12-24
CN104233162B true CN104233162B (zh) 2017-01-25

Family

ID=52222048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410383281.3A Active CN104233162B (zh) 2014-08-06 2014-08-06 一种活塞杆的表面修复方法

Country Status (1)

Country Link
CN (1) CN104233162B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894558B (zh) * 2015-06-22 2017-05-03 大连理工大学 一种感应熔覆梯度硬质复合材料涂层工艺
CN104959617A (zh) * 2015-07-14 2015-10-07 上海胜桀精密机械科技有限公司 一种粉末冶金制备方法
CN105506535A (zh) * 2016-01-15 2016-04-20 江西理工大学 一种喷涂涂层耦合后处理方法
CN106239317A (zh) * 2016-07-29 2016-12-21 中国航空工业集团公司西安飞行自动控制研究所 一种提高活塞表面粗糙度的加工方法
CN106835119A (zh) * 2016-12-27 2017-06-13 中国石油天然气股份有限公司 一种油田注水用往复式柱塞泵柱塞修复方法
CN106868442A (zh) * 2017-02-27 2017-06-20 郑州立佳热喷涂机械有限公司 超音速均匀喷涂球阀耐磨涂层的控制方法
CN107299309A (zh) * 2017-06-30 2017-10-27 大连透平机械技术发展有限公司 一种离心压缩机轴磨损修复方法
CN109913790A (zh) * 2018-03-22 2019-06-21 何水法 一种用于环保锅炉的防腐蚀防磨损强化涂层的制备工艺
CN110331358A (zh) * 2019-04-30 2019-10-15 山东能源重装集团恒图科技有限公司 一种液压支架油缸伸缩杆的热喷涂制造和再制造方法
CN110124957B (zh) * 2019-06-24 2023-07-21 中国石油大学(华东) 一种管道内壁高频感应熔覆的装置及方法
CN110408879A (zh) * 2019-07-23 2019-11-05 国营芜湖机械厂 一种飞机带不可分解密封圈活塞杆的再制造修复工艺
CN110592576A (zh) * 2019-10-10 2019-12-20 西安天科铭创石油技术服务有限公司 一种缸套生产方法、缸套及该缸套生产方法的应用
CN111496465A (zh) * 2020-05-08 2020-08-07 徐州工程学院 一种废旧的回转形体零件的外表面再制造修复工艺
CN111979542B (zh) * 2020-08-06 2022-07-05 江苏科环新材料有限公司 垃圾电站锅炉管在复合运动条件下高频重熔涂层制备装置
CN113073297B (zh) * 2021-03-23 2023-05-02 熔创金属表面科技(常州)有限公司 旋转硅铝靶材再制造的装置及其制备方法
CN113403565A (zh) * 2021-04-30 2021-09-17 彩虹显示器件股份有限公司 一种电子玻璃用螺旋轴表面耐磨层和加工方法
CN115519439A (zh) * 2022-09-28 2022-12-27 哈尔滨电气动力装备有限公司 核电站轴封核主泵轴密封外环制造工艺
CN115870195A (zh) * 2022-10-31 2023-03-31 山东北溟科技有限公司 船用轴类零件修复再制造工艺
CN115852360A (zh) * 2022-12-08 2023-03-28 安徽马钢表面技术股份有限公司 一种细长实芯辊件的喷焊重熔装置及喷焊重熔方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798302A1 (en) * 2004-08-23 2007-06-20 Kabushiki Kaisha Toshiba Method and equipment for repairing rotor
CN102154609A (zh) * 2011-03-23 2011-08-17 北京矿冶研究总院 一种高精度辊件耐磨涂层的制备方法
CN102554552A (zh) * 2012-01-30 2012-07-11 重庆生竹科技发展有限公司 薄型空心辊的修复方法
CN102851546A (zh) * 2011-10-13 2013-01-02 兰州理工合金粉末有限责任公司 一种稀土镍基合金粉末材料
CN103741090A (zh) * 2013-12-06 2014-04-23 马鞍山马钢表面工程技术有限公司 沉没辊和稳定辊表面涂层的喷涂方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798302A1 (en) * 2004-08-23 2007-06-20 Kabushiki Kaisha Toshiba Method and equipment for repairing rotor
CN102154609A (zh) * 2011-03-23 2011-08-17 北京矿冶研究总院 一种高精度辊件耐磨涂层的制备方法
CN102851546A (zh) * 2011-10-13 2013-01-02 兰州理工合金粉末有限责任公司 一种稀土镍基合金粉末材料
CN102554552A (zh) * 2012-01-30 2012-07-11 重庆生竹科技发展有限公司 薄型空心辊的修复方法
CN103741090A (zh) * 2013-12-06 2014-04-23 马鞍山马钢表面工程技术有限公司 沉没辊和稳定辊表面涂层的喷涂方法

Also Published As

Publication number Publication date
CN104233162A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN104233162B (zh) 一种活塞杆的表面修复方法
CN108559996B (zh) 一种液压支架活柱外表面激光熔覆修复方法
CN102154609B (zh) 一种高精度辊件耐磨涂层的制备方法
CN102619477B (zh) 一种耐磨耐蚀铁基合金激光熔覆石油钻杆接头
CN104191152B (zh) 一种液压缸活塞杆或中级缸外表面的修复再制造方法
CN102465294B (zh) 一种大面积激光熔覆高硬度镍基合金材料的方法
CN107400887A (zh) 一种超声滚压强化激光熔覆层的方法
CN103374693B (zh) 高温炉辊表面的纳米热障涂层及制备方法
CN108707894B (zh) 一种激光熔覆自润滑耐磨钴基合金所用粉料及工艺方法
CN108866471B (zh) 一种耐液态铅铋合金腐蚀涂层及其制备方法
CN111455306A (zh) 一种金属硬密封球阀镍基碳化钨耐磨涂层的制造工艺
CN107150154A (zh) 一种金刚石工具的增材制造方法
CN104264098B (zh) 一种爆炸喷涂碳化钨耐磨涂层的制备方法
CN107630215B (zh) 一种工件表面的耐磨耐腐蚀处理方法
CN108165978A (zh) 一种采用超高速激光熔覆技术修复核电海水泵轴的方法
CN112899604A (zh) 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法
CN107620029A (zh) 一种wc颗粒和铁基合金粉末的等离子喷焊方法
CN105586562A (zh) 一种混凝土泵车活塞杆再制造的工艺
CN110952060A (zh) 一种减速器动力传输轴的表面处理方法及涂层
CN111005015A (zh) 一种钢表面冷喷涂/激光气体氮化复合制备梯度涂层的方法
CN103572194B (zh) 内燃机气缸套内表面耐磨涂层的塑变压力加工方法
CN102286718A (zh) 提高热喷涂涂层与金属基材结合强度的方法
RU2532738C1 (ru) Способ восстановления изношенных поверхностей стальных деталей
CN105441853A (zh) 一种双级表面复合强化方法
CN104174964A (zh) 钢体钻头表面二次硬化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 710075 gate C1004, No. 1 Kam Yip Road, hi tech Development Zone, Shaanxi, Xi'an

Applicant after: SHAANXI TIAN YUAN MATERIALS PROTECTION TECHNOLOGY CO., LTD.

Address before: 710075 gate C1004, No. 1 Kam Yip Road, hi tech Development Zone, Shaanxi, Xi'an

Applicant before: SHAANXI TIAN YUAN MATERIALS PROTECTION TECHNOLOGY CO., LTD.

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant