CN104232681A - 一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用 - Google Patents

一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用 Download PDF

Info

Publication number
CN104232681A
CN104232681A CN201410506096.9A CN201410506096A CN104232681A CN 104232681 A CN104232681 A CN 104232681A CN 201410506096 A CN201410506096 A CN 201410506096A CN 104232681 A CN104232681 A CN 104232681A
Authority
CN
China
Prior art keywords
starch
rice
plant
expression vector
phosphorylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410506096.9A
Other languages
English (en)
Other versions
CN104232681B (zh
Inventor
包劲松
孙潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410506096.9A priority Critical patent/CN104232681B/zh
Publication of CN104232681A publication Critical patent/CN104232681A/zh
Application granted granted Critical
Publication of CN104232681B publication Critical patent/CN104232681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用,所述植物表达载体包括插入原始载体的目的基因和启动子,所述的目的基因包括顺次相连的颗粒结合型淀粉合成酶的转运肽基因片段和马铃薯葡聚糖水合二激酶基因,所述的启动子为大麦胚乳特异性启动子HorD。本申请将马铃薯葡聚糖水合二激酶基因转入水稻中,马铃薯葡聚糖水合二激酶基因的表达能够使水稻的淀粉发生磷酸化,从而对淀粉实现改性。颗粒结合型淀粉合成酶转运肽引导马铃薯葡聚糖水合二激酶到达淀粉体,对淀粉进行磷酸化改性。本发明将大麦胚乳特异性启动子HorD能够促进马铃薯葡聚糖水合二激酶基因在水稻胚乳中的表达,大幅度提高水稻淀粉中的磷含量。

Description

一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用
技术领域
本发明属于淀粉改性技术领域,尤其涉及一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用。
背景技术
淀粉主要由直链淀粉和支链淀粉组成。直链淀粉是由α-1,4糖苷键连接而成的线形多聚糖,约占淀粉组成的30%。支链淀粉是由α-1,4糖苷键和α-1,6糖苷键连接而成的具有高度分支的多聚糖,约占70%。
作为一种天然高分子化合物,淀粉广泛应用于许多工业部门,但由于天然淀粉物理化学性质具有一定的局限性,已不能适应近代食品、纺织、造纸和其他工业的需要,例如食品工业中希望能有粘度稳定,冻融稳定性好的食品添加剂,造纸业希望能有新型的施胶剂,以提高纸张的湿强度、耐折度、并能增加纸张产量和降低白水的浓度,纺织业希望能采用在粘度,成膜性,浆膜的机械性等方面有着良好性能的浆料等。为了满足这些性能方面的新要求,就必须改变淀粉的性状,一般可以利用热、酸、碱、氧化剂、酶制剂等改变天然淀粉的物化性质,主要是通过淀粉本身的结构产生变化,从而扩大淀粉的应用范围。
淀粉磷酸化是淀粉改性的一种方法,磷酸化改性可以降低淀粉糊化温度,提高粘度和透明性。经磷酸化改性的淀粉具有良好的分散乳化性,抗老化能力提高,且具有一定与阳离子结合的能力。传统淀粉磷酸改性工艺都是基于对天然植物淀粉进行的化学改性,即在碱性条件下与磷酸盐在120~125℃下发生酯化反应,产生淀粉磷酸单酯的过程。由于酯化反应是一种可逆反应,且对温度的要求非常严格,不论湿法改性或干法改性,或者是用何种化学药品作为反应底物,均造成了很大的资源与能源浪费,产生的废弃物和副产物对环境造成了巨大的污染。
在植物体内淀粉磷酸化是由葡聚糖磷酸二激酶催化的。在马铃薯和拟南芥中已鉴定出这种酶的两种同系物,分别为葡聚糖水合二激酶(glucan-water dikinase,GWD,EC 2.7.9.4)和磷酸葡聚糖水二激酶(phosphoglucan-water dikinase,EC 2.7.9.5)。前者催化转移ATP的β-磷酸至葡萄糖基的C-3或C-6位置,将γ-磷酸转移至水分子,释放正磷酸,而后者催化转移磷酸至磷酸多糖(已经过葡聚糖磷酸二激酶磷酸化)和水。可逆性淀粉磷酸化发生在植物叶片临时淀粉降解过程中,也可发生某些植物块根、块茎和果实中。淀粉磷酸化现象在植物界普遍存在,但是不同物种间淀粉磷酸含量有显著差别,马铃薯块茎淀粉磷酸含量较高(7~33nmolG6P/mg),而谷物籽粒淀粉的磷酸化程度极低,几乎不可测。编码葡聚糖水合二激酶蛋白的核苷酸序列和氨基酸序列,在番茄(Genbank:NP_001234405.1)、马铃薯(Genbank:AFH88388.1)、小麦(Genbank:ADG27838.1)、水稻(Genbank:ABA97816.2)、葡萄(Genbank:XP_002265211.1)和拟南芥(Genbank:AAU93516.1)等都有发现。
近年来,利用生物技术对淀粉进行生物改性生产改性淀粉已经成为热点。由于产生改性淀粉的过程无污染、不需要进一步的加工工艺,已经引起了越来越多国内外淀粉研究工作者们的注意。淀粉磷酸化作为植物体淀粉代谢过程中唯一发生的共价修饰,对催化淀粉磷酸化的酶及相关基因的研究具有重要意义和应用价值。但是国内对葡聚糖水合二激酶的研究相对较少,虽然有报道将葡聚糖水合二激酶转入植物中来改性淀粉,但是改性淀粉的磷含量比较低(即磷酸化水平低),为了进一步提高淀粉的磷含量,往往需要同时转入多种酶基因来达到这一目的,如中国专利申请200780028601.1在植物中同时转入淀粉合酶II基因和葡聚糖水合二激酶基因。
发明内容
本发明提供了一种植物表达载体,转入水稻植株后,可以显著提高水稻中磷酸化淀粉的含量。
一种植物表达载体,包括插入原始载体的目的基因和启动子,所述的目的基因包括顺次相连的颗粒结合型淀粉合成酶的转运肽基因片段和马铃薯葡聚糖水合二激酶基因,所述的启动子为大麦胚乳特异性启动子HorD。
所述的马铃薯葡聚糖水合二激酶基因的核苷酸序列如SEQ ID NO.1所示。
所述的大麦胚乳特异性启动子HorD的核苷酸序列如SEQ ID NO.13所示。
所述颗粒结合型淀粉合成酶的转运肽基因片段的核苷酸序列如SEQID NO.2所示。
所述的原始载体可以为一般的用于植物转化的载体,如可以为pUCE。
本发明还提供了所述植物表达载体在制备磷酸化改性水稻淀粉中的应用。
本发明还提供一种磷酸化改性水稻淀粉的制备方法,包括:
(1)将所述的植物表达载体转入水稻植株,筛选获得转基因植株;
(2)对所述的转基因植株进行逐代纯化,获得稳定表达马铃薯葡聚糖水合二激酶的水稻株系;
(3)从所述的水稻株系中提取获得改性水稻淀粉。
步骤(1)中,转化的水稻品种可以为中花II、绍粳08-31等,转化糯性水稻绍粳08-31后,获得的磷酸化改性水稻淀粉具有更高的粘度。
提取磷酸化改性水稻淀粉时,可以从水稻的籽粒(种子)中提取。
本发明还提供了所述制备方法获得的磷酸化改性水稻淀粉。
本发明还提供了所述的磷酸化改性水稻淀粉在造纸、制备纺织浆料中的应用。如,所述的磷酸化改性水稻淀粉在造纸中可作为造纸湿部添加剂,在纺织业中可用于配制上桨的浆料,均可达到相关的标准,可替代化学改性的淀粉磷酸酯。
本发明还提供了一种培育富含磷酸化改性淀粉的转基因水稻的方法,包括:
将所述的植物表达载体转入水稻植株,筛选获得转基因植株;对所述的转基因植株进行逐代纯化,获得稳定表达马铃薯葡聚糖水合二激酶的水稻株系。
本发明还提供了一种富含磷酸化改性淀粉的转基因水稻在水稻遗传育种中的应用,所述的富含磷酸化改性淀粉的转基因水稻通过上述的方法获得。所述的转基因水稻可以与其他淀粉性状优良的水稻品种进行杂交、回交后,可获得性质优良的水稻品种。如,转化的水稻为中花II时,获得转基因水稻与绍粳08-31进行杂交、回交,育成的糯稻品系的淀粉较转基因中花II的粘度提高。
与现有技术相比,本发明的有益效果为:
(1)本申请将马铃薯葡聚糖水合二激酶基因转入水稻中,马铃薯葡聚糖水合二激酶基因的表达能够使水稻的淀粉发生磷酸化,从而对淀粉实现改性。本申请中,启动马铃薯葡聚糖水合二激酶的启动子为大麦胚乳特异性启动子HorD。大麦胚乳特异性启动子HorD是大麦醇溶蛋白D启动子HorD,大麦的醇溶蛋白具有很高的多态性,主要的作用是储存蛋白质,在大麦种子中合成。其启动子HorD为胚乳特异型启动子,可在大麦胚乳中特异性表达。
颗粒结合型淀粉合成酶(GBSSI)是能与发育中的淀粉颗粒紧密结合的有活力的蛋白,本发明选取大麦颗粒结合型淀粉合成酶中编码转运肽的基因片段,将其与马铃薯葡聚糖水合二激酶基因的相连,以使转运肽引导马铃薯葡聚糖水合二激酶到达淀粉体,对淀粉进行磷酸化改性。
本发明将大麦胚乳特异性启动子HorD和颗粒结合型淀粉合成酶的转运肽基因片段组在一起,能够促进马铃薯葡聚糖水合二激酶基因在水稻胚乳中的表达,大幅度提高水稻淀粉中的磷含量,磷含量较野生型的水稻籽粒淀粉可提高10倍。
(2)葡聚糖水合二激酶基因(GWD)在马铃薯叶片、茎与块茎中表达,而在像水稻等谷物作物中,也只在茎叶中有所表达,在籽粒中并不表达。利用一般组成型启动子35S构建的载体的转基因水稻葡聚糖水合二激酶基因在水稻的叶片和茎中表达。采用本发明的启动子后,葡聚糖水合二激酶基因可在水稻的籽粒中大量表达。另外,尽管大麦胚乳特异性启动子HorD为胚乳特异性启动子,但是本发明发现,大麦胚乳特异性启动子HorD在水稻中的并不具有高特异性,葡聚糖水合二激酶基因不仅在水稻籽粒中表达,同时也在水稻的叶片、茎中均可大量表达。
(3)本发明磷酸化改性的水稻淀粉颗粒结构发生变化,磷含量增高,较野生型水稻植株提高了10倍,从而淀粉的热力学性能发生改变,糊化温度降低。本发明通过生物改性的水稻淀粉可部分或完全取代化学改性的淀粉磷酸酯,从而可避免传统的化学方法对淀粉的磷酸化改性存在着严重的资源和能源浪费及环境污染问题。
(4)本发明提供了培育富含磷酸化改性淀粉的转基因水稻的方法,通过该方法获得富含磷酸化改性水稻淀粉的水稻,且该水稻还可应用于遗传育种中。
附图说明
图1为pUCED-HorD:GBSS-StGWD:NOS载体构建示意图。
图2为实施例1中转基因水稻植株鉴定结果图。
图3为实施例1中转基因水稻植株组织(采用本申请的启动子)中马铃薯葡聚糖水合二激酶基因的表达情况。
图4为实施例1野生型及改性水稻淀粉的电镜图。
具体实施方式
下面结合具体实施例对本发明作进一步阐释。
实施例1改性水稻淀粉的生产
1、构建植物表达载体
(1)马铃薯葡聚糖水合二激酶基因的克隆
①以马铃薯葡聚糖水合二激酶基因(StGWD)的序列设计特异引物,引物的碱基序列如下:
StGWD-F:5’-GGTCTTAAUTGCTGTACTTACCACTGATACCTC-3’;
StGWD-R:5’-GGCATTAAUTCACATCTGTGGTCTTGTCTGAAC-3’。
②以马铃薯转录组RNA为模板,利用StGWD-F/StGWD-R引物进行RT-PCR扩增,回收目的条带连接到pUCE后,转入到大肠杆菌DH5α后进行测序,通过对测序结果的比对,得知StGWD基因的全长为4167bp,核苷酸序列如SEQ ID No.1所示,由此构建得到载体pUCEstGWD
(2)启动子的克隆
①以大麦(金诺)基因组DNA为模板,以HorD-F/HorD-R为引物,用高保真酶prime star NS DNA polymerase PCR扩增大麦胚乳特异启动子HorD,大麦胚乳特异启动子HorD的核苷酸序列如SEQ ID NO.13所示。
HorD-F:5′-CCGGAATTCCATACGATTTAGGTGACA-3′;
EcoR I
HorD-R:5′-CCCAAGCTTTTCTAGACTCGGTGGACT-3′。
Hind III
②针对大麦颗粒结合淀粉合成酶GBSSI基因中编码转运肽的功能域设计引物,引物的碱基序列如下:
GBSS-F:5′-CCCAAGCTTATGGCGGCTCTGGTCACGTC-3′;
Hind III
GBSS-R:5′-CTAGCTAGCGCTACAACAAGCGGCTATCTCCT-3′。
Nhe I
以大麦(金诺)基因组DNA为模板,以GBSS-F/GBSS-R为引物,用高保真酶prime star NS DNA polymerase进行PCR扩增,扩增得到的大麦颗粒结合淀粉合成酶基因编码转运肽的功能域片段如SEQ ID NO.2所示。
(3)连接载体
将扩增的HorD和GBSSI片段与pGM-T载体连接,获得的重组质粒载体pGM-T-HorD与pGM-T-GBSSI。先将pGM-T-HorD用EcoR I和HindIII双酶切,pGM-T-GBSSI用Hind III和Nhe I双酶切后,回收目的片段。用T4 DNA连接酶将回收的HorD和GBSSI片段与表达载体pUCEstGWD连接。载体构建示意图如图1所示。
2、转化水稻
(1)取10μLpUCED-HorD:GBSS-StGWD:NOS质粒与EHAl05根瘤农杆菌感受态细胞均匀混合,冰上放置30min;将装有感受态细胞的离心管浸入液氮5min,37℃水浴5min,重复一次;向离心管中加入800μLYEB培养基,28℃180r/min培养1h后,涂布到含有卡那霉素和利福平的YEP培养基上培养2天,菌落PCR鉴定。
(2)采用农杆菌介导的方法转化水稻(中花II)愈伤组织,获得转化水稻植株。具体方法可参照常规文献(1993,Chan et al.,Plant MoI.Biol.22,491-506;Hiei et al.,1994,Plant J.6,271-282;Deng et al.,1990,Science inChina 33,28-34;Wilmink et al.,1992,Plant Cell Reports 11,76-80;May etal.,1995,Bio/Technology 13,486-492;Conner and Domisse,1992,Int.J.Plant Sci.153,550-555;Ritchie et al.,1993,Transgenic Res.2,252-265)记载的方法。
(3)转基因水稻的筛选、鉴定
采用CTAB法制备上述转化水稻植株的叶片DNA。具体步骤如下:
选取新鲜水稻叶片3g,用液氮研磨;加入1ml 65℃预热的2×CTAB,将混合液置于2ml离心管中,65℃水浴加热40min,每隔8~10min振荡一次;冷却至室温,加入氯仿、异戊醇(24∶1)混合液1ml,上下颠倒,静止10分钟;12000rpm离心10min后吸上清于干净的1.5ml离心管中;加入等体积预冷的异丙醇,-20℃沉淀1~2小时,沉淀DNA;12000rpm离心10min,弃上清,加入75%乙醇漂洗1min;12000rpm离心5min,弃上清,将离心管倒置于吸水纸上,充分干燥;加入150μl无菌水溶解备用。
以提取的基因组DNA为模板,以潮霉素(HPT)标记引物进行PCR扩增,筛选阳性植株。
潮霉素引物序列如下:
HPT-F:5’-ATGTTGGCGACCTCGTATTT-3’;
HPT-R:5’-CGTTATGTTTATCGGCACTTT-3’。
PCR扩增体系(反应体系可按需求相应放大)如表1。
表1
PCR反应条件:94℃,5min,预变性;94℃,20s,变性;50℃(55℃),30s,退火;72℃,40s延伸;第二步到第四步进行30个循环;72℃,7min,延伸;4℃,冷却。
电泳检测PCR扩增产物,阳性植株含有大小为216bp的潮霉素DNA片段。
(4)利用步骤(3)中的HPT引物和GWD引物对转基因植株进行逐代纯化,获得稳定表达马铃薯葡聚糖水合二激酶的水稻株系。
启动子引物序列,如下:
R-F:5’-AGTCACCCTCAATACCGT-3’;
R-R:5’-CATAAAGCCTTCTCCCTC-3’
鉴定结果如图2。
3、转基因水稻植株基因表达及淀粉性能检测
(1)马铃薯葡聚糖水合二激酶基因(StGWD)基因表达
①提取稳定表达马铃薯葡聚糖水合二激酶的水稻的茎、叶及发育中的胚乳的RNA。
采用Trizol法制备总RNA。选取组织100mg加液氮研磨至粉;加入1ml Trizol液,混合液置于2ml离心管中,冰上放置5min;加入200ml氯仿,盖紧瓶盖,剧烈摇荡15秒;12000rpm离心10min,取上层水相于干净的1.5ml离心管,加入500ml异丙醇,放置冰上10min;12000rpm离心10min,弃上清,加入1ml 75%乙醇,混匀;4℃下7500rpm离心5min,小心弃上清,室温或真空干燥5~10min;加入60℃预热DEPC水溶解备用。
②针对StGWD-基因设计引物(目的片段大小为462bp),RT-PCR检测基因表达。引物的碱基序列为:
R-F:5’-AGTCACCCTCAATACCGT-3’;
R-R:5’-CATAAAGCCTTCTCCCTC-3’。
反转录第一链cDNA,反应体系如表2。
表2
在PCR仪上进行65℃,5min,冰上急冷,变性、退火。
在上述体系中配制如表3的反转录反应液:
表3
在PCR仪上进行30℃,10min,42℃,40min,95℃,5min;处理后置于冰上,稀释备用。
PCR反应体系参照表1。
结果如图3所示,在转基因水稻(是指稳定表达马铃薯葡聚糖水合二激酶的水稻株系,下述实施例与之同理)中,马铃薯葡聚糖水合二激酶基因在水稻的茎、叶和胚乳中均有较高表达,在茎和胚乳中表达量差异不大,叶中表达量最高。而用一般组成型启动子35s构建的载体的转基因水稻葡聚糖水合二激酶基因仅在叶片和茎中表达,在籽粒中的表达并不明显。
(2)淀粉性能检测
提取稳定的转基因水稻植株的稻米淀粉,提取方法为:
将300g转基因水稻植株的稻米浸入1L的0.2%NaOH溶液中24小时,每4小时搅拌一次。滤掉浸泡液,清洗胚乳,水流中冲洗至PH=7.0。将残留物放入搅拌机中搅拌30s得到米浆。用270孔及400孔叠加的尼龙网过滤米浆。将滤液导入离心管,平衡后3000rpm离心15min,弃上清用刀片轻轻去除上层淡黄色粘稠状物质。多次重复上一步直至上层不再出现淡黄色粘稠物质。将离心好后较纯的淀粉转移至碗中烘干。
涉及的性能检测有形态结构、直链淀粉含量、淀粉磷酸含量、粘度特性等。
淀粉磷酸测定方法如下:
样品准备:将晒干的水稻种子置于烘箱中60℃烘干72h,然后用去谷壳机(Satake,日本)脱壳,糙米用旋风式磨粉机(UDY,美国)磨成粉,再过0.5mm筛,用于测定总磷、无机磷、植酸磷和金属元素含量。
总磷含量的测定:种子总磷含量的测定参考Hansen等(2009)的方法。每个样品取100mg加入到微波消解管中,然后每管加入6ml 65%的HNO3和0.2ml H2O2。采用Microwave3000(Anton PAAR,Graz,Austria)微波消解系统进行样品消化。消解结束后将微波消煮管盖打开,置于赶酸器中160℃排酸后加去离子水定容至20ml。消化后的样品采用电感耦合等离子体发射光谱仪(ICP-OES)(Optima 8000DV,PerkinElmer,USA)测定磷含量。每个样品重复3次。
其他指标检测均为常规方法,不再赘述。
结果如下:
图4示出了未经转基因的野生型水稻(中花II)籽粒淀粉颗粒(A)与转基因水稻籽粒淀粉颗粒(B)的形态差别,野生型水稻颗粒淀粉颗粒成规则的六边形,表面光滑无孔隙。而有些转基因水稻籽粒淀粉颗粒(B)形状并不规则,且表面有很多孔隙。
表4
表4示出了相对于未经转基因的野生型普通水稻(中花II)籽粒水稻淀粉,转基因水稻的籽粒淀粉磷含量升高了10倍。
表5
表5示出了相对于未经转基因的野生型籽粒水稻淀粉,转基因水稻的籽粒淀粉直链淀粉含量升高了1.5%。
表6
表6示出了未经转基因的野生型水稻籽粒淀粉与转基因水稻籽粒淀粉DSC的结果,转基因水稻籽粒淀粉的糊化明显温度低于未经改性的野生型水稻籽粒淀粉,反应的焓变也明显小于未经转基因的野生型水稻籽粒淀粉糊化产生的焓变。
实施例2
一种利用转基因技术生产糯米淀粉磷酸酯的工艺:
参照实施例1的方法,将载体pUCED-HorD:GBSS-StGWD:NOS转入糯稻绍粳08-31,筛选得到稳定表达马铃薯葡聚糖水合二激酶的水稻植株,即转基因绍粳08-31。
利用RVA(快速粘度分析仪)测定糯稻野生型(绍粳08-31)和转基因绍粳08-31的粘度特性。
稻米粉样品3.00g,加入25.00ml蒸馏水。
RVA的程序如下,50℃1min,恒速上升到95℃(3.8min),95℃下保持(2.5min),恒温下降到50℃(3.8min),50℃下保持到12.5min。
表7
如表7所示,转基因绍粳08-31株系的淀粉粘性比糯性野生型更高。
实施例3
一种生产糯米淀粉磷酸酯的工艺:
(1)参照实施例1的方法,获得稳定转基因植株中花II。
(2)分别栽植步骤(1)筛选得到的转基因中花II和糯稻越品种(绍粳08-31)。
(3)花期时选晴天的上午以绍粳08-31为母本,转基因中花II为父本进行杂交,获得杂交稻F1
(4)以绍粳08-31为母本,上述杂交稻F1为父本逐代回交,以HPT基因与GWD基因标记辅助选择获得稳定遗传的水稻植株,命名为高磷酸淀粉酯糯稻株系。
(5)提取高磷酸淀粉酯糯稻株系的籽粒淀粉,即糯米淀粉磷酸酯。
利用RVA(快速粘度分析仪)测定糯稻野生型(绍粳08-31)和高磷酸淀粉酯糯稻的粘度特性。
稻米粉样品3.00g,加入25.00ml蒸馏水。
RVA的程序如下,50℃1min,恒速上升到95℃(3.8min),95℃下保持(2.5min),恒温下降到50℃(3.8min),50℃下保持12.5min。
表8
如表8所示,高磷酸淀粉酯糯稻株系的淀粉粘性比糯性野生型更高,更加符合一些特殊工艺的需求,比如造纸业中增强剂,柔软剂高粘度淀粉的需求。
实施例4转基因改性淀粉在造纸工业上的应用
淀粉磷酸酯作为造纸湿部添加剂具有改善强力和填料的留着作用。一般来说,淀粉磷酸酯属阴离子型淀粉衍生物,无论其为单酯还是双酯,由于磷酸根上的氧而显出阴离子的特性。由于阴离子的作用,使得其对带正电荷的填料(因为填料中有Al3+、Ca2+等离子)具有留着作用;此外,由于淀粉磷酸酯的糊化浆液具有成膜性能好、透明度高、粘度稳定等特性,使得其造纸过程中能赋予纸张较高的强力。一般地,考虑到纤维素上的羟基呈负电性,认为阳离子淀粉对细小纤维有较大的留着力。
对实施例1的转基因改性淀粉与化学改性淀粉对Al3+、Ca2+等离子的留着作用作比较,确定转基因改性淀粉在造纸湿部添加剂作用的可能。
方法如下:
准确称取绝干浆1g,散于250ml烧杯中,加入100ml蒸馏水,打散成稀浆液,加入浓度为5%的改性淀粉浆液1ml,搅匀后倒入漏斗中进行抽滤至无水滴出,分别收集滤饼和滤液。收集的滤饼置于干燥箱中在105℃下烘至恒重,对收集的滤液进行Al3+、Ca2+等离子浓度的分析。留着率用下式计算:
留着率=(滤渣重/试样重)×100%。
表9
Al3+ Ca2+
转基因改性淀粉 1.32 1.54
化学磷酸改性淀粉 1.43 1.43
留着率结果如表9,转基因改性淀粉对Al3+、Ca2+等离子的留着率与化学改性磷酸淀粉(采用常规的市售的用于造纸的化学改性磷酸淀粉)相差不大,因此,转基因改性淀粉完全可以代替化学改性磷酸淀粉,在造纸湿部添加剂改善强力和填料中的留着作用。
实施例5转基因改性淀粉在纯棉织物上浆中的应用
转基因改性磷酸酯变性淀粉(或称转基因改性淀粉,即实施例1的转基因水稻淀粉)浆液的粘附性能好,粘度稳定,浆膜光滑,提高了布面光洁程度。我们在调浆过程中,浆液常压煮浆的高温保温时间太短,一些助剂还未充分发挥作用就开始用浆了,致使浆纱渗透不足,被覆偏大。后调整为95℃以上常压煮浆保温1.5h~2h,浆纱效果明显改善。
浆液配方如下:单位:质量%
注:CD浆纱膏为城达特优CD-A5浆料,28#浆料为丝丽仑SL-28浆料,DDF组合剂可参照文献(罗小乐1992 DDF变性浆料在纯棉细布上浆中的应用分析)。
调浆方法:
将转基因改性磷酸酯变性淀粉倒人调浆桶总高度的40%的冷水中搅拌,徐徐加人CMA-66和已汽溶的SLMPO-96,边搅拌边升温至50℃,再定浓4.5°Bé±0.2°Bé然后搅拌加人CD浆纱膏和已汽溶的2-萘酚,高速搅拌溶解后,pH值应为7.5~8.5,用适量的烧碱中和至范围内,升温高速搅拌30min后,温度达96℃以上,高温保温,低速搅拌,焖浆30min后,低速搅拌待用。
调浆完成后加工成浆纱测试性能。
浆纱性能测试结果如下:
注:漏斗粘度计水值为3s。
从调浆到浆纱的全过程看,磷酸改性粘度稳定且适中,上浆率波动小,浆纱落物率低。转基因磷酸改性淀粉完全符合在纺织工艺对上浆的要求。

Claims (10)

1.一种植物表达载体,包括插入原始载体的目的基因和启动子,其特征在于,所述的目的基因包括顺次相连的颗粒结合型淀粉合成酶的转运肽基因片段和马铃薯葡聚糖水合二激酶基因,所述的启动子为大麦胚乳特异性启动子HorD。
2.如权利要求1所述的植物表达载体,其特征在于,所述马铃薯葡聚糖水合二激酶基因的核苷酸序列如SEQ ID NO.1示。
3.如权利要求1所述的植物表达载体,其特征在于,所述启动子的核苷酸序列如SEQ ID NO.13示。
4.如权利要求1所述的植物表达载体,其特征在于,所述颗粒结合型淀粉合成酶的转运肽基因片段的核苷酸序列如SEQ ID NO.2所示。
5.如权利要求1~4任一所述植物表达载体在制备磷酸化改性水稻淀粉中的中应用。
6.一种磷酸化改性水稻淀粉的制备方法,包括:
(1)将所述的植物表达载体转入水稻植株,筛选获得转基因植株;
(2)对所述的转基因植株进行逐代纯化,获得稳定表达马铃薯葡聚糖水合二激酶的水稻株系;
(3)从所述的水稻株系中提取获得改性水稻淀粉。
7.一种如权利要求6所述的制备方法获得的的磷酸化改性水稻淀粉。
8.如权利要求7所述的改性水稻淀粉在制备纺织浆料或在造纸中的应用。
9.一种培育富含磷酸化改性淀粉的转基因水稻的方法,包括:
将权利要求1~4任一所述的植物表达载体转入水稻植株,筛选获得转基因植株;对所述的转基因植株进行逐代纯化,获得稳定表达马铃薯葡聚糖水合二激酶的水稻株系。
10.一种富含磷酸化改性淀粉的转基因水稻在水稻遗传育种中的应用,其特征在于,所述的富含磷酸化改性淀粉的转基因水稻通过如权利要求9所述的方法获得。
CN201410506096.9A 2014-09-28 2014-09-28 一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用 Active CN104232681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410506096.9A CN104232681B (zh) 2014-09-28 2014-09-28 一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410506096.9A CN104232681B (zh) 2014-09-28 2014-09-28 一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用

Publications (2)

Publication Number Publication Date
CN104232681A true CN104232681A (zh) 2014-12-24
CN104232681B CN104232681B (zh) 2017-02-15

Family

ID=52221575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410506096.9A Active CN104232681B (zh) 2014-09-28 2014-09-28 一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用

Country Status (1)

Country Link
CN (1) CN104232681B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106701815A (zh) * 2015-08-03 2017-05-24 中国科学院上海生命科学研究院 调节薯类储藏根性状的方法及应用
CN106701814A (zh) * 2015-08-03 2017-05-24 中国科学院上海生命科学研究院 调节薯类叶片中淀粉含量的方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011144A2 (en) * 1998-08-19 2000-03-02 Advanced Technologies (Cambridge) Limited Plastid-targeting nucleic acid sequence, beta-amylase sequence, a stimulus-responsive promoter and uses thereof
CN1316006A (zh) * 1998-07-31 2001-10-03 阿温提斯作物科学有限公司 合成一种改性淀粉的植物,产生该植物的方法,其应用,及该改性淀粉
CN1541273A (zh) * 2000-10-23 2004-10-27 �Ϻ���ͨ��ѧ 合成改性淀粉的单子叶植物细胞和植物
WO2008017518A1 (en) * 2006-08-09 2008-02-14 Bayer Cropscience Ag Genetically modified plants which synthesize a starch having increased swelling power

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316006A (zh) * 1998-07-31 2001-10-03 阿温提斯作物科学有限公司 合成一种改性淀粉的植物,产生该植物的方法,其应用,及该改性淀粉
WO2000011144A2 (en) * 1998-08-19 2000-03-02 Advanced Technologies (Cambridge) Limited Plastid-targeting nucleic acid sequence, beta-amylase sequence, a stimulus-responsive promoter and uses thereof
CN1541273A (zh) * 2000-10-23 2004-10-27 �Ϻ���ͨ��ѧ 合成改性淀粉的单子叶植物细胞和植物
WO2008017518A1 (en) * 2006-08-09 2008-02-14 Bayer Cropscience Ag Genetically modified plants which synthesize a starch having increased swelling power

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MA J,ET AL: "AHC55217.1", 《GENBANK》, 19 March 2014 (2014-03-19), pages 1 *
PISTON,F,ET AL: "EF417989", 《GENBANK》, 31 January 2008 (2008-01-31), pages 1 *
REN´E MIKKELSEN AND ANDREAS BLENNOW: "Functional domain organization of the potato α-glucan, water dikinase (GWD): evidence for separate site catalysis as revealed by limited proteolysis and deletion mutants", 《BIOCHEM. J.》, vol. 385, 31 December 2005 (2005-12-31), pages 355 - 361, XP 055007774, DOI: doi:10.1042/BJ20041119 *
谢淑蓉,等: "植物体内的淀粉磷酸化", 《农产品加工》, no. 5, 31 May 2006 (2006-05-31), pages 57 - 59 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106701815A (zh) * 2015-08-03 2017-05-24 中国科学院上海生命科学研究院 调节薯类储藏根性状的方法及应用
CN106701814A (zh) * 2015-08-03 2017-05-24 中国科学院上海生命科学研究院 调节薯类叶片中淀粉含量的方法及应用
CN106701814B (zh) * 2015-08-03 2020-04-14 中国科学院上海生命科学研究院 调节薯类叶片中淀粉含量的方法及应用
CN106701815B (zh) * 2015-08-03 2020-04-14 中国科学院上海生命科学研究院 调节薯类储藏根性状的方法及应用

Also Published As

Publication number Publication date
CN104232681B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
US11026384B2 (en) Barley and uses thereof
AU740492C (en) Novel nucleic acid molecules from maize and their use for the production of modified starch
KR101170707B1 (ko) 재생된 카사바 식물로부터 전분을 분리하는 방법 및 그로부터 분리된 전분
JP5591541B2 (ja) 膨張力の増加した低アミロースデンプンを合成する遺伝子改変植物
JP5284261B2 (ja) 増大した膨潤力を有するデンプンを合成する遺伝的に改変された植物
Koehorst-van Putten et al. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia
CN101228280B (zh) 植物内淀粉合酶的过量表达
CN106337056B (zh) 一种改良植物果实支链淀粉品质的基因及其编码产物与应用
CN109312358A (zh) 具有改进的抗回生稳定性和改进的冻融稳定性的支链马铃薯淀粉
US7754942B2 (en) Maize starch containing elevated amounts of actual amylose
CN104017829A (zh) 提高植物直链淀粉含量的方法
CN104232681B (zh) 一种植物表达载体及在制备磷酸化改性水稻淀粉中的应用
CN107245490B (zh) 一种基于ZmMIKC2a基因调节水稻籽粒淀粉含量的方法
US20220119834A1 (en) Methods for altering starch granule profile
CN103146756A (zh) 调节植物直链和支链淀粉含量的方法
CN107058345B (zh) 一种基于Zmend1a基因调节水稻籽粒大小和淀粉含量的方法
CN115851814A (zh) 一种通过过表达蔗糖合酶基因提高玉米产量和木质素含量的方法
AU2006201335B2 (en) Novel starch from cassava plants
CN116622660A (zh) 水稻种子抗性淀粉含量相关基因SSIIIb及其应用
BR102017023837A2 (pt) Métodos de alteração da estrutura da parede celular de plantas
JP2011055764A (ja) イネ変異体、澱粉の製造方法、澱粉、及びイネ変異体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant